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Preface

Facing the unusual popularity of wavelets in sciences� I began to
wonder whether this was just another fashion that would fade away
with time� After several years of research and teaching on this topic�
and surviving the painful experience of writing a book� you may rightly
expect that I have calmed my anguish� This might be the natural self�
delusion a�ecting any researcher studying his corner of the world� but
there might be more�
Wavelets are not based on a �bright new idea�� but on concepts

that already existed under various forms in many di�erent �elds� The
formalization and emergence of this �wavelet theory� is the result of a
multidisciplinary e�ort that brought together mathematicians� physi�
cists and engineers� who recognized that they were independently devel�
oping similar ideas� For signal processing� this connection has created
a �ow of ideas that goes well beyond the construction of new bases or
transforms�

A Personal Experience At one point� you cannot avoid mention�
ing who did what� For wavelets� this is a particularly sensitive task�
risking aggressive replies from forgotten scienti�c tribes arguing that
such and such results originally belong to them� As I said� this wavelet
theory is truly the result of a dialogue between scientists who often met
by chance� and were ready to listen� From my totally subjective point
of view� among the many researchers who made important contribu�
tions� I would like to single out one� Yves Meyer� whose deep scienti�c
vision was a major ingredient sparking this catalysis� It is ironic to
see a French pure mathematician� raised in a Bourbakist culture where
applied meant trivial� playing a central role along this wavelet bridge
between engineers and scientists coming from di�erent disciplines�
When beginning my Ph�D� in the U�S�� the only project I had in

mind was to travel� never become a researcher� and certainly never
teach� I had clearly destined myself to come back to France� and quickly
begin climbing the ladder of some big corporation� Ten years later� I
was still in the U�S�� the mind buried in the hole of some obscure
scienti�c problem� while teaching in a university� So what went wrong

Probably the fact that I met scientists like Yves Meyer� whose ethic
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and creativity have given me a totally di�erent view of research and
teaching� Trying to communicate this �ame was a central motivation
for writing this book� I hope that you will excuse me if my prose ends
up too often in the no man�s land of scienti�c neutrality�

A Few Ideas Beyond mathematics and algorithms� the book carries
a few important ideas that I would like to emphasize�

� Time�frequency wedding Important information often appears
through a simultaneous analysis of the signal�s time and fre�
quency properties� This motivates decompositions over elemen�
tary �atoms� that are well concentrated in time and frequency� It
is therefore necessary to understand how the uncertainty principle
limits the �exibility of time and frequency transforms�

� Scale for zooming Wavelets are scaled waveforms that measure
signal variations� By traveling through scales� zooming proce�
dures provide powerful characterizations of signal structures such
as singularities�

� More and more bases Many orthonormal bases can be designed
with fast computational algorithms� The discovery of �lter banks
and wavelet bases has created a popular new sport of basis hunt�
ing� Families of orthogonal bases are created every day� This
game may however become tedious if not motivated by applica�
tions�

� Sparse representations An orthonormal basis is useful if it de�
�nes a representation where signals are well approximated with
a few non�zero coe�cients� Applications to signal estimation in
noise and image compression are closely related to approximation
theory�

� Try it non�linear and diagonal Linearity has long predominated
because of its apparent simplicity� We are used to slogans that
often hide the limitations of �optimal� linear procedures such as
Wiener �ltering or Karhunen�Lo�eve bases expansions� In sparse
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representations� simple non�linear diagonal operators can con�
siderably outperform �optimal� linear procedures� and fast al�
gorithms are available�

WaveLab and LastWave Toolboxes Numerical experimentations
are necessary to fully understand the algorithms and theorems in this
book� To avoid the painful programming of standard procedures� nearly
all wavelet and time�frequency algorithms are available in the Wave�

Lab package� programmed in Matlab� WaveLab is a freeware soft�
ware that can be retrieved through the Internet� The correspondence
between algorithms and WaveLab subroutines is explained in Ap�
pendix B� All computational �gures can be reproduced as demos in
WaveLab� LastWave is a wavelet signal and image processing envi�
ronment� written in C for X���Unix and Macintosh computers� This
stand�alone freeware does not require any additional commercial pack�
age� It is also described in Appendix B�

Teaching This book is intended as a graduate textbook� It took
form after teaching �wavelet signal processing� courses in electrical en�
gineering departments at MIT and Tel Aviv University� and in applied
mathematics departments at the Courant Institute and Ecole Polytech�
nique Paris��

In electrical engineering� students are often initially frightened by
the use of vector space formalism as opposed to simple linear algebra�
The predominance of linear time invariant systems has led many to
think that convolutions and the Fourier transform are mathematically
su�cient to handle all applications� Sadly enough� this is not the case�
The mathematics used in the book are not motivated by theoretical
beauty� they are truly necessary to face the complexity of transient
signal processing� Discovering the use of higher level mathematics hap�
pens to be an important pedagogical side�e�ect of this course� Numeri�
cal algorithms and �gures escort most theorems� The use ofWaveLab

makes it particularly easy to include numerical simulations in home�
work� Exercises and deeper problems for class projects are listed at the
end of each chapter�

In applied mathematics� this course is an introduction to wavelets
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but also to signal processing� Signal processing is a newcomer on the
stage of legitimate applied mathematics topics� Yet� it is spectacularly
well adapted to illustrate the applied mathematics chain� from problem
modeling to e�cient calculations of solutions and theorem proving� Im�
ages and sounds give a sensual contact with theorems� that can wake up
most students� For teaching� formatted overhead transparencies with
enlarged �gures are available on the Internet�

http���www�cmap�polytechnique�fr��mallat�Wavetour figures� �

Francois Chaplais also o�ers an introductory Web tour of basic concepts
in the book at

http���cas�ensmp�fr��chaplais�Wavetour presentation��

Not all theorems of the book are proved in detail� but the important
techniques are included� I hope that the reader will excuse the lack
of mathematical rigor in the many instances where I have privileged
ideas over details� Few proofs are long� they are concentrated to avoid
diluting the mathematics into many intermediate results� which would
obscure the text�

Course Design Level numbers explained in Section ����� can help in
designing an introductory or a more advanced course� Beginning with
a review of the Fourier transform is often necessary� Although most
applied mathematics students have already seen the Fourier transform�
they have rarely had the time to understand it well� A non�technical re�
view can stress applications� including the sampling theorem� Refresh�
ing basic mathematical results is also needed for electrical engineering
students� A mathematically oriented review of time�invariant signal
processing in Chapters � and � is the occasion to remind the student of
elementary properties of linear operators� projectors and vector spaces�
which can be found in Appendix A� For a course of a single semester�
one can follow several paths� oriented by di�erent themes� Here are few
possibilities�
One can teach a course that surveys the key ideas previously out�

lined� Chapter � is particularly important in introducing the concept of
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local time�frequency decompositions� Section ��� on instantaneous fre�
quencies illustrates the limitations of time�frequency resolution� Chap�
ter � gives a di�erent perspective on the wavelet transform� by relating
the local regularity of a signal to the decay of its wavelet coe�cients
across scales� It is useful to stress the importance of the wavelet vanish�
ing moments� The course can continue with the presentation of wavelet
bases in Chapter �� and concentrate on Sections ������� on orthogonal
bases� multiresolution approximations and �lter bank algorithms in one
dimension� Linear and non�linear approximations in wavelet bases are
covered in Chapter 	� Depending upon students� backgrounds and in�
terests� the course can �nish in Chapter �� with an application to signal
estimation with wavelet thresholding� or in Chapter �� by presenting
image transform codes in wavelet bases�
A di�erent course may study the construction of new orthogonal

bases and their applications� Beginning with the wavelet basis� Chap�
ter � also gives an introduction to �lter banks� Continuing with Chapter
� on wavelet packet and local cosine bases introduces di�erent orthog�
onal tilings of the time�frequency plane� It explains the main ideas
of time�frequency decompositions� Chapter 	 on linear and non�linear
approximation is then particularly important for understanding how to
measure the e�ciency of these bases� and for studying best bases search
procedures� To illustrate the di�erences between linear and non�linear
approximation procedures� one can compare the linear and non�linear
thresholding estimations studied in Chapter ���
The course can also concentrate on the construction of sparse repre�

sentations with orthonormal bases� and study applications of non�linear
diagonal operators in these bases� It may start in Chapter �� with a
comparison of linear and non�linear operators used to estimate piece�
wise regular signals contaminated by a white noise� A quick excursion
in Chapter 	 introduces linear and non�linear approximations to ex�
plain what is a sparse representation� Wavelet orthonormal bases are
then presented in Chapter �� with special emphasis on their non�linear
approximation properties for piecewise regular signals� An application
of non�linear diagonal operators to image compression or to threshold�
ing estimation should then be studied in some detail� to motivate the
use of modern mathematics for understanding these problems�
A more advanced course can emphasize non�linear and adaptive sig�
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nal processing� Chapter � on frames introduces �exible tools that are
useful in analyzing the properties of non�linear representations such
as irregularly sampled transforms� The dyadic wavelet maxima repre�
sentation illustrates the frame theory� with applications to multiscale
edge detection� To study applications of adaptive representations with
orthonormal bases� one might start with non�linear and adaptive ap�
proximations� introduced in Chapter 	� Best bases� basis pursuit or
matching pursuit algorithms are examples of adaptive transforms that
construct sparse representations for complex signals� A central issue is
to understand to what extent adaptivity improves applications such as
noise removal or signal compression� depending on the signal properties�

Responsibilities This book was a one�year project that ended up in
a never will �nish nightmare� Ruzena Bajcsy bears a major responsibil�
ity for not encouraging me to choose another profession� while guiding
my �rst research steps� Her profound scienti�c intuition opened my
eyes to and well beyond computer vision� Then of course� are all the
collaborators who could have done a much better job of showing me
that science is a sel�sh world where only competition counts� The
wavelet story was initiated by remarkable scientists like Alex Gross�
mann� whose modesty created a warm atmosphere of collaboration�
where strange new ideas and ingenuity were welcome as elements of
creativity�

I am also grateful to the few people who have been willing to work
with me� Some have less merit because they had to �nish their de�
gree but others did it on a voluntary basis� I am thinking of Amir
Averbuch� Emmanuel Bacry� Francois Bergeaud� Geo� Davis� Davi
Geiger� Fr�ed�eric Falzon� Wen Liang Hwang� Hamid Krim� George Pa�
panicolaou� Jean�Jacques Slotine� Alan Willsky� Zifeng Zhang and Sifen
Zhong� Their patience will certainly be rewarded in a future life�

Although the reproduction of these ��� pages will probably not kill
many trees� I do not want to bear the responsibility alone� After four
years writing and rewriting each chapter� I �rst saw the end of the
tunnel during a working retreat at the Fondation des Treilles� which
o�ers an exceptional environment to think� write and eat in Provence�
With WaveLab� David Donoho saved me from spending the second
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half of my life programming wavelet algorithms� This opportunity was
beautifully implemented by Maureen Clerc and J�er�ome Kalifa� who
made all the �gures and found many more mistakes than I dare say�
Dear reader� you should thank Barbara Burke Hubbard� who corrected
my Frenglish remaining errors are mine�� and forced me to modify
many notations and explanations� I thank her for doing it with tact
and humor� My editor� Chuck Glaser� had the patience to wait but I
appreciate even more his wisdom to let me think that I would �nish in
a year�
She will not read this book� yet my deepest gratitude goes to Branka

with whom life has nothing to do with wavelets�

St�ephane Mallat
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Second Edition

Before leaving this Wavelet Tour� I naively thought that I should
take advantage of remarks and suggestions made by readers� This al�
most got out of hand� and ��� pages ended up being rewritten� Let me
outline the main components that were not in the �rst edition�

� Bayes versus Minimax Classical signal processing is almost en�
tirely built in a Bayes framework� where signals are viewed as
realizations of a random vector� For the last two decades� re�
searchers have tried to model images with random vectors� but in
vain� It is thus time to wonder whether this is really the best ap�
proach� Minimax theory opens an easier avenue for evaluating the
performance of estimation and compression algorithms� It uses
deterministic models that can be constructed even for complex
signals such as images� Chapter �� is rewritten and expanded to
explain and compare the Bayes and minimax points of view�

� Bounded Variation Signals Wavelet transforms provide sparse
representations of piecewise regular signals� The total variation
norm gives an intuitive and precise mathematical framework in
which to characterize the piecewise regularity of signals and im�
ages� In this second edition� the total variation is used to compute
approximation errors� to evaluate the risk when removing noise
from images� and to analyze the distortion rate of image trans�
form codes�

� Normalized Scale Continuous mathematics give asymptotic re�
sults when the signal resolution N increases� In this framework�
the signal support is �xed� say ��� ��� and the sampling interval
N�� is progressively reduced� In contrast� digital signal process�
ing algorithms are often presented by normalizing the sampling
interval to �� which means that the support ��� N � increases with
N � This new edition explains both points of views� but the �gures
now display signals with a support normalized to ��� ��� in accor�
dance with the theorems� The scale parameter of the wavelet
transform is thus smaller than ��
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� Video Compression Compressing video sequences is of prime im�
portance for real time transmission with low�bandwidth channels
such as the Internet or telephone lines� Motion compensation
algorithms are presented at the end of Chapter ���
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Notation

hf� gi Inner product A����
kfk Norm A����
f �n� � Og�n�� Order of� there exists K such that f �n� � Kg�n��

f �n� � og�n�� Small order of� limn���
f �n�
g�n�

� ��

f �n� � g�n� Equivalent to� f �n� � Og�n�� and g�n� � Of �n���
A �  � A is �nite�
A� B A is much bigger than B�
z� Complex conjugate of z � C �
bxc Largest integer n � x�
dxe Smallest integer n � x�
nmodN Remainder of the integer division of n modulo N �

Sets
N Positive integers including ��
Z Integers�
R Real numbers�
R� Positive real numbers�
C Complex numbers�

Signals
ft� Continuous time signal�
f �n� Discrete signal�
�t� Dirac distribution A�����
��n� Discrete Dirac ������
��a�b� Indicator function which is � in �a� b� and � outside�

Spaces
C� Uniformly continuous functions �������
Cp p times continuously di�erentiable functions�
C� In�nitely di�erentiable functions�
WsR� Sobolev s times di�erentiable functions 	����
L�R� Finite energy functions

R jft�j� dt �  ��
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LpR� Functions such that
R jft�jp dt �  ��

l�Z� Finite energy discrete signals
P��

n��� jf �n�j� �  ��
lpZ� Discrete signals such that

P��
n��� jf �n�jp �  ��

C N Complex signals of size N �
U�V Direct sum of two vector spaces�
U�V Tensor product of two vector spaces A��	��

Operators
Id Identity�

f �t� Derivative df�t�
dt
�

f �p�t� Derivative dpf�t�
dtp

of order p �
�rfx� y� Gradient vector ������
f � gt� Continuous time convolution �����
f � g�n� Discrete convolution ������
f �	 g�n� Circular convolution �����

Transforms
�f�� Fourier transform ����� ������
�f �k� Discrete Fourier transform ������
Sfu� s� Short�time windowed Fourier transform ������
PSfu� �� Spectrogram ������
Wfu� s� Wavelet transform ������
PWfu� �� Scalogram ������
PV fu� �� Wigner�Ville distribution �������
Afu� �� Ambiguity function ������

Probability
X Random variable�
EfXg Expected value�
HX� Entropy ������
HdX� Di�erential entropy �������
CovX�� X�� Covariance A�����
F �n� Random vector�
RF �k� Autocovariance of a stationary process A�����
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Introduction to a Transient

World

After a few minutes in a restaurant we cease to notice the annoying
hubbub of surrounding conversations� but a sudden silence reminds
us of the presence of neighbors� Our attention is clearly attracted by
transients and movements as opposed to stationary stimuli� which we
soon ignore� Concentrating on transients is probably a strategy for
selecting important information from the overwhelming amount of data
recorded by our senses� Yet� classical signal processing has devoted
most of its e�orts to the design of time�invariant and space�invariant
operators� that modify stationary signal properties� This has led to the
indisputable hegemony of the Fourier transform� but leaves aside many
information�processing applications�

The world of transients is considerably larger and more complex
than the garden of stationary signals� The search for an ideal Fourier�
like basis that would simplify most signal processing is therefore a hope�
less quest� Instead� a multitude of di�erent transforms and bases have
proliferated� among which wavelets are just one example� This book
gives a guided tour in this jungle of new mathematical and algorithmic
results� while trying to provide an intuitive sense of orientation� Major
ideas are outlined in this �rst chapter� Section ����� serves as a travel
guide and introduces the reproducible experiment approach based on
the WaveLab and LastWave softwares� It also discusses the use of
level numbers!landmarks that can help the reader keep to the main

��
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roads�

��� Fourier Kingdom

The Fourier transform rules over linear time�invariant signal processing
because sinusoidal waves ei�t are eigenvectors of linear time�invariant
operators� A linear time�invariant operator L is entirely speci�ed by
the eigenvalues �h���


� � R � Lei�t � �h�� ei�t� ����

To compute Lf � a signal f is decomposed as a sum of sinusoidal eigen�
vectors fei�tg��R�

ft� �
�

��

Z ��

��
�f�� ei�t d�� ����

If f has �nite energy� the theory of Fourier integrals presented in
Chapter � proves that the amplitude �f�� of each sinusoidal wave ei�t

is the Fourier transform of f �

�f�� �

Z ��

��
ft� e�i�t dt� ����

Applying the operator L to f in ���� and inserting the eigenvector
expression ���� gives

Lft� �
�

��

Z ��

��
�f�� �h�� ei�t d�� ����

The operator L ampli�es or attenuates each sinusoidal component ei�t

of f by �h��� It is a frequency �ltering of f �
As long as we are satis�ed with linear time�invariant operators�

the Fourier transform provides simple answers to most questions� Its
richness makes it suitable for a wide range of applications such as signal
transmissions or stationary signal processing�
However� if we are interested in transient phenomena!a word pro�

nounced at a particular time� an apple located in the left corner of an
image!the Fourier transform becomes a cumbersome tool�
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The Fourier coe�cient is obtained in ���� by correlating f with a
sinusoidal wave ei�t� Since the support of ei�t covers the whole real
line� �f�� depends on the values ft� for all times t � R� This global
�mix� of information makes it di�cult to analyze any local property of
f from �f � Chapter � introduces local time�frequency transforms� which
decompose the signal over waveforms that are well localized in time
and frequency�

��� Time�Frequency Wedding

The uncertainty principle states that the energy spread of a function
and its Fourier transform cannot be simultaneously arbitrarily small�
Motivated by quantum mechanics� in �	�� the physicist Gabor �����
de�ned elementary time�frequency atoms as waveforms that have a
minimal spread in a time�frequency plane� To measure time�frequency
�information� content� he proposed decomposing signals over these el�
ementary atomic waveforms� By showing that such decompositions are
closely related to our sensitivity to sounds� and that they exhibit im�
portant structures in speech and music recordings� Gabor demonstrated
the importance of localized time�frequency signal processing�
Chapter � studies the properties of windowed Fourier and wavelet

transforms� computed by decomposing the signal over di�erent fami�
lies of time�frequency atoms� Other transforms can also be de�ned by
modifying the family of time�frequency atoms� A uni�ed interpretation
of local time�frequency decompositions follows the time�frequency en�
ergy density approach of Ville� In parallel to Gabor�s contribution� in
�	�� Ville ������ who was an electrical engineer� proposed analyzing the
time�frequency properties of signals f with an energy density de�ned
by

PV ft� �� �

Z ��

��
f
�
t  

	

�

�
f �
�
t� 	

�

�
e�i�� d	�

Once again� theoretical physics was ahead� since this distribution had
already been introduced in �	�� by Wigner ����� in the context of
quantum mechanics� Chapter � explains the path that relates Wigner�
Ville distributions to windowed Fourier and wavelet transforms� or any
linear time�frequency transform�
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����� Windowed Fourier Transform

Gabor atoms are constructed by translating in time and frequency a
time window g�

gu��t� � gt� u� ei�t�

The energy of gu�� is concentrated in the neighborhood of u over an
interval of size 
t� measured by the standard deviation of jgj�� Its
Fourier transform is a translation by � of the Fourier transform �g of g�

�gu���� � �g� � �� e�iu������ ����

The energy of �gu�� is therefore localized near the frequency �� over an
interval of size 
�� which measures the domain where �g�� is non�
negligible� In a time�frequency plane t� ��� the energy spread of the
atom gu�� is symbolically represented by the Heisenberg rectangle illus�
trated by Figure ���� This rectangle is centered at u� �� and has a time
width 
t and a frequency width 
�� The uncertainty principle proves
that its area satis�es


t 
� � �

�
�

This area is minimum when g is a Gaussian� in which case the atoms
gu�� are called Gabor functions�
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Figure ���� Time�frequency boxes �Heisenberg rectangles�� represent�
ing the energy spread of two Gabor atoms�
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The windowed Fourier transform de�ned by Gabor correlates a sig�
nal f with each atom gu���

Sfu� �� �

Z ��

��
ft� g�u��t� dt �

Z ��

��
ft� gt� u� e�i�t dt� ����

It is a Fourier integral that is localized in the neighborhood of u by the
window gt� u�� This time integral can also be written as a frequency
integral by applying the Fourier Parseval formula ������

Sfu� �� �
�

��

Z ��

��
�f�� �g�u���� d�� ����

The transform Sfu� �� thus depends only on the values ft� and �f��
in the time and frequency neighborhoods where the energies of gu��
and �gu�� are concentrated� Gabor interprets this as a �quantum of
information� over the time�frequency rectangle illustrated in Figure
����
When listening to music� we perceive sounds that have a frequency

that varies in time� Measuring time�varying harmonics is an important
application of windowed Fourier transforms in both music and speech
recognition� A spectral line of f creates high amplitude windowed
Fourier coe�cients Sfu� �� at frequencies �u� that depend on the
time u� The time evolution of such spectral components is therefore
analyzed by following the location of large amplitude coe�cients�

����� Wavelet Transform

In re�ection seismology� Morlet knew that the modulated pulses sent
underground have a duration that is too long at high frequencies to
separate the returns of �ne� closely�spaced layers� Instead of emitting
pulses of equal duration� he thus thought of sending shorter waveforms
at high frequencies� Such waveforms are simply obtained by scaling a
single function called a wavelet� Although Grossmann was working in
theoretical physics� he recognized in Morlet�s approach some ideas that
were close to his own work on coherent quantum states� Nearly forty
years after Gabor� Morlet and Grossmann reactivated a fundamental
collaboration between theoretical physics and signal processing� which
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led to the formalization of the continuous wavelet transform ������ Yet�
these ideas were not totally new to mathematicians working in harmonic
analysis� or to computer vision researchers studying multiscale image
processing� It was thus only the beginning of a rapid catalysis that
brought together scientists with very di�erent backgrounds� �rst around
co�ee tables� then in more luxurious conferences�
A wavelet � is a function of zero average�Z ��

��
�t� dt � ��

which is dilated with a scale parameter s� and translated by u�

�u�st� �
�p
s
�

�
t� u

s

�
� ����

The wavelet transform of f at the scale s and position u is computed
by correlating f with a wavelet atom

Wfu� s� �

Z ��

��
ft�

�p
s
��
�
t� u

s

�
dt� ��	�

Time
Frequency Measurements Like a windowed Fourier trans�
form� a wavelet transform can measure the time�frequency variations of
spectral components� but it has a di�erent time�frequency resolution�
A wavelet transform correlates f with �u�s� By applying the Fourier
Parseval formula ������ it can also be written as a frequency integra�
tion�

Wfu� s� �

Z ��

��
ft���u�st� dt �

�

��

Z ��

��
�f�� ���u�s�� d�� �����

The wavelet coe�cient Wfu� s� thus depends on the values ft� and
�f�� in the time�frequency region where the energy of �u�s and ��u�s is
concentrated� Time varying harmonics are detected from the position
and scale of high amplitude wavelet coe�cients�
In time� �u�s is centered at u with a spread proportional to s� Its

Fourier transform is calculated from �����

��u�s�� � e
�iu�ps ��s���
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where �� is the Fourier transform of �� To analyze the phase information
of signals� a complex analytic wavelet is used� This means that ���� �
� for � � �� Its energy is concentrated in a positive frequency interval
centered at �� The energy of ��u�s�� is therefore concentrated over
a positive frequency interval centered at �s� whose size is scaled by
�s� In the time�frequency plane� a wavelet atom �u�s is symbolically
represented by a rectangle centered at u� �s�� The time and frequency
spread are respectively proportional to s and �s� When s varies� the
height and width of the rectangle change but its area remains constant�
as illustrated by Figure ����

0 tσs

σω
s

σs t

σω
s0

0
u ,s0

0
u ,s0

ψ

η

0

ω

tu u0

u,sψ

u,s

s
0

s

|ψ     (ω)|

|ψ   (ω)|^

^

η

Figure ���� Time�frequency boxes of two wavelets �u�s and �u��s�� When
the scale s decreases� the time support is reduced but the frequency
spread increases and covers an interval that is shifted towards high
frequencies�

Multiscale Zooming The wavelet transform can also detect and
characterize transients with a zooming procedure across scales� Sup�
pose that � is real� Since it has a zero average� a wavelet coe�cient
Wfu� s� measures the variation of f in a neighborhood of u whose size
is proportional to s� Sharp signal transitions create large amplitude
wavelet coe�cients� Chapter � relates the pointwise regularity of f to
the asymptotic decay of the wavelet transform Wfu� s�� when s goes
to zero� Singularities are detected by following across scales the local
maxima of the wavelet transform� In images� high amplitude wavelet
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coe�cients indicate the position of edges� which are sharp variations
of the image intensity� Di�erent scales provide the contours of image
structures of varying sizes� Such multiscale edge detection is particu�
larly e�ective for pattern recognition in computer vision ������
The zooming capability of the wavelet transform not only locates

isolated singular events� but can also characterize more complex mul�
tifractal signals having non�isolated singularities� Mandelbrot ���� was
the �rst to recognize the existence of multifractals in most corners of
nature� Scaling one part of a multifractal produces a signal that is
statistically similar to the whole� This self�similarity appears in the
wavelet transform� which modi�es the analyzing scale� "From the global
wavelet transform decay� one can measure the singularity distribution
of multifractals� This is particularly important in analyzing their prop�
erties and testing models that explain the formation of multifractals in
physics�

��� Bases of Time�Frequency Atoms

The continuous windowed Fourier transform Sfu� �� and the wavelet
transform Wfu� s� are two�dimensional representations of a one�di�
mensional signal f � This indicates the existence of some redundancy
that can be reduced and even removed by subsampling the parameters
of these transforms�

Frames Windowed Fourier transforms and wavelet transforms can be
written as inner products in L�R�� with their respective time�frequency
atoms

Sfu� �� �

Z ��

��
ft� g�u��t� dt � hf� gu��i

and

Wfu� s� �

Z ��

��
ft���u�st� dt � hf� �u�si�

Subsampling both transforms de�nes a complete signal representation
if any signal can be reconstructed from linear combinations of discrete
families of windowed Fourier atoms fgun��kg�n�k��Z� and wavelet atoms



���� BASES OF TIME�FREQUENCY ATOMS �	

f�un�sjg�j�n��Z�� The frame theory of Chapter � discusses what condi�
tions these families of waveforms must meet if they are to provide stable
and complete representations�
Completely eliminating the redundancy is equivalent to building

a basis of the signal space� Although wavelet bases were the �rst to
arrive on the research market� they have quickly been followed by other
families of orthogonal bases� such as wavelet packet and local cosine
bases�

����� Wavelet Bases and Filter Banks

In �	��� Haar ����� realized that one can construct a simple piecewise
constant function

�t� �

���
� if � � t � ��

�� if �� � t � �
� otherwise

whose dilations and translations generate an orthonormal basis of L�R���
�j�nt� �

�p
�j
�

�
t� �jn
�j

��
�j�n��Z�

�

Any �nite energy signal f can be decomposed over this wavelet orthog�
onal basis f�j�ng�j�n��Z�

f �
��X

j���

��X
n���

hf� �j�ni�j�n� �����

Since �t� has a zero average� each partial sum

djt� �
��X

n���
hf� �j�ni�j�nt�

can be interpreted as detail variations at the scale �j� These layers of
details are added at all scales to progressively improve the approxima�
tion of f � and ultimately recover f �
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If f has smooth variations� we should obtain a precise approximation
when removing �ne scale details� which is done by truncating the sum
������ The resulting approximation at a scale �J is

fJt� �
��X
j�J

djt��

For a Haar basis� fJ is piecewise constant� Piecewise constant ap�
proximations of smooth functions are far from optimal� For example� a
piecewise linear approximation produces a smaller approximation error�
The story continues in �	��� when Str#omberg ����� found a piecewise
linear function � that also generates an orthonormal basis and gives
better approximations of smooth functions� Meyer was not aware of
this result� and motivated by the work of Morlet and Grossmann he
tried to prove that there exists no regular wavelet � that generates an
orthonormal basis� This attempt was a failure since he ended up con�
structing a whole family of orthonormal wavelet bases� with functions
� that are in�nitely continuously di�erentiable ������ This was the fun�
damental impulse that lead to a widespread search for new orthonormal
wavelet bases� which culminated in the celebrated Daubechies wavelets
of compact support ������
The systematic theory for constructing orthonormal wavelet bases

was established by Meyer and Mallat through the elaboration of mul�
tiresolution signal approximations ������ presented in Chapter �� It
was inspired by original ideas developed in computer vision by Burt
and Adelson ����� to analyze images at several resolutions� Digging
more into the properties of orthogonal wavelets and multiresolution
approximations brought to light a surprising relation with �lter banks
constructed with conjugate mirror �lters�

Filter Banks Motivated by speech compression� in �	�� Croisier�
Esteban and Galand ����� introduced an invertible �lter bank� which
decomposes a discrete signal f �n� in two signals of half its size� using a
�ltering and subsampling procedure� They showed that f �n� can be re�
covered from these subsampled signals by canceling the aliasing terms
with a particular class of �lters called conjugate mirror �lters� This
breakthrough led to a ���year research e�ort to build a complete �lter
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bank theory� Necessary and su�cient conditions for decomposing a sig�
nal in subsampled components with a �ltering scheme� and recovering
the same signal with an inverse transform� were established by Smith
and Barnwell ������ Vaidyanathan ����� and Vetterli ���	��

The multiresolution theory of orthogonal wavelets proves that any
conjugate mirror �lter characterizes a wavelet � that generates an or�
thonormal basis of L�R�� Moreover� a fast discrete wavelet transform
is implemented by cascading these conjugate mirror �lters� The equiv�
alence between this continuous time wavelet theory and discrete �lter
banks led to a new fruitful interface between digital signal processing
and harmonic analysis� but also created a culture shock that is not
totally resolved�

Continuous Versus Discrete and Finite Many signal processors
have been and still are wondering what is the point of these continuous
time wavelets� since all computations are performed over discrete sig�
nals� with conjugate mirror �lters� Why bother with the convergence
of in�nite convolution cascades if in practice we only compute a �nite
number of convolutions
 Answering these important questions is nec�
essary in order to understand why throughout this book we alternate
between theorems on continuous time functions and discrete algorithms
applied to �nite sequences�

A short answer would be �simplicity�� In L�R�� a wavelet basis
is constructed by dilating and translating a single function �� Sev�
eral important theorems relate the amplitude of wavelet coe�cients
to the local regularity of the signal f � Dilations are not de�ned over
discrete sequences� and discrete wavelet bases have therefore a more
complicated structure� The regularity of a discrete sequence is not well
de�ned either� which makes it more di�cult to interpret the amplitude
of wavelet coe�cients� A theory of continuous time functions gives
asymptotic results for discrete sequences with sampling intervals de�
creasing to zero� This theory is useful because these asymptotic results
are precise enough to understand the behavior of discrete algorithms�

Continuous time models are not su�cient for elaborating discrete
signal processing algorithms� Uniformly sampling the continuous time
wavelets f�j�nt�g�j�n��Z� does not produce a discrete orthonormal ba�
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sis� The transition between continuous and discrete signals must be
done with great care� Restricting the constructions to �nite discrete
signals adds another layer of complexity because of border problems�
How these border issues a�ect numerical implementations is carefully
addressed once the properties of the bases are well understood� To
simplify the mathematical analysis� throughout the book continuous
time transforms are introduced �rst� Their discretization is explained
afterwards� with fast numerical algorithms over �nite signals�

����� Tilings of Wavelet Packet and Local Cosine

Bases

Orthonormal wavelet bases are just an appetizer� Their construction
showed that it is not only possible but relatively simple to build or�
thonormal bases of L�R� composed of local time�frequency atoms� The
completeness and orthogonality of a wavelet basis is represented by a
tiling that covers the time�frequency plane with the wavelets� time�
frequency boxes� Figure ��� shows the time�frequency box of each �j�n�
which is translated by �jn� with a time and a frequency width scaled
respectively by �j and ��j�
One can draw many other tilings of the time�frequency plane� with

boxes of minimal surface as imposed by the uncertainty principle� Chap�
ter � presents several constructions that associate large families of or�
thonormal bases of L�R� to such new tilings�

Wavelet Packet Bases A wavelet orthonormal basis decomposes
the frequency axis in dyadic intervals whose sizes have an exponential
growth� as shown by Figure ���� Coifman� Meyer and Wickerhauser
���	� have generalized this �xed dyadic construction by decomposing
the frequency in intervals whose bandwidths may vary� Each frequency
interval is covered by the time�frequency boxes of wavelet packet func�
tions that are uniformly translated in time in order to cover the whole
plane� as shown by Figure ����

Wavelet packet functions are designed by generalizing the �lter bank
tree that relates wavelets and conjugate mirror �lters� The frequency
axis division of wavelet packets is implemented with an appropriate
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sequence of iterated convolutions with conjugate mirror �lters� Fast
numerical wavelet packet decompositions are thus implemented with
discrete �lter banks�

(t)

ω

t

t

ψ ψ (t)j+1,pj,n

Figure ���� The time�frequency boxes of a wavelet basis de�ne a tiling
of the time�frequency plane�

Local Cosine Bases Orthonormal bases of L�R� can also be con�
structed by dividing the time axis instead of the frequency axis� The
time axis is segmented in successive �nite intervals �ap� ap���� The local
cosine bases of Malvar ����� are obtained by designing smooth windows
gpt� that cover each interval �ap� ap���� and multiplying them by cosine
functions cos�t  �� of di�erent frequencies� This is yet another idea
that was independently studied in physics� signal processing and mathe�
matics� Malvar�s original construction was done for discrete signals� At
the same time� the physicist Wilson ����� was designing a local cosine
basis with smooth windows of in�nite support� to analyze the proper�
ties of quantum coherent states� Malvar bases were also rediscovered
and generalized by the harmonic analysts Coifman and Meyer ������
These di�erent views of the same bases brought to light mathematical
and algorithmic properties that opened new applications�
A multiplication by cos�t  �� translates the Fourier transform

�gp�� of gpt� by ��� Over positive frequencies� the time�frequency
box of the modulated window gpt� cos�t  �� is therefore equal to
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ω

0 t

Figure ���� A wavelet packet basis divides the frequency axis in separate
intervals of varying sizes� A tiling is obtained by translating in time
the wavelet packets covering each frequency interval�

the time�frequency box of gp translated by � along frequencies� The
time�frequency boxes of local cosine basis vectors de�ne a tiling of the
time�frequency plane illustrated by Figure ����

��� Bases for What�

The tiling game is clearly unlimited� Local cosine and wavelet packet
bases are important examples� but many other kinds of bases can be
constructed� It is thus time to wonder how to select an appropriate
basis for processing a particular class of signals� The decomposition
coe�cients of a signal in a basis de�ne a representation that highlights
some particular signal properties� For example� wavelet coe�cients
provide explicit information on the location and type of signal singu�
larities� The problem is to �nd a criterion for selecting a basis that is
intrinsically well adapted to represent a class of signals�

Mathematical approximation theory suggests choosing a basis that
can construct precise signal approximations with a linear combination
of a small number of vectors selected inside the basis� These selected
vectors can be interpreted as intrinsic signal structures� Compact cod�
ing and signal estimation in noise are applications where this criterion
is a good measure of the e�ciency of a basis� Linear and non�linear
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Figure ���� A local cosine basis divides the time axis with smooth
windows gpt�� Multiplications with cosine functions translate these
windows in frequency and yield a complete cover of the time�frequency
plane�

procedures are studied and compared� This will be the occasion to
show that non�linear does not always mean complicated�

����� Approximation

The development of orthonormal wavelet bases has opened a new bridge
between approximation theory and signal processing� This exchange is
not quite new since the fundamental sampling theorem comes from an
interpolation theory result proved in �	�� by Whittaker ���	�� However�
the state of the art of approximation theory has changed since �	���
In particular� the properties of non�linear approximation schemes are
much better understood� and give a �rm foundation for analyzing the
performance of many non�linear signal processing algorithms� Chapter
	 introduces important approximation theory results that are used in
signal estimation and data compression�
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Linear Approximation A linear approximation projects the signal
f over M vectors that are chosen a priori in an orthonormal basis
B � fgmgm�Z� say the �rst M �

fM �
M��X
m��

hf� gmi gm� �����

Since the basis is orthonormal� the approximation error is the sum of
the remaining squared inner products

��M � � kf � fMk� �
��X
m�M

jhf� gmij��

The accuracy of this approximation clearly depends on the properties
of f relative to the basis B�
A Fourier basis yields e�cient linear approximations of uniformly

smooth signals� which are projected over the M lower frequency sinu�
soidal waves� When M increases� the decay of the error ��M � can be
related to the global regularity of f � Chapter 	 characterizes spaces of
smooth functions from the asymptotic decay of ��M � in a Fourier basis�

In a wavelet basis� the signal is projected over the M larger scale
wavelets� which is equivalent to approximating the signal at a �xed res�
olution� Linear approximations of uniformly smooth signals in wavelet
and Fourier bases have similar properties and characterize nearly the
same function spaces�
Suppose that we want to approximate a class of discrete signals of

size N � modeled by a random vector F �n�� The average approximation
error when projecting F over the �rstM basis vectors of an orthonormal
basis B � fgmg��m�N is

��M � � EfkF � FMk�g �
N��X
m�M

EfjhF� gmij�g�

Chapter 	 proves that the basis that minimizes this error is the Karhunen�
Lo�eve basis� which diagonalizes the covariance matrix of F � This re�
markable property explains the fundamental importance of the Karhunen�
Lo�eve basis in optimal linear signal processing schemes� This is however
only a beginning�
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Non
linear Approximation The linear approximation ����� is im�
proved if we choose a posteriori theM vectors gm� depending on f � The
approximation of f with M vectors whose indexes are in IM is

fM �
X
m�IM

hf� gmi gm� �����

The approximation error is the sum of the squared inner products with
vectors not in IM �

��M � � kf � fMk� �
X
n��IM

jhf� gmij��

To minimize this error� we choose IM to be the set of M vectors that
have the largest inner product amplitude jhf� gmij� This approximation
scheme is non�linear because the approximation vectors change with f �
The amplitude of inner products in a wavelet basis is related to the

local regularity of the signal� A non�linear approximation that keeps the
largest wavelet inner products is equivalent to constructing an adaptive
approximation grid� whose resolution is locally increased where the sig�
nal is irregular� If the signal has isolated singularities� this non�linear
approximation is much more precise than a linear scheme that main�
tains the same resolution over the whole signal support� The spaces
of functions that are well approximated by non�linear wavelet schemes
are thus much larger than for linear schemes� and include functions
with isolated singularities� Bounded variation signals are important
examples that provide useful models for images�
In this non�linear setting� Karhunen�Lo�eve bases are not optimal for

approximating the realizations of a process F � It is often easy to �nd a
basis that produces a smaller non�linear error than a Karhunen�Lo�eve
basis� but there is yet no procedure for computing the optimal basis
that minimizes the average non�linear error�

Adaptive Basis Choice Approximations of non�linear signals can
be improved by choosing the approximation vectors in families that are
much larger than a basis� Music recordings� which include harmonic
and transient structures of very di�erent types� are examples of complex
signals that are not well approximated by a few vectors chosen from a
single basis�
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A new degree of freedom is introduced if instead of choosing a priori
the basis B� we adaptively select a �best� basis� depending on the signal
f � This best basis minimizes a cost function related to the non�linear
approximation error of f � A fast dynamical programming algorithm
can �nd the best basis in families of wavelet packet basis or local cosine
bases ������ The selected basis corresponds to a time�frequency tiling
that �best� concentrates the signal energy over a few time�frequency
atoms�
Orthogonality is often not crucial in the post�processing of signal

coe�cients� One may thus further enlarge the freedom of choice by ap�
proximating the signal f with M non�orthogonal vectors fg�mg��m�M �
chosen from a large and redundant dictionary D � fg�g��	�

fM �
M��X
m��

am g�m �

Globally optimizing the choice of these M vectors in D can lead to
a combinatorial explosion� Chapter 	 introduces sub�optimal pursuit
algorithms that reduce the numerical complexity� while constructing
e�cient approximations ���	� ��	��

����� Estimation

The estimation of a signal embedded in noise requires taking advantage
of any prior information about the signal and the noise� Chapter ��
studies and contrasts several approaches� Bayes versus minimax� lin�
ear versus non�linear� Until recently� signal processing estimation was
mostly Bayesian and linear� Non�linear smoothing algorithms existed
in statistics� but these procedures were often ad�hoc and complex� Two
statisticians� Donoho and Johnstone ������ changed the game by prov�
ing that a simple thresholding algorithm in an appropriate basis can be
a nearly optimal non�linear estimator�

Linear versus Non
Linear A signal f �n� of size N is contaminated
by the addition of a noise� This noise is modeled as the realization of
a random process W �n�� whose probability distribution is known� The
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measured data are

X�n� � f �n�  W �n� �

The signal f is estimated by transforming the noisy data X with an
operator D�

$F � DX �

The risk of the estimator $F of f is the average error� calculated with
respect to the probability distribution of the noise W �

rD� f� � Efkf �DXk�g �

It is tempting to restrict oneself to linear operators D� because
of their simplicity� Yet� non�linear operators may yield a much lower
risk� To keep the simplicity� we concentrate on diagonal operators in
a basis B� If the basis B gives a sparse signal representation� Donoho
and Johnstone ����� prove that a nearly optimal non�linear estimator
is obtained with a simple thresholding�

$F � DX �
N��X
m��

�T hX� gmi� gm �

The thresholding function �T x� sets to zero all coe�cients below T �

�T x� �

�
� if jxj � T
x if jxj � T

�

In a wavelet basis� such a thresholding implements an adaptive smooth�
ing� which averages the data X with a kernel that depends on the
regularity of the underlying signal f �

Bayes Versus Minimax To optimize the estimation operator D�
one must take advantage of any prior information available about the
signal f � In a Bayes framework� f is considered as a realization of a
random vector F � whose probability distribution � is known a priori�
Thomas Bayes was a XVII century philosopher� who �rst suggested
and investigated methods sometimes referred as �inverse probability
methods�� which are basic to the study of Bayes estimators� The Bayes
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risk is the expected risk calculated with respect to the prior probability
distribution � of the signal�

rD� �� � E�frD�F �g �
Optimizing D among all possible operators yields the minimum Bayes
risk�

rn�� � inf
allD

rD� �� �

Complex signals such as images are clearly non�Gaussian� and there
is yet no reliable probabilistic model that incorporates the diversity of
structures such as edges and textures�
In the �	���s� Wald brought a new perspective on statistics� through

a decision theory partly imported from the theory of games� This point
of view o�ers a simpler way to incorporate prior information on complex
signals� Signals are modeled as elements of a particular set %� without
specifying their probability distribution in this set� For example� large
classes of images belong to the set of signals whose total variation is
bounded by a constant� To control the risk for any f � %� we compute
the maximum risk

rD�%� � sup
f�


rD� f� �

The minimax risk is the lower bound computed over all operators D�

rn%� � inf
all D

rD�%��

In practice� the goal is to �nd an operatorD that is simple to implement
and which yields a risk close the minimax lower bound�
Unless % has particular convexity properties� non�linear estimators

have a much lower risk than linear estimators� If W is a white noise
and signals in % have a sparse representation in B� then Chapter ��
shows that thresholding estimators are nearly minimax optimal� In
particular� the risk of wavelet thresholding estimators is close to the
minimax risk for wide classes of piecewise smooth signals� including
bounded variation images� Thresholding estimators are extended to
more complex problems such as signal restorations and deconvolutions�
The performance of a thresholding may also be improved with a best
basis search or a pursuit algorithm that adapts the basis B to the noisy
data� However� more adaptivity does not necessarily means less risk�
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����� Compression

Limited storage space and transmission through narrow band�width
channels create a need for compressing signals while minimizing their
degradation� Transform codes compress signals by decomposing them
in an orthonormal basis� Chapter �� introduces the basic information
theory needed to understand these codes and optimize their perfor�
mance� Bayes and minimax approaches are studied�
A transform code decomposes a signal f in an orthonormal basis

B � fgmg��m�N �

f �
N��X
m��

hf� gmi gm �

The coe�cients hf� gmi are approximated by quantized valuesQhf� gmi��
A signal $f is restored from these quantized coe�cients�

$f �
N��X
m��

Qhf� gmi� gm �

A binary code is used to record the quantized coe�cients Qhf� gmi�
with R bits� The resulting distortion is

dR� f� � kf � $fk� �
At the compression rates currently used for images� dR� f� has a highly
non�linear behavior� which depends on the precision of non�linear ap�
proximations of f from a few vectors in the basis B�
To compute the distortion rate over a whole signal class� the Bayes

framework models signals as realizations of a random vector F whose
probability distribution � is known� The goal is then to optimize the
quantization and the basis B in order to minimize the average distortion
rate dR� �� � E�fdR�F �g� This approach applies particularly well to
audio signals� which are relatively well modeled by Gaussian processes�
In the absence of stochastic models for complex signals such as

images� the minimax approach computes the maximum distortion by
assuming only that the signal belongs to a prior set %� Chapter ��
describes the implementation of image transform codes in wavelet bases
and block cosine bases� The minimax distortion rate is calculated for
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bounded variation images� and wavelet transform codes are proved to
be nearly minimax optimal�

For video compression� one must also take advantage of the sim�
ilarity of images across time� The most e�ective algorithms predict
each image from a previous one by compensating for the motion� and
the error is recorded with a transform code� MPEG video compression
standards are described�

��� Travel Guide

����� Reproducible Computational Science

The book covers the whole spectrum from theorems on functions of
continuous variables to fast discrete algorithms and their applications�
Section ����� argues that models based on continuous time functions
give useful asymptotic results for understanding the behavior of dis�
crete algorithms� Yet� a mathematical analysis alone is often unable
to predict fully the behavior and suitability of algorithms for speci�c
signals� Experiments are necessary and such experiments ought in prin�
ciple be reproducible� just like experiments in other �elds of sciences�

In recent years� the idea of reproducible algorithmic results has been
championed by Claerbout ����� in exploration geophysics� The goal of
exploration seismology is to produce the highest possible quality image
of the subsurface� Part of the scienti�c know�how involved includes ap�
propriate parameter settings that lead to good results on real datasets�
The reproducibility of experiments thus requires having the complete
software and full source code for inspection� modi�cation and applica�
tion under varied parameter settings�

Donoho has advocated the reproducibility of algorithms in wavelet
signal processing� through the development of a WaveLab toolbox�
which is a large library of Matlab routines� He summarizes Claer�
bout�s insight in a slogan� �����

An article about computational science in a scienti�c pub�
lication is not the scholarship itself� it is merely advertising
of the scholarship� The actual scholarship is the complete
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software environment and the complete set of instructions
which generated the �gures�

Following this perspective� all wavelet and time�frequency tools pre�
sented in this book are available in WaveLab� The �gures can be
reproduced as demos and the source code is available� The LastWave

package o�ers a similar library of wavelet related algorithms that are
programmed in C� with a user�friendly shell interface and graphics�
Appendix B explains how to retrieve these toolboxes� and relates their
subroutines to the algorithms described in the book�

����� Road Map

Sections are kept as independent as possible� and some redundancy is
introduced to avoid imposing a linear progression through the book�
The preface describes several possible paths for a graduate signal pro�
cessing or an applied mathematics course� A partial hierarchy between
sections is provided by a level number� If a section has a level number
then all sub�sections without number inherit this level� but a higher
level number indicates that a subsection is more advanced�
Sections of level � introduce central ideas and techniques for wavelet

and time�frequency signal processing� These would typically be taught
in an introductory course� The �rst sections of Chapter � on wavelet
orthonormal bases are examples� Sections of level � concern results that
are important but which are either more advanced or dedicated to an
application� Wavelet packets and local cosine bases in Chapter � are
of that sort� Applications to estimation and data compression belong
to this level� including fundamental results such as Wiener �ltering�
Sections of level � describe advanced results that are at the frontier
of research or mathematically more di�cult� These sections open the
book to open research problems�
All theorems are explained in the text and reading the proofs is

not necessary to understand the results� Proofs also have a level in�
dex specifying their di�culty� as well as their conceptual or technical
importance� These levels have been set by trying to answer the ques�
tion� �Should this proof be taught in an introductory course 
� Level �

means probably� level � probably not� level � certainly not� Problems
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at the end of each chapter follow this hierarchy of levels� Direct ap�
plications of the course are at the level �� Problems at level � require
more thinking� Problems of level � are often at the interface of research
and can provide topics for deeper projects�
The book begins with Chapters � and �� which review the Fourier

transform properties and elementary discrete signal processing� They
provide the necessary background for readers with no signal process�
ing experience� Fundamental properties of local time�frequency trans�
forms are presented in Chapter �� The wavelet and windowed Fourier
transforms are introduced and compared� The measurement of instan�
taneous frequencies is used to illustrate the limitations of their time�
frequency resolution� Wigner�Ville time�frequency distributions give a
global perspective which relates all quadratic time�frequency distribu�
tions� Frame theory is explained in Chapter �� It o�ers a �exible frame�
work for analyzing the properties of redundant or non�linear adaptive
decompositions� Chapter � explains the relations between the decay of
the wavelet transform amplitude across scales and local signal proper�
ties� It studies applications involving the detection of singularities and
analysis of multifractals�
The construction of wavelet bases and their relations with �lter

banks are fundamental results presented in Chapter �� An overdose of
orthonormal bases can strike the reader while studying the construction
and properties of wavelet packets and local cosine bases in Chapter ��
It is thus important to read in parallel Chapter 	� which studies the
approximation performance of orthogonal bases� The estimation and
data compression applications of Chapters �� and �� give life to most
theoretical and algorithmic results of the book� These chapters o�er
a practical perspective on the relevance of these linear and non�linear
signal processing algorithms�
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Fourier Kingdom

The story begins in ���� when Fourier presents a memoir to the In�
stitut de France� where he claims that any periodic function can be
represented as a series of harmonically related sinusoids� This idea had
a profound impact in mathematical analysis� physics and engineering�
but it took one and a half centuries to understand the convergence of
Fourier series and complete the theory of Fourier integrals�
Fourier was motivated by the study of heat di�usion� which is gov�

erned by a linear di�erential equation� However� the Fourier transform
diagonalizes all linear time�invariant operators� which are the building
blocks of signal processing� It is therefore not only the starting point
of our exploration but the basis of all further developments�

��� Linear Time�Invariant Filtering �

Classical signal processing operations such as signal transmission� sta�
tionary noise removal or predictive coding are implemented with linear
time�invariant operators� The time invariance of an operator L means
that if the input ft� is delayed by 	 � f� t� � ft� 	�� then the output
is also delayed by 	 �

gt� � Lft�  gt� 	� � Lf� t�� ����

For numerical stability� the operator L must have a weak form of con�
tinuity� which means that Lf is modi�ed by a small amount if f is

��
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slightly modi�ed� This weak continuity is formalized by the theory of
distributions ���� �	�� which guarantees that we are on a safe ground
without further worrying about it�

����� Impulse Response

Linear time�invariant systems are characterized by their response to a
Dirac impulse� de�ned in Appendix A��� If f is continuous� its value
at t is obtained by an �integration� against a Dirac located at t� Let
�ut� � �t� u��

ft� �

Z ��

��
fu� �ut� du�

The continuity and linearity of L imply that

Lft� �

Z ��

��
fu�L�ut� du�

Let h be the impulse response of L�

ht� � L�t��

The time�invariance proves that L�ut� � ht� u� and hence

Lft� �

Z ��

��
fu� ht�u� du �

Z ��

��
hu�ft�u� du � h�ft�� ����

A time�invariant linear �lter is thus equivalent to a convolution with
the impulse response h� The continuity of f is not necessary� This
formula remains valid for any signal f for which the convolution integral
converges�
Let us recall a few useful properties of convolution products�

� Commutativity
f � ht� � h � ft�� ����

� Di�erentiation
d

dt
f � h�t� �

df

dt
� ht� � f �

dh

dt
t�� ����

� Dirac convolution
f � �� t� � ft� 	�� ����
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Stability and Causality A �lter is said to be causal if Lft� does
not depend on the values fu� for u � t� Since

Lft� �

Z ��

��
hu� ft� u� du�

this means that hu� � � for u � �� Such impulse responses are said to
be causal�
The stability property guarantees that Lft� is bounded if ft� is

bounded� Since

jLft�j �
Z ��

��
jhu�j jft� u�j du � sup

u�R
jfu�j

Z ��

��
jhu�j du�

it is su�cient that
R ��
�� jhu�j du �  �� One can verify that this con�

dition is also necessary if h is a function� We thus say that h is stable
if it is integrable�

Example ��� An ampli�cation and delay system is de�ned by

Lft� � � ft� 	��

The impulse response of this �lter is ht� � � �t� 	��

Example ��� A uniform averaging of f over intervals of size T is
calculated by

Lft� �
�

T

Z t�T��

t�T��
fu� du�

This integral can be rewritten as a convolution of f with the impulse
response h � �

T
���T���T����

����� Transfer Functions

Complex exponentials ei�t are eigenvectors of convolution operators�
Indeed

Lei�t �

Z ��

��
hu� ei��t�u� du�
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which yields

Lei�t � eit�
Z ��

��
hu� e�i�u du � �h�� ei�t�

The eigenvalue

�h�� �

Z ��

��
hu� e�i�u du

is the Fourier transform of h at the frequency �� Since complex sinu�
soidal waves ei�t are the eigenvectors of time�invariant linear systems�
it is tempting to try to decompose any function f as a sum of these
eigenvectors� We are then able to express Lf directly from the eigen�
values �h��� The Fourier analysis proves that under weak conditions
on f � it is indeed possible to write it as a Fourier integral�

��� Fourier Integrals �

To avoid convergence issues� the Fourier integral is �rst de�ned over
the space L�R� of integrable functions ����� It is then extended to the
space L�R� of �nite energy functions �����

����� Fourier Transform in L��R�

The Fourier integral

�f�� �

Z ��

��
ft� e�i�t dt ����

measures �how much� oscillations at the frequency � there is in f � If
f � L�R� this integral does converge and

j �f��j �
Z ��

��
jft�j dt �  �� ����

The Fourier transform is thus bounded� and one can verify that it is
a continuous function of � Problem ����� If �f is also integrable� the
following theorem gives the inverse Fourier transform�
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Theorem ��� �Inverse Fourier Transform If f � L�R� and �f �
L�R� then

ft� �
�

��

Z ��

��
�f�� ei�t d�� ����

Proof �� Replacing �f��� by its integral expression yields

�

��

Z ��

��
�f��� exp�i�t� d� �

�

��

Z ��

��

�Z ��

��
f�u� exp�i��t� u�� du

�
d��

We cannot apply the Fubini Theorem A�� directly because f�u� exp�i��t�
u�� is not integrable in R� � To avoid this technical problem	 we multiply
by exp�������
� which converges to � when � goes to �� Let us de�ne

I��t� �
�

��

Z ��

��

�Z ��

��
f�u� exp

������




�
exp�i��t� u�� du

�
d��

����
We compute I� in two di�erent ways using the Fubini theorem� The
integration with respect to u gives

I��t� �
�

��

Z ��

��
�f��� exp

������




�
n exp�i�t� d��

Since ���� �f��� exp������




�
exp�i��t� u��

���� � j �f���j

and since �f is integrable	 we can apply the dominated convergence The�
orem A��	 which proves that

lim
���

I��t� �
�

��

Z ��

��
�f��� exp�i�t� d�� ������

Let us now compute the integral ���� di�erently by applying the Fubini
theorem and integrating with respect to ��

I��t� �

Z ��

��
g��t� u� f�u� du� ������

with

g��x� �
�

��

Z ��

��
exp�ix�� exp

������




�
d��
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A change of variable �� � �� shows that g��x� � ���g�����x�� and it is
proved in ������ that g��x� � ����� e�x� � The Gaussian g� has an integral
equal to � and a fast decay� The squeezed Gaussians g� have an integral
that remains equal to �	 and thus they converge to a Dirac � when � goes
to �� By inserting ������ one can thus verify that

lim
���

Z ��

��
jI��t�� f�t�j dt � lim

���

Z Z
g��t� u� jf�u�� f�t�j du dt � ��

Inserting ������ proves ������

The inversion formula ���� decomposes f as a sum of sinusoidal waves
ei�t of amplitude �f��� By using this formula� we can show Problem
���� that the hypothesis �f � L�R� implies that f must be continuous�
The reconstruction ���� is therefore not proved for discontinuous func�
tions� The extension of the Fourier transform to the space L�R� will
address this issue�
The most important property of the Fourier transform for signal

processing applications is the convolution theorem� It is another way to
express the fact that sinusoidal waves eit� are eigenvalues of convolution
operators�

Theorem ��� �Convolution Let f � L�R� and h � L�R�� The
function g � h � f is in L�R� and

�g�� � �h�� �f��� �����

Proof ��

�g��� �

Z ��

��
exp��it��

�Z ��

��
f�t� u�h�u� du

�
dt�

Since jf�t�u�jjh�u�j is integrable in R� 	 we can apply the Fubini Theorem
A��	 and the change of variable �t� u� � �v � t� u� u� yields

�g��� �

Z ��

��

Z ��

��
exp��i�u� v��� f�v�h�u� du dv

�

�Z ��

��
exp��iv�� f�v� dv

��Z ��

��
exp��iu��h�u� du

�
�

which veri�es �������
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The response Lf � g � f � h of a linear time�invariant system can be
calculated from its Fourier transform �g�� � �f�� �h�� with the inverse
Fourier formula

gt� �
�

��

Z ��

��
�g�� ei�t d�� �����

which yields

Lft� �
�

��

Z ��

��
�h�� �f�� ei�t d�� �����

Each frequency component eit� of amplitude �f�� is ampli�ed or atten�
uated by �h��� Such a convolution is thus called a frequency �ltering�
and �h is the transfer function of the �lter�
The following table summarizes important properties of the Fourier

transform� often used in calculations� Most of these formulas are proved
with a change of variable in the Fourier integral�

Property Function Fourier Transform

ft� �f��

Inverse �ft� �� f��� �����

Convolution f� � f�t� �f��� �f��� �����

Multiplication f�t� f�t�
�

��
�f� � �f��� �����

Translation ft� t�� e�it�� �f�� �����

Modulation ei��t ft� �f� � ��� ���	�

Scaling f t
s
� jsj �fs �� �����

Time derivatives f �p�t� i��p �f�� �����

Frequency derivatives �it�p ft� �f �p��� �����

Complex conjugate f �t� �f ���� �����

Hermitian symmetry ft� � R �f��� � �f ��� �����

����� Fourier Transform in L��R�

The Fourier transform of the indicator function f � ������� is

�f�� �

Z �

��
e�i�t dt �

� sin�

�
�
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This function is not integrable because f is not continuous� but its
square is integrable� The inverse Fourier transform Theorem ��� thus
does not apply� This motivates the extension of the Fourier transform
to the space L�R� of functions f with a �nite energy

R ��
�� jft�j� dt �

 �� By working in the Hilbert space L�R�� we also have access to all
the facilities provided by the existence of an inner product� The inner
product of f � L�R� and g � L�R� is

hf� gi �
Z ��

��
ft� g�t� dt�

and the resulting norm in L�R� is

kfk� � hf� fi �
Z ��

��
jft�j� dt�

The following theorem proves that inner products and norms in L�R�
are conserved by the Fourier transform up to a factor of ��� Equations
����� and ����� are called respectively the Parseval and Plancherel
formulas�

Theorem ��� If f and h are in L�R� � L�R� thenZ ��

��
ft� h�t� dt �

�

��

Z ��

��
�f�� �h��� d�� �����

For h � f it follows thatZ ��

��
jft�j� dt � �

��

Z ��

��
j �f��j� d�� �����

Proof �� Let g � f ��h with �h�t� � h���t�� The convolution Theorem ���
and property ������ show that �g��� � �f��� �h����� The reconstruction
formula ����� applied to g��� yieldsZ ��

��
f�t�h��t� dt � g��� �

�

��

Z ��

��
�g��� d� �

�

��

Z ��

��
�f��� �h���� d��
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Density Extension in L�R� If f � L�R� but f � L�R�� its
Fourier transform cannot be calculated with the Fourier integral ����
because ft� ei�t is not integrable� It is de�ned as a limit using the
Fourier transforms of functions in L�R� � L�R��
Since L�R��L�R� is dense in L�R�� one can �nd a family ffngn�Z

of functions in L�R� � L�R� that converges to f �

lim
n���

kf � fnk � ��

Since ffngn�Z converges� it is a Cauchy sequence� which means that
kfn � fpk is arbitrarily small if n and p are large enough� Moreover�

fn � L�R�� so its Fourier transform �fn is well de�ned� The Plancherel
formula ����� proves that f �fngn�Z is also a Cauchy sequence because

k �fn � �fpk �
p
�� kfn � fpk

is arbitrarily small for n and p large enough� A Hilbert space Appendix
A��� is complete� which means that all Cauchy sequences converge to
an element of the space� Hence� there exists �f � L�R� such that

lim
n���

k �f � �fnk � ��

By de�nition� �f is the Fourier transform of f � This extension of the
Fourier transform to L�R� satis�es the convolution theorem� the Par�
seval and Plancherel formulas� as well as all properties �����������

Diracs Diracs are often used in calculations� their properties are sum�
marized in Appendix A��� A Dirac � associates to a function its value
at t � �� Since ei�t � � at t � � it seems reasonable to de�ne its Fourier
transform by

���� �

Z ��

��
�t� e�i�t dt � �� �����

This formula is justi�ed mathematically by the extension of the Fourier
transform to tempered distributions ���� �	��
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����� Examples

The following examples often appear in Fourier calculations� They also
illustrate important Fourier transform properties�

� The indicator function f � ���T�T � is discontinuous at t � �T �
Its Fourier transform is therefore not integrable�

�f�� �

Z T

�T
e�i�t dt �

� sinT��

�
� �����

� An ideal low�pass �lter has a transfer function �h � ������� that
selects low frequencies over ���� ��� The impulse response is cal�
culated with the inverse Fourier integral �����

ht� �
�

��

Z �

��
ei�t d� �

sin�t�

�t
� ���	�

� A passive electronic circuit implements analog �lters with resis�
tances� capacities and inductors� The input voltage ft� is related
to the output voltage gt� by a di�erential equation with constant
coe�cients�

KX
k��

ak f
�k�t� �

MX
k��

bk g
�k�t�� �����

Suppose that the circuit is not charged for t � �� which means
that ft� � gt� � �� The output g is a linear time�invariant
function of f and can thus be written g � f � h� Computing the
Fourier transform of ����� and applying ����� proves that

�h�� �
�g��
�f��

�

PK
k�� ak i��

kPM
k�� bk i��

k
� �����

It is therefore a rational function of i�� An ideal low�pass transfer
function ������� thus cannot be implemented by an analog circuit�
It must be approximated by a rational function� Chebyshev or
Butterworth �lters are often used for this purpose �����
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� A Gaussian ft� � e�t
�

is a C� function with a fast asymptotic
decay� Its Fourier transform is also a Gaussian�

�f�� �
p
� e��

���� �����

This Fourier transform is computed by showing with an integra�
tion by parts that �f�� �

R ��
�� e�t

�

e�i�tdt is di�erentiable and
satis�es the di�erential equation

� �f ���  � �f�� � �� �����

The solution of this equation is a Gaussian �f�� � Ke�
��

� � and
since �f�� �

R ��
�� e�t

�

dt �
p
�� we obtain ������

� A Gaussian chirp ft� � exp��a� ib�t�� has a Fourier transform
calculated with a similar di�erential equation�

�f�� �

r
�

a� ib
exp

��a ib���

�a�  b��

�
� �����

� A translated Dirac �� t� � �t � 	� has a Fourier transform cal�
culated by evaluating e�i�t at t � 	 �

��� �� �

Z ��

��
�t� 	� e�i�t dt � e�i�� � �����

� The Dirac comb is a sum of translated Diracs

ct� �
��X

n���
�t� nT �

that is used to uniformly sample analog signals� Its Fourier trans�
form is derived from ������

�c�� �
��X

n���
e�inT�� �����

The Poisson formula proves that it is also equal to a Dirac comb
with a spacing equal to ��T �
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Theorem ��� �Poisson Formula In the sense of distribution equal�
ities �A�����

��X
n���

e�inT� �
��

T

��X
k���

�

�
� � ��k

T

�
� �����

Proof �� The Fourier transform �c in ������ is periodic with period ���T �
To verify the Poisson formula	 it is therefore su�cient to prove that the
restriction of �c to ����T� ��T � is equal to ���T �� The formula ������ is
proved in the sense of a distribution equality �A���� by showing that for
any test function ����� with a support included in ����T� ��T �	

h�c� ��i � lim
N���

Z ��

��

NX
n��N

exp��inT�� ����� d� �
��

T
������

The sum of the geometric series is

NX
n��N

exp��inT�� � sin��N � ����T��

sin�T����
� ������

Hence

h�c� ��i � lim
N���

��

T

Z ��T

���T

sin��N � ����T��

��

T���

sin�T����
����� d�� �����

Let

�	��� �

�
����� T���

sin�T���� if j�j � ��T

� if j�j 
 ��T

and 	�t� be the inverse Fourier transform of �	���� Since ���� sin�a�� is
the Fourier transform of ���a�a��t�	 the Parseval formula ������ implies

h�c� ��i � lim
N���

��

T

Z ��

��

sin��N � ����T��

��
�	��� d�

� lim
N���

��

T

Z �N�����T

��N�����T
	�t� dt� ���
��

When N goes to �� the integral converges to �	��� � ������
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��� Properties �

����� Regularity and Decay

The global regularity of a signal f depends on the decay of j �f��j when
the frequency � increases� The di�erentiability of f is studied� If
�f � L�R�� then the Fourier inversion formula ���� implies that f is
continuous and bounded�

jft�j � �

��

Z ��

��
jei�t �f��j d� � �

��

Z ��

��
j �f��j d� �  � � �����

The next proposition applies this property to obtain a su�cient condi�
tion that guarantees the di�erentiability of f at any order p�

Proposition ��� A function f is bounded and p times continuously
di�erentiable with bounded derivatives ifZ ��

��
j �f��j �  j�jp� d� �  � � �����

Proof �� The Fourier transform of the kth order derivative f �k��t� is
�i��k �f���� Applying ���
�� to this derivative proves that

jf �k��t�j �
Z ��

��
j �f���j j�jk d��

Condition ���
�� implies that
R ��
�� j �f���jj�jk d� � �� for any k � p	

so f �k��t� is continuous and bounded�

This result proves that if there exist a constant K and � � � such that

j �f��j � K

�  j�jp���� � then f � Cp�

If �f has a compact support then ����� implies that f � C��
The decay of j �f��j depends on the worst singular behavior of f �

For example� f � ���T�T � is discontinuous at t � �T � so j �f��j decays
like j�j��� In this case� it could also be important to know that ft�
is regular for t �� �T � This information cannot be derived from the
decay of j �f��j� To characterize local regularity of a signal f it is
necessary to decompose it over waveforms that are well localized in
time� as opposed to sinusoidal waves ei�t� Section ����� explains that
wavelets are particularly well adapted to this purpose�
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����� Uncertainty Principle

Can we construct a function f whose energy is well localized in time
and whose Fourier transform �f has an energy concentrated in a small
frequency neighborhood
 The Dirac �t � u� has a support restricted
to t � u but its Fourier transform e�iu� has an energy uniformly spread
over all frequencies� We know that j �f��j decays quickly at high fre�
quencies only if f has regular variations in time� The energy of f must
therefore be spread over a relatively large domain�
To reduce the time spread of f � we can scale it by s � � while

maintaining constant its total energy� If

fst� �
�p
s
f

�
t

s

�
then kfsk� � kfk��

The Fourier transform �fs�� �
p
s �fs�� is dilated by �s so we lose in

frequency localization what we gained in time� Underlying is a trade�o�
between time and frequency localization�
Time and frequency energy concentrations are restricted by the

Heisenberg uncertainty principle� This principle has a particularly im�
portant interpretation in quantum mechanics as an uncertainty as to
the position and momentum of a free particle� The state of a one�
dimensional particle is described by a wave function f � L�R�� The
probability density that this particle is located at t is �

kfk� jft�j�� The
probability density that its momentum is equal to � is �

��kfk� j �f��j��
The average location of this particle is

u �
�

kfk�
Z ��

��
t jft�j� dt� �����

and the average momentum is

� �
�

��kfk�
Z ��

��
� j �f��j� d�� �����

The variances around these average values are respectively


�t �
�

kfk�
Z ��

��
t� u�� jft�j� dt �����
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and


�� �
�

��kfk�
Z ��

��
� � ��� j �f��j� d�� �����

The larger 
t� the more uncertainty there is concerning the position of
the free particle� the larger 
�� the more uncertainty there is concerning
its momentum�

Theorem ��� �Heisenberg Uncertainty The temporal variance and
the frequency variance of f � L�R� satisfy


�t 

�
� �

�

�
� �����

This inequality is an equality if and only if there exist u� �� a� b� �
R� � C � such that

ft� � a ei�t e�b�t�u�
�

� �����

Proof �� The following proof due to Weyl ���� supposes that limjtj���
p
tf�t� �

�	 but the theorem is valid for any f � L
��R�� If the average time and

frequency localization of f is u and �	 then the average time and fre�
quency location of exp��i�t� f�t � u� is zero� It is thus su�cient to
prove the theorem for u � � � �� Observe that

�t 
�
� �

�

��kfk�
Z ��

��
jt f�t�j� dt

Z ��

��
j� �f���j� d�� ���
�

Since i� �f��� is the Fourier transform of f ��t�	 the Plancherel identity
������ applied to i� �f��� yields

�t 
�
� �

�

kfk�
Z ��

��
jt f�t�j� dt

Z ��

��
jf ��t�j� dt� ������

Schwarz�s inequality implies

�t 
�
� � �

kfk�
�Z ��

��
jt f ��t� f��t�j dt

��
� �

kfk�
�Z ��

��

t

�
�f ��t� f��t� � f ���t� f�t�� dt

��
� �


kfk�
�Z ��

��
t �jf�t�j��� dt

��
�
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Since limjtj���
p
t f�t� � �	 an integration by parts gives

�t 
�
� �

�


kfk�
�Z ��

��
jf�t�j� dt

��
�

�



� ������

To obtain an equality	 Schwarz�s inequality applied to ������ must be an
equality� This implies that there exists b � C such that

f ��t� � �� b t f�t�� ������

Hence	 there exists a � C such that f�t� � a exp��bt��� The other
steps of the proof are then equalities so that the lower bound is indeed
reached� When u �� � and � �� � the corresponding time and frequency
translations yield ���
���

In quantum mechanics� this theorem shows that we cannot reduce ar�
bitrarily the uncertainty as to the position and the momentum of a free
particle� In signal processing� the modulated Gaussians ����� that have
a minimum joint time�frequency localization are called Gabor chirps�
As expected� they are smooth functions with a fast time asymptotic
decay�

Compact Support Despite the Heisenberg uncertainty bound� we
might still be able to construct a function of compact support whose
Fourier transform has a compact support� Such a function would be
very useful in constructing a �nite impulse response �lter with a band�
limited transfer function� Unfortunately� the following theorem proves
that it does not exist�

Theorem ��� If f �� � has a compact support then �f�� cannot be
zero on a whole interval� Similarly� if �f �� � has a compact support
then ft� cannot be zero on a whole interval�

Proof �� We prove only the �rst statement	 since the second is derived
from the �rst by applying the Fourier transform� If �f has a compact
support included in ��b� b� then

f�t� �
�

��

Z b

�b
�f��� exp�i�t� d�� ������
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If f�t� � � for t � �c� d�	 by di�erentiating n times under the integral at
t� � �c� d���	 we obtain

f �n��t�� �
�

��

Z b

�b
�f��� �i��n exp�i�t�� d� � �� ����
�

Since

f�t� �
�

��

Z b

�b
�f��� exp�i��t� t��� exp�i�t�� d�� ������

developing exp�i��t� t��� as an in�nite series yields for all t � R

f�t� �
�

��

��X
n��

�i�t� t���
n

n�

Z b

�b
�f����n exp�i�t�� d� � �� ������

This contradicts our assumption that f �� ��

����� Total Variation

The total variation measures the total amplitude of signal oscillations�
It plays an important role in image processing� where its value depends
on the length of the image level sets� We show that a low�pass �lter can
considerably amplify the total variation by creating Gibbs oscillations�

Variations and Oscillations If f is di�erentiable� its total variation
is de�ned by

kfkV �
Z ��

��
jf �t�j dt � �����

If fxpgp are the abscissa of the local extrema of f where f �xp� � �� then
kfkV �

P
p jfxp���� fxp�j� It thus measures the total amplitude of

the oscillations of f � For example� if ft� � e�t
�

� then kfkV � �� If
ft� � sin�t��t�� then f has a local extrema at xp � �p� p �� for any
p � Z� Since jfxp���� fxp�j � jpj��� we derive that kfkV �  ��
The total variation of non�di�erentiable functions can be calcu�

lated by considering the derivative in the general sense of distributions



�� CHAPTER �� FOURIER KINGDOM

���� �	�� This is equivalent to approximating the derivative by a �nite
di�erence on an interval h that goes to zero�

kfkV � lim
h��

Z ��

��

jft�� ft� h�j
jhj dt � �����

The total variation of discontinuous functions is thus well de�ned� For
example� if f � ��a�b� then ����� gives kfkV � �� We say that f has a
bounded variation if kfkV �  ��
Whether f � is the standard derivative of f or its generalized deriva�

tive in the sense of distributions� its Fourier transform is bf ��� �
i� �f��� Hence

j�j j �f��j �
Z ��

��
jf �t�jdt � kfkV �

which implies that

j �f��j � kfkV
j�j � ���	�

However� j �f��j � Oj�j��� is not a su�cient condition to guarantee
that f has bounded variation� For example� if ft� � sin�t��t�� then
�f � ������� satis�es j �f��j � �j�j�� although kfkV �  �� In general�
the total variation of f cannot be evaluated from j �f��j�

Discrete Signals Let fN �n� � fnN� be a discrete signal obtained
with a uniform sampling at intervals N��� The discrete total variation
is calculated by approximating the signal derivative by a �nite di�erence
over the sampling distance h � N��� and replacing the integral �����
by a Riemann sum� which gives�

kfNkV �
X
n

jfN �n�� fN �n� ��j � �����

If np are the abscissa of the local extrema of fN � then

kfNkV �
X
p

jfN �np���� fN �np�j �

The total variation thus measures the total amplitude of the oscillations
of f � In accordance with ������ we say that the discrete signal has a
bounded variation if kfNkV is bounded by a constant independent of
the resolution N �
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Gibbs Oscillations Filtering a signal with a low�pass �lter can cre�
ate oscillations that have an in�nite total variation� Let f� � f � h� be
the �ltered signal obtained with an ideal low�pass �lter whose transfer
function is �h� � �������� If f � L�R�� then f� converges to f in L

�R�

norm� lim���� kf � f�k � �� Indeed� �f� � �f ������� and the Plancherel
formula ����� implies that

kf � f�k� � �

��

Z ��

��
j �f��� �f���j� d� � �

��

Z
j�j	�

j �f��j� d��

which goes to zero as � increases� However� if f is discontinuous in
t�� then we show that f� has Gibbs oscillations in the neighborhood
of t�� which prevents supt�R jft�� f�t�j from converging to zero as �
increases�
Let f be a bounded variation function kfkV �  � that has an

isolated discontinuity at t�� with a left limit ft
�
� � and right limit ft

�
� ��

It is decomposed as a sum of fc� which is continuous in the neighborhood
of t�� plus a Heaviside step of amplitude ft

�
� �� ft�� ��

ft� � fct�  �ft
�
� �� ft�� �� ut� t���

with

ut� �

�
� if t � �
� otherwise

� �����

Hence

f�t� � fc � h�t�  �ft
�
� �� ft�� �� u � h�t� t��� �����

Since fc has bounded variation and is uniformly continuous in the neigh�
borhood of t�� one can prove Problem ����� that fc � h�t� converges
uniformly to fct� in a neighborhood of t�� The following proposition
shows that this is not true for u � h�� which creates Gibbs oscillations�

Proposition ��� �Gibbs For any � � ��

u � h�t� �

Z �t

��

sin x

�x
dx� �����
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Proof �� The impulse response of an ideal low�pass �lter	 calculated in
�����	 is h��t� � sin��t����t�� Hence

u � h��t� �

Z ��

��
u���

sin ��t� ��

��t� ��
d� �

Z ��

�

sin ��t� ��

��t� ��
d��

The change of variable x � ��t� �� gives �������

ft� f � h�
t� f � h�
t� f � h
t�
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Figure ���� Gibbs oscillations created by low�pass �lters with cut�o�
frequencies that decrease from left to right�

The function

s�t� �

Z �t

��

sin x

�x
dx

is a sigmoid that increases from � at t � �� to � at t �  �� with
s�� � ��� It has oscillations of period ��� which are attenuated
when the distance to � increases� but their total variation is in�nite�
kskV �  �� The maximum amplitude of the Gibbs oscillations occurs
at t � ���� with an amplitude independent of ��

A � s��� � �
Z �

��

sinx

�x
dx� � � ����� �

Inserting ����� in ����� shows that

ft�� f�t� � �ft
�
� �� ft�� �� s�t� t���  ��� t� � �����

where lim���� supjt�t�j�� j��� t�j � � in some neighborhood of size
� � � around t�� The sigmoid s�t � t��� centered at t� creates a
maximum error of �xed amplitude for all �� This is seen in Figure
���� where the Gibbs oscillations have an amplitude proportional to
the jump ft�� �� ft�� � at all frequencies ��
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Image Total Variation The total variation of an image fx�� x��
depends on the amplitude of its variations as well as the length of the
contours along which they occur� Suppose that fx�� x�� is di�eren�
tiable� The total variation is de�ned by

kfkV �
Z Z

j�rfx�� x��j dx� dx� � �����

where the modulus of the gradient vector is

j�rfx�� x��j �
	



�fx�� x���x�





�  



�fx�� x���x�





�
����

�

As in one dimension� the total variation is extended to discontinuous
functions by taking the derivatives in the general sense of distributions�
An equivalent norm is obtained by approximating the partial deriva�
tives by �nite di�erences�

j&hfx�� x��j �
	



fx�� x��� fx� � h� x��

h





� 



fx�� x��� fx�� x� � h�

h





�
����

�

One can verify that

kfkV � lim
h��

Z Z
j&hfx�� x��j dx� dx� �

p
� kfkV � �����

The �nite di�erence integral gives a larger value when fx�� x�� is dis�
continuous along a diagonal line in the x�� x�� plane�
The total variation of f is related to the length of it level sets� Let

us de�ne
'y � fx�� x�� � R

� � fx�� x�� � yg �
If f is continuous then the boundary �'y of 'y is the level set of all
x�� x�� such that fx�� x�� � y� Let H��'y� be the length of �'y�
Formally� this length is calculated in the sense of the monodimensional
Hausdor� measure� The following theorem relates the total variation
of f to the length of its level sets�
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Theorem ��� �Co
area Formula If kfkV �  � then

kfkV �
Z ��

��
H��'y� dy� �����

Proof �� The proof is a highly technical result that is given in ���� We
give an intuitive explanation when f is continuously di�erentiable� In
this case ��y is a di�erentiable curve x�y� s� � R

� 	 which is parameter�
ized by the arc�length s� Let ���x� be the vector tangent to this curve
in the plane� The gradient �rf�x� is orthogonal to ���x�� The Frenet
coordinate system along ��y is composed of ���x� and of the unit vector

�n�x� parallel to �rf�x�� Let ds and dn be the Lebesgue measures in the
direction of �� and �n� We have

j�rf�x�j � �rf�x� � �n �
dy

dn
� ������

where dy is the di�erential of amplitudes across level sets� The idea of
the proof is to decompose the total variation integral over the plane as
an integral along the level sets and across level sets	 which we write�

kfkV �

Z Z
j�rf�x�� x��j dx� dx� �

Z Z
��y

j�rf�x�y� s��j ds dn� �����

By using ������ we can get

kfkV �

Z Z
��y

ds dy �

But
R
��y

ds � H����y� is the length of the level set	 which justi�es

�������

The co�area formula gives an important geometrical interpretation of
the total image variation� Images are uniformly bounded so the integral
����� is calculated over a �nite interval and is proportional to the
average length of level sets� It is �nite as long as the level sets are not
fractal curves� Let f � � �� be proportional to the indicator function
of a set ' � R� which has a boundary �' of length L� The co�area
formula ���� implies that kfkV � �L� In general� bounded variation
images must have step edges of �nite length�
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a� b�

Figure ���� a�� The total variation of this image remains nearly con�
stant when the resolution N increases� b�� Level sets �'y obtained by
sampling uniformly the amplitude variable y�

Discrete Images A camera measures light intensity with photore�
ceptors that perform a uniform sampling over a grid that is supposed
to be uniform� For a resolution N � the sampling interval is N�� and the
resulting image can be written fN �n�� n�� � fn�N� n�N�� Its total
variation is de�ned by approximating derivatives by �nite di�erences
and the integral ����� by a Riemann sum�

kfNkV � �

N

X
n�

X
n�

� 


f �n�� n��� f �n� � �� n��



�  �����




f �n�� n��� f �n�� n� � ��



����� �

In accordance with ����� we say that the image has bounded variation
if kfNkV is bounded by a constant independent of the resolution N �
The co�area formula proves that it depends on the length of the level
sets as the image resolution increases� The

p
� upper bound factor in

����� comes from the fact that the length of a diagonal line can be
increased by

p
� if it is approximated by a zig�zag line that remains on

the horizontal and vertical segments of the image sampling grid� Figure
���a� shows a bounded variation image and Figure ���b� displays the
level sets obtained by discretizing uniformly the amplitude variable
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y� The total variation of this image remains nearly constant as the
resolution varies�

��� Two�Dimensional Fourier Transform �

The Fourier transform in Rn is a straightforward extension of the one�
dimensional Fourier transform� The two�dimensional case is brie�y
reviewed for image processing applications� The Fourier transform of a
two�dimensional integrable function f � L�R�� is

�f��� ��� �

Z ��

��

Z ��

��
fx�� x�� exp��i��x�  ��x��� dx� dx�� �����

In polar coordinates exp�i��x ��y�� can be rewritten

exp�i��x�  ��x��� � exp�i�x� cos �  x� sin ���

with � �
p
��
�  ��

�� It is a plane wave that propagates in the di�
rection of � and oscillates at the frequency �� The properties of a
two�dimensional Fourier transform are essentially the same as in one
dimension� We summarize a few important results�

� If f � L�R�� and �f � L�R�� then

fx�� x�� �
�

���

Z Z
�f��� ��� exp�i��x� ��x��� d�� d��� �����

� If f � L�R�� and h � L�R�� then the convolution

gx�� x�� � f �hx�� x�� �

Z Z
fu�� u�� hx��u�� x��u�� du� du�

has a Fourier transform

�g��� ��� � �f��� ��� �h��� ���� �����

� The Parseval formula proves thatZ Z
fx�� x�� g

�x�� x�� dx� dx� � �����

�

���

Z Z
�f��� ��� �g

���� ��� d�� d�� �
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If f � g� we obtain the Plancherel equalityZ Z
jfx�� x��j� dx� dx� � �

���

Z Z
j �f��� ���j� d�� d��� �����

The Fourier transform of a �nite energy function thus has �nite
energy� With the same density based argument as in one dimen�
sion� energy equivalence makes it possible to extend the Fourier
transform to any function f � L�R���

� If f � L�R�� is separable� which means that

fx�� x�� � gx�� hx���

then its Fourier transform is

�f��� ��� � �g��� �h����

where �h and �g are the one�dimensional Fourier transforms of g
and h� For example� the indicator function

fx�� x�� �

�
� if jx�j � T � jx�j � T
� otherwise

� ���T�T �x������T�T �x��

is a separable function whose Fourier transform is derived from
������

�f��� ��� �
� sinT��� sinT���

�� ��
�

� If fx�� x�� is rotated by ��

fx�� x�� � fx� cos � � x� sin �� x� sin �  x� cos ���

then its Fourier transform is rotated by ���

�f��� ��� � �f�� cos �  �� sin ����� sin �  �� cos ��� �����
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��� Problems

���� � Prove that if f � L
��R� then �f��� is a continuous function of �	

and if �f � L��R� then f�t� is also continuous�

���� � Prove the translation ������	 scaling ������ and time derivative
������ properties of the Fourier transform�

���� � Let fr�t� � Real�f�t�� and fi�t� � Ima�f�t�� be the real and
imaginary parts of f�t�� Prove that �fr��� � � �f��� � �f�������� and
�fi��� � � �f���� �f���������i��

��
� � By using the Fourier transform	 verify thatZ ��

��

sin t

t
dt �

��



and

Z ��

��

sin� t

t�
dt �

��

�
�

���� � Show that the Fourier transform of f�t� � exp���a� ib�t�� is

�f��� �

r
�

a� ib
exp

�
� a� ib


�a� � b��
��

�
�

Hint� write a di�erential equation similar to �������

���� � Riemann�Lebesgue Prove that if f � L��R� then lim
���

�f��� � ��

Hint� Prove it �rst for C� functions with a compact support and use
a density argument�

���� � Stability of passive circuits

�a� Let p be a complex number with Real�p� � �� Compute the
Fourier transforms of f�t� � exp�pt���������t� and of f�t� �
tn exp�pt���������t��

�b� A passive circuit relates the input voltage f to the output voltage
g by a di�erential equation with constant coe�cients�

KX
k��

ak f
�k��t� �

MX
k��

bk g
�k��t��

Prove that this system is stable and causal if and only if the
roots of the equation

PM
k�� bk z

k � � have a strictly negative
real part�

�c� A Butterworth �lter satis�es

j�h���j� � �

� � ������
�N

�
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For N � �	 compute �h��� and h�t� so that this �lter can be
implemented by a stable electronic circuit�

���� � For any A 
 �	 construct f such that the time and frequency
spread measured respectively by t and � in ���
�	 ��
�� satisfy
t 
 A and � 
 A�

��� � Suppose that f�t� � � and that its support is in ��T� T �� Ver�
ify that j �f���j � �f���� Let �c be the half�power point de�ned by
j �f��c�j� � jf���j��� and jf���j� � jf���j��� for � � �c� Prove that
�c T � ����

����� � Hilbert transform

�a� Prove that if �f��� � ���i�� then f�t� � sign�t� � t�jtj�
�b� Suppose that f � L

��R� is a causal function	 i�e�	 f�t� � � for
t � �� Let �fr��� � Real� �f���� and �fi��� � Ima� �f����� Prove
that �fr � Hfi and �fi � �Hfr where H is the Hilbert transform
operator

Hg�x� �
�

�

Z ��

��

g�u�

x� u
du�

����� � Recti�cation A recti�er computes g�t� � jf�t�j	 for recovering the
envelope of modulated signals �����

�a� Show that if f�t� � a�t� sin��t with a�t� � � then

�g��� � � �

�

��X
n���

�a�� � �n���


n� � �
�

�b� Suppose that �a��� � � for j�j 
 ��� Find h such that a�t� �
h � g�t��

����� � Amplitude modulation For � � n � N 	 we suppose that fn�t� is
real and that �fn��� � � for j�j 
 ���

�a� Double side�bands An amplitude modulated multiplexed signal
is de�ned by

g�t� �

NX
n��

fn�t� cos��n�� t��

Compute �g��� and verify that the width of its support is 
N���
Find a demodulation algorithm that recovers each fn from g�

�b� Single side�band We want to reduce the bandwidth of the multi�
plexed signal by �� Find a modulation procedure that transforms
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each fn into a real signal gn such that �gn has a support included
in ���n�������n�����n��� �n������	 with the possibility of re�
covering fn from gn� Compute the bandwidth of g �

PN��
n�� gn	

and �nd a demodulation algorithm that recovers each fn from
g�

����� � Let f� � f � h� with �h� � �������� Suppose that f has a bounded
variation kfkV � �� and that it is continuous in a neighborhood
of t�� Prove that in a neighborhood of t�	 f��t� converges uniformly
to f�t� when � goes to ���

���
� � Tomography Let g�t� be the integral of f�x�� x�� along the line
�x� sin � � x� cos � � t	 which has an angle � and lies at a distance
jtj from the origin�

g�t� �

Z ��

��
f��t sin � � � cos �� t cos � � � sin �� d��

Prove that �g��� � �f��� sin �� � cos ��� How can we recover f�x�� x��
from the tomographic projections g�t� for � � � � �� �

����� � Let f�x�� x�� be an image which has a discontinuity of amplitudeA
along a straight line having an angle � in the plane �x�� x��� Compute
the amplitude of the Gibbs oscillations of f �h��x�� x�� as a function

of �	 � and A	 for �h����� ��� � �����������������������



Chapter �

Discrete Revolution

Digital signal processing has taken over� First used in the �	���s at
the service of analog signal processing to simulate analog transforms�
digital algorithms have invaded most traditional fortresses� including
television standards� speech processing� tape recording and all types
of information manipulation� Analog computations performed with
electronic circuits are faster than digital algorithms implemented with
microprocessors� but are less precise and less �exible� Thus analog
circuits are often replaced by digital chips once the computational per�
formance of microprocessors is su�cient to operate in real time for a
given application�
Whether sound recordings or images� most discrete signals are ob�

tained by sampling an analog signal� Conditions for reconstructing an
analog signal from a uniform sampling are studied� Once more� the
Fourier transform is unavoidable because the eigenvectors of discrete
time�invariant operators are sinusoidal waves� The Fourier transform
is discretized for signals of �nite size and implemented with a fast com�
putational algorithm�

��� Sampling Analog Signals �

The simplest way to discretize an analog signal f is to record its sam�
ple values ffnT �gn�Z at intervals T � An approximation of ft� at any
t � R may be recovered by interpolating these samples� The Whit�
taker sampling theorem gives a su�cient condition on the support of
the Fourier transform �f to compute ft� exactly� Aliasing and approx�

��
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imation errors are studied when this condition is not satis�ed� More
general sampling theorems are studied in Section ����� from a vector
space point of view�

����� Whittaker Sampling Theorem

A discrete signal may be represented as a sum of Diracs� We associate
to any sample fnT � a Dirac fnT ��t � nT � located at t � nT � A
uniform sampling of f thus corresponds to the weighted Dirac sum

fdt� �
��X

n���
fnT � �t� nT �� ����

The Fourier transform of �t � nT � is e�inT� so the Fourier transform
of fd is a Fourier series�

�fd�� �
��X

n���
fnT � e�inT�� ����

To understand how to compute ft� from the sample values fnT � and
hence f from fd� we relate their Fourier transforms �f and �fd�

Proposition ��� The Fourier transform of the discrete signal obtained
by sampling f at intervals T is

�fd�� �
�

T

��X
k���

�f

�
� � �k�

T

�
� ����

Proof �� Since ��t � nT � is zero outside t � nT 	

f�nT � ��t� nT � � f�t� ��t � nT ��

so we can rewrite ����� as multiplication with a Dirac comb�

fd�t� � f�t�

��X
n���

��t� nT � � f�t� c�t�� ���
�
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Computing the Fourier transform yields

�fd��� �
�

��
�f � �c���� �����

The Poisson formula ���
� proves that

�c��� �
��

T

��X
k���

�

�
� � ��k

T

�
� �����

Since �f � ��� � �� � �f�� � ��	 inserting ����� in ����� proves ������

Proposition ��� proves that sampling f at intervals T is equivalent to
making its Fourier transform ��T periodic by summing all its trans�
lations �f���k�T �� The resulting sampling theorem was �rst proved
by Whittaker ���	� in �	�� in a book on interpolation theory� Shannon
rediscovered it in �	�	 for applications to communication theory ������

Theorem ��� �Shannon� Whittaker If the support of �f is included
in ���T� �T � then

ft� �
��X

n���
fnT � hT t� nT �� ����

with

hT t� �
sin�tT �

�tT
� ����

Proof �� If n �� �	 the support of �f�� � n��T � does not intersect the
support of �f��� because �f��� � � for j�j 
 ��T � So ����� implies

�fd��� �
�f���

T
if j�j � �

T
� ����

The Fourier transform of hT is �hT � T �����T���T �� Since the support of
�f is in ����T� ��T � it results from ���� that �f��� � �hT ��� �fd���� The
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inverse Fourier transform of this equality gives

f�t� � hT � fd�t� � hT �
��X

n���
f�nT � ��t� nT �

�

��X
n���

f�nT �hT �t� nT �� ������

������

The sampling theorem imposes that the support of �f is included in
���T� �T �� which guarantees that f has no brutal variations between
consecutive samples� and can thus be recovered with a smooth inter�
polation� Section ����� shows that one can impose other smoothness
conditions to recover f from its samples� Figure ��� illustrates the dif�
ferent steps of a sampling and reconstruction from samples� in both the
time and Fourier domains�

����� Aliasing

The sampling interval T is often imposed by computation or storage
constraints and the support of �f is generally not included in ���T� �T ��
In this case the interpolation formula ���� does not recover f � We an�
alyze the resulting error and a �ltering procedure to reduce it�
Proposition ��� proves that

�fd�� �
�

T

��X
k���

�f

�
� � �k�

T

�
� �����

Suppose that the support of �f goes beyond ���T� �T �� In general
the support of �f� � �k�T � intersects ���T� �T � for several k �� ��
as shown in Figure ���� This folding of high frequency components over
a low frequency interval is called aliasing� In the presence of aliasing�
the interpolated signal

hT � fdt� �
��X

n���
fnT � hT t� nT �
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Figure ���� a�� Signal f and its Fourier transform �f � b�� A uniform
sampling of f makes its Fourier transform periodic� c�� Ideal low�pass
�lter� d�� The �ltering of b� with c� recovers f �
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has a Fourier transform

�fd�� �hT �� � T �fd�� �����T���T ��� � �����T���T ���
��X

k���

�f

�
� � �k�

T

�
�����

which may be completely di�erent from �f�� over ���T� �T �� The
signal hT � fd may not even be a good approximation of f � as shown by
Figure ����
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Figure ���� a�� Signal f and its Fourier transform �f � b�� Aliasing
produced by an overlapping of �f� � �k�T � for di�erent k� shown in
dashed lines� c�� Ideal low�pass �lter� d�� The �ltering of b� with
c� creates a low�frequency signal that is di�erent from f �
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Example ��� Let us consider a high frequency oscillation

ft� � cos��t� �
ei��t  e�i��t

�
�

Its Fourier transform is

�f�� � �
�
�� � ���  ��  ���

�
�

If ��T � �� � �T then ����� yields

�fd�� �hT ��

� � �����T���T ���
��X

k���

�
�
�
� � �� � �k�

T

�
 �
�
�  �� � �k�

T

��
� �

�
�� � ��

T
 ���  ��  

��

T
� ���

�
�

so

fd � hT t� � cos

����
T
� ��

�
t


�

The aliasing reduces the high frequency �� to a lower frequency ��T�
�� � ���T� �T �� The same frequency folding is observed in a �lm
that samples a fast moving object without enough images per second�
A wheel turning rapidly appears as turning much more slowly in the
�lm�

Removal of Aliasing To apply the sampling theorem� f is approx�
imated by the closest signal $f whose Fourier transform has a support
in ���T� �T �� The Plancherel formula ����� proves that

kf � $fk� �
�

��

Z ��

��
j �f��� b$f��j� d�

�
�

��

Z
j�j	��T

j �f��j� d�  �

��

Z
j�j���T

j �f��� b$f��j� d��
This distance is minimum when the second integral is zero and hence

b$f�� � �f�� �����T���T ��� �
�

T
�hT �� �f��� �����
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It corresponds to $f � �
T
f �hT � The �ltering of f by hT avoids the alias�

ing by removing any frequency larger than �T � Since b$f has a support
in ���T� �T �� the sampling theorem proves that $ft� can be recov�
ered from the samples $fnT �� An analog to digital converter is there�
fore composed of a �lter that limits the frequency band to ���T� �T ��
followed by a uniform sampling at intervals T �

����� General Sampling Theorems

The sampling theorem gives a su�cient condition for reconstructing a
signal from its samples� but other su�cient conditions can be estab�
lished for di�erent interpolation schemes ������ To explain this new
point of view� the Whittaker sampling theorem is interpreted in more
abstract terms� as a signal decomposition in an orthogonal basis�

Proposition ��� If hT t� � sin�tT ��tT � then fhT t � nT �gn�Z
is an orthogonal basis of the space UT of functions whose Fourier trans�
forms have a support included in ���T� �T �� If f � UT then

fnT � �
�

T
hft�� hT t� nT �i� �����

Proof �� Since �hT � T �����T���T � the Parseval formula ������ proves
that

hhT �t� nT �� hT �t� pT �i �
�

��

Z ��

��
T �

�����T���T ���� exp��i�n� p�T�� d�

�
T �

��

Z ��T

���T
exp��i�n� p�T�� d� � T ��n� p��

The family fhT �t�nT �gn�Z is therefore orthogonal� Clearly hT �t�nT � �
UT and ����� proves that any f � UT can be decomposed as a linear
combination of fhT �t � nT �gn�Z� It is therefore an orthogonal basis of
UT�

Equation ����
� is also proved with the Parseval formula

hf�t�� hT �t� nT �i � �

��

Z ��

��
�f��� �hT ��� exp�inT�� d��
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Since the support of �f is in ����T� ��T � and �hT � T �����T���T �	

hf�t�� hT �t� nT �i � T

��

Z ��T

���T
�f��� exp�inT�� d� � T f�nT �� ����
�

Proposition ��� shows that the interpolation formula ���� can be in�
terpreted as a decomposition of f � UT in an orthogonal basis of UT�

ft� �
�

T

��X
n���

hfu�� hT u� nT �i hT t� nT �� �����

If f � UT� which means that �f has a support not included in ���T� �T ��
the removal of aliasing is computed by �nding the function $f � UT that
minimizes k $f�fk� Proposition A�� proves that $f is the orthogonal pro�
jection PUT

f of f in UT�
The Whittaker sampling theorem is generalized by de�ning other

spaces UT such that any f � UT can be recovered by interpolating its
samples ffnT �gn�Z� A signal f � UT is approximated by its orthog�
onal projection $f � PUT

f in UT� which is characterized by a uniform
sampling f $fnT �gn�Z�

Block Sampler A block sampler approximates signals with piece�
wise constant functions� The approximation space UT is the set of all
functions that are constant on intervals �nT� n  ��T �� for any n � Z�
Let hT � ����T �� The family fhT t � nT �gn�Z is clearly an orthogonal
basis of UT� Any f � UT can be written

ft� �
��X

n���
fnT � hT t� nT ��

If f � UT then A���� shows that its orthogonal projection on UT is
calculated with a partial decomposition in an orthogonal basis of UT�
Since khT t� nT �k� � T �

PUT
ft� �

�

T

��X
n���

hfu�� hT u� nT �ihT t� nT �� �����
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Let (hT t� � hT �t�� Then

hfu�� hT u� nT �i �
Z �n���T

nT

ft� dt � f � (hT nT ��

This averaging of f over intervals of size T is equivalent to the aliasing
removal used for the Whittaker sampling theorem�

Approximation Space The space UT should be chosen so that
PUT

f gives an accurate approximation of f � for a given class of sig�
nals� The Whittaker interpolation approximates signals by restricting
their Fourier transform to a low frequency interval� It is particularly ef�
fective for smooth signals whose Fourier transform have an energy con�
centrated at low frequencies� It is also well adapted to sound recordings�
which are well approximated by lower frequency harmonics�
For discontinuous signals such as images� a low�frequency restric�

tion produces the Gibbs oscillations studied in Section ������ The vi�
sual quality of the image is degraded by these oscillations� which have
a total variation ����� that is in�nite� A piecewise constant approx�
imation has the advantage of creating no spurious oscillations� and
one can prove that the projection in UT decreases the total variation�
kPUT

fkV � kfkV � In domains where f is a regular function� the piece�
wise constant approximation PUT

f may however be signi�cantly im�
proved� More precise approximations are obtained with spaces UT of
higher order polynomial splines� These approximations can introduce
small Gibbs oscillations� but these oscillations have a �nite total varia�
tion� Section ����� studies the construction of interpolation bases used
to recover signals from their samples� when the signals belong to spaces
of polynomial splines and other spaces UT�

��� Discrete Time�Invariant Filters �

����� Impulse Response and Transfer Function

Classical discrete signal processing algorithms are mostly based on
time�invariant linear operators ���� ���� The time�invariance is lim�
ited to translations on the sampling grid� To simplify notation� the
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sampling interval is normalized T � �� and we denote f �n� the sample
values� A linear discrete operator L is time�invariant if an input f �n�
delayed by p � Z� fp�n� � f �n� p�� produces an output also delayed by
p�

Lfp�n� � Lf �n� p��

Impulse Response We denote by ��n� the discrete Dirac

��n� �

�
� if n � �
� if n �� � � �����

Any signal f �n� can be decomposed as a sum of shifted Diracs

f �n� �
��X

p���
f �p� ��n� p��

Let L��n� � h�n� be the discrete impulse response� The linearity and
time�invariance implies that

Lf �n� �
��X

p���
f �p� h�n� p� � f � h�n�� �����

A discrete linear time�invariant operator is thus computed with a dis�
crete convolution� If h�n� has a �nite support the sum ����� is cal�
culated with a �nite number of operations� These are called Finite
Impulse Response FIR� �lters� Convolutions with in�nite impulse re�
sponse �lters may also be calculated with a �nite number of operations
if they can be rewritten with a recursive equation ������

Causality and Stability A discrete �lter L is causal if Lf �p� depends
only on the values of f �n� for n � p� The convolution formula �����
implies that h�n� � � if n � ��
The �lter is stable if any bounded input signal f �n� produces a

bounded output signal Lf �n�� Since

jLf �n�j � sup
n�Z

jf �n�j
��X

k���
jh�k�j�



�� CHAPTER �� DISCRETE REVOLUTION

it is su�cient that
P��

n��� jh�n�j �  �� which means that h � l�Z��
One can verify that this su�cient condition is also necessary� The
impulse response h is thus stable if h � l�Z��

Transfer Function The Fourier transform plays a fundamental role
in analyzing discrete time�invariant operators� because the discrete si�
nusoidal waves e��n� � e

i�n are eigenvectors�

Le��n� �

��X
p���

ei��n�p� h�p� � ei�n
��X

p���
h�p� e�i�p� ���	�

The eigenvalue is a Fourier series

�h�� �
��X

p���
h�p� e�i�p� �����

It is the �lter transfer function�

Example ��� The uniform discrete average

Lf �n� �
�

�N  �

n�NX
p�n�N

f �p�

is a time�invariant discrete �lter whose impulse response is h � �N  
�������N�N �� Its transfer function is

�h�� �
�

�N  �

�NX
n��N

e�in� �
�

�N  �

sinN  ����

sin��
� �����

����� Fourier Series

The properties of Fourier series are essentially the same as the proper�
ties of the Fourier transform since Fourier series are particular instances
of Fourier transforms for Dirac sums� If ft� �

P��
n��� f �n� �t � n�

then �f�� �
P��

n��� f �n� e�i�n�
For any n � Z� e�i�n has period ��� so Fourier series have period ���

An important issue is to understand whether all functions with period
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�� can be written as Fourier series� Such functions are characterized
by their restriction to ���� ��� We therefore consider functions �a �
L����� �� that are square integrable over ���� ��� The space L����� ��
is a Hilbert space with the inner product

h�a��bi � �

��

Z �

��
�a���b��� d� �����

and the resulting norm

k�ak� � �

��

Z �

��
j�a��j� d��

The following theorem proves that any function in L����� �� can be
written as a Fourier series�

Theorem ��� The family of functions fe�ik�gk�Z is an orthonormal
basis of L����� ���

Proof �� The orthogonality with respect to the inner product ������ is
established with a direct integration� To prove that fexp��ik��gk�Z is
a basis	 we must show that linear expansions of these vectors are dense
in L����� ���

We �rst prove that any continuously di�erentiable function �� with a
support included in ���� �� satis�es

����� �
��X

k���
h������ e�ik�i exp��ik�� � ������

with a pointwise convergence for any � � ���� ��� Let us compute the
partial sum

SN ��� �

NX
k��N

h������ exp��ik��i exp��ik��

�
NX

k��N

�

��

Z �

��
����� exp�ik�� d� exp��ik��

�
�

��

Z �

��
�����

NX
k��N

exp�ik�� � ��� d��
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The Poisson formula ������ proves the distribution equality

lim
N���

NX
k��N

exp�ik�� � ��� � ��

��X
k���

��� � � � ��k��

and since the support of �� is in ���� �� we get

lim
N���

SN ��� � ������

Since �� is continuously di�erentiable	 following the steps ��������
�� in
the proof of the Poisson formula shows that SN ��� converges uniformly
to ����� on ���� ���

To prove that linear expansions of sinusoidal waves fexp��ik��gk�Z
are dense in L

����� ��	 let us verify that the distance between �a �
L
����� �� and such a linear expansion is less than �	 for any � 
 ��

Continuously di�erentiable functions with a support included in ���� ��
are dense in L

����� ��	 hence there exists �� such that k�a � ��k � ����
The uniform pointwise convergence proves that there exists N for which

sup
��������

jSN ���� �����j � �

�
�

which implies that

kSN � ��k� � �

��

Z �

��
jSN ���� �����j� d� � ��



�

It follows that �a is approximated by the Fourier series SN with an error

k�a� SNk � k�a� ��k� k��� SNk � � � ������

Theorem ��� proves that if f � l�Z�� the Fourier series

�f�� �
��X

n���
f �n� e�i�n �����

can be interpreted as the decomposition of �f � L����� �� in an or�
thonormal basis� The Fourier series coe�cients can thus be written as
inner products

f �n� � h �f��� e�i�ni � �

��

Z �

��
�f�� ei�n d�� �����
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The energy conservation of orthonormal bases A���� yields a Plancherel
identity�

��X
n���

jf �n�j� � k �fk� � �

��

Z �

��
j �f��j� d�� �����

Pointwise Convergence The equality ����� is meant in the sense
of mean�square convergence

lim
N���

����� �f���
NX

k��N
f �k� e�i�k

����� � ��
It does not imply a pointwise convergence at all � � R� In �����
Dubois�Reymond constructed a periodic function �f�� that is contin�
uous and whose Fourier series diverges at some points� On the other
hand� if �f�� is continuously di�erentiable� then the proof of Theo�
rem ��� shows that its Fourier series converges uniformly to �f�� on
���� ��� It was only in �	�� that Carleson ����� was able to prove that
if �f � L����� �� then its Fourier series converges almost everywhere�
The proof is however extremely technical�

Convolutions Since fe�i�kgk�Z are eigenvectors of discrete convolu�
tion operators� we also have a discrete convolution theorem�

Theorem ��� If f � l�Z� and h � l�Z� then g � f � h � l�Z� and

�g�� � �f�� �h��� �����

The proof is identical to the proof of the convolution Theorem ����
if we replace integrals by discrete sums� The reconstruction formula
����� shows that a �ltered signal can be written

f � h�n� �
�

��

Z �

��
�h�� �f�� ei�n d�� �����

The transfer function �h�� ampli�es or attenuates the frequency com�
ponents �f�� of f �n��
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Example ��� An ideal discrete low�pass �lter has a �� periodic trans�

fer function de�ned by �h�� � ���������� for � � ���� �� and � � � � ��
Its impulse response is computed with ������

h�n� �
�

��

Z �

��
ei�n d� �

sin �n

�n
� ���	�

It is a uniform sampling of the ideal analog low�pass �lter ���	��

Example ��� A recursive �lter computes g � Lf which is solution of
a recursive equation

KX
k��

ak f �n� k� �
MX
k��

bk g�n� k�� �����

with b� �� �� If g�n� � � and f �n� � � for n � � then g has a linear and
time�invariant dependency upon f � and can thus be written g � f � h�
The transfer function is obtained by computing the Fourier transform of
������ The Fourier transform of fk�n� � f �n� k� is �fk�� � �f�� e�ik�

so

�h�� �
�g��
�f��

�

PK
k�� ak e

�ik�PM
k�� bk e

�ik� �

It is a rational function of e�i�� If bk �� � for some k � � then one
can verify that the impulse response h has an in�nite support� The
stability of such �lters is studied in Problem ���� A direct calculation
of the convolution sum g�n� � f �h�n� would require an in�nite number
of operation whereas ����� computes g�n� with K  M additions and
multiplications from its past values�

Window Multiplication An in�nite impulse response �lter h such
as the ideal low�pass �lter ���	� may be approximated by a �nite re�
sponse �lter $h by multiplying h with a window g of �nite support�

$h�n� � g�n� h�n��

One can verify that a multiplication in time is equivalent to a convolu�
tion in the frequency domain�b$h�� � �

��

Z �

��
�h�� �g� � �� d� �

�

��
�h � �g��� �����
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Clearly b$h � �h only if �g � ���� which would imply that g has an

in�nite support and g�n� � �� The approximation b$h is close to �h only if
�g approximates a Dirac� which means that all its energy is concentrated
at low frequencies� In time� g should therefore have smooth variations�
The rectangular window g � ���N�N � has a Fourier transform �g

computed in ������ It has important side lobes far away from � � ��

The resulting b$h is a poor approximation of �h� The Hanning window

g�n� � cos�
� �n
�N

�
���N�N ��n�

is smoother and thus has a Fourier transform better concentrated at
low frequencies� The spectral properties of other windows are studied
in Section ������

��� Finite Signals �

Up to now� we have considered discrete signals f �n� de�ned for all
n � Z� In practice� f �n� is known over a �nite domain� say � � n � N �
Convolutions must therefore be modi�ed to take into account the border
e�ects at n � � and n � N � �� The Fourier transform must also be
rede�ned over �nite sequences for numerical computations� The fast
Fourier transform algorithm is explained as well as its application to
fast convolutions�

����� Circular Convolutions

Let $f and $h be signals of N samples� To compute the convolution
product

$f � $h�n� �
��X

p���
$f �p� $h�n� p� for � � n � N�

we must know $f �n� and $h�n� beyond � � n � N � One approach is to
extend $f and $h with a periodization over N samples� and de�ne

f �n� � $f �nmodN � � h�n� � $h�nmodN ��
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The circular convolution of two such signals� both with period N � is
de�ned as a sum over their period�

f �	 h�n� �
N��X
p��

f �p� h�n� p� �
N��X
p��

f �n� p� h�p��

It is also a signal of period N �
The eigenvectors of a circular convolution operator

Lf �n� � f �	 h�n�

are the discrete complex exponentials ek�n� � exp i��knN�� Indeed

Lek�n� � exp

�
i��kn

N

� N��X
p��

h�p� exp

��i��kp
N

�
�

and the eigenvalue is the discrete Fourier transform of h�

�h�k� �
N��X
p��

h�p� exp

��i��kp
N

�
�

����� Discrete Fourier Transform

The space of signals of period N is an Euclidean space of dimension N
and the inner product of two such signals f and g is

hf� gi �
N��X
n��

f �n� g��n�� �����

The following theorem proves that any signal with period N can be
decomposed as a sum of discrete sinusoidal waves�

Theorem ��� The family�
ek�n� � exp

�
i��kn

N

��
��k�N

is an orthogonal basis of the space of signals of period N �
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Since the space is of dimension N � any orthogonal family of N
vectors is an orthogonal basis� To prove this theorem it is therefore
su�cient to verify that fekg��k�N is orthogonal with respect to the
inner product ������ Any signal f of period N can be decomposed in
this basis�

f �
N��X
k��

hf� eki
kekk� ek� �����

By de�nition� the discrete Fourier transform DFT� of f is

�f �k� � hf� eki �
N��X
n��

f �n� exp

��i��kn
N

�
� �����

Since kekk� � N � ����� gives an inverse discrete Fourier formula�

f �n� �
�

N

N��X
k��

�f �k� exp

�
i��kn

N

�
� �����

The orthogonality of the basis also implies a Plancherel formula

kfk� �
N��X
n��

jf �n�j� � �

N

N��X
k��

j �f �k�j�� �����

The discrete Fourier transform of a signal f of period N is computed
from its values for � � n � N � Then why is it important to consider it
a periodic signal with period N rather than a �nite signal of N sam�
ples
 The answer lies in the interpretation of the Fourier coe�cients�
The discrete Fourier sum ����� de�nes a signal of period N for which
the samples f ��� and f �N � �� are side by side� If f ��� and f �N � �� are
very di�erent� this produces a brutal transition in the periodic signal�
creating relatively high amplitude Fourier coe�cients at high frequen�
cies� For example� Figure ��� shows that the �smooth� ramp f �n� � n
for � � n � N has sharp transitions at n � � and n � N once made
periodic�

Circular Convolutions Since fexp i��knN�g��k�N are eigenvec�
tors of circular convolutions� we derive a convolution theorem�
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N-1-1 0 1 N

Figure ���� Signal f �n� � n for � � n � N made periodic over N
samples�

Theorem ��� If f and h have period N then the discrete Fourier
transform of g � f �	 h is

�g�k� � �f �k� �h�k�� �����

The proof is similar to the proof of the two previous convolution
Theorems ��� and ���� This theorem shows that a circular convolu�
tion can be interpreted as a discrete frequency �ltering� It also opens
the door to fast computations of convolutions using the fast Fourier
transform�

����� Fast Fourier Transform

For a signal f of N points� a direct calculation of the N discrete Fourier
sums

�f �k� �
N��X
n��

f �n� exp

��i��kn
N

�
� for � � k � N � �����

requires N� complex multiplications and additions� The fast Fourier
transform FFT� algorithm reduces the numerical complexity toON log�N�
by reorganizing the calculations�
When the frequency index is even� we group the terms n and n  

N��

�f ��k� �

N����X
n��

�
f �n�  f �n N��

�
exp

��i��kn
N�

�
� ���	�

When the frequency index is odd� the same grouping becomes
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�f ��k  �� �

N����X
n��

exp

��i��n
N

��
f �n�� f �n  N��

�
exp

��i��kn
N�

�
�

�����

Equation ���	� proves that even frequencies are obtained by calculating
the discrete Fourier transform of the N� periodic signal

fe�n� � f �n�  f �n N���

Odd frequencies are derived from ����� by computing the Fourier trans�
form of the N� periodic signal

fo�n� � exp

��i��n
N

��
f �n�� f �n N��

�
�

A discrete Fourier transform of size N may thus be calculated with two
discrete Fourier transforms of size N� plus ON� operations�
The inverse fast Fourier transform of �f is derived from the forward

fast Fourier transform of its complex conjugate �f � by observing that

f ��n� �
�

N

N��X
k��

�f ��k� exp
��i��kn

N

�
� �����

Complexity Let CN� be the number of elementary operations needed
to compute a discrete Fourier transform with the FFT� Since f is com�
plex� the calculation of fe and fo requires N complex additions and
N� complex multiplications� Let KN be the corresponding number
of elementary operations� We have

CN� � �CN��  KN� �����

Since the Fourier transform of a single point is equal to itself� C�� � ��
With the change of variable l � log�N and the change of function

T l� � C�N�
N
� we derive from ����� that

T l� � T l � ��  K�

Since T �� � � we get T l� � K l and hence

CN� � KN log�N��
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There exist several variations of this fast algorithm ����� ���� The
goal is to minimize the constant K� The most e�cient fast discrete
Fourier transform to this date is the split�radix FFT algorithm� which is
slightly more complicated than the procedure just described� but which
requires only N log�N real multiplications and �N log�N additions�
When the input signal f is real� there are half as many parameters
to compute� since �f ��k� � �f ��k�� The number of multiplications and
additions is thus reduced by ��

����� Fast Convolutions

The low computational complexity of a fast Fourier transform makes
it e�cient to compute �nite discrete convolutions by using the circular
convolution Theorem ���� Let f and h be two signals whose samples
are non�zero only for � � n � M � The causal signal

g�n� � f � h�n� �
��X

k���
f �k� h�n� k� �����

is non�zero only for � � n � �M � If h and f have M non�zero sam�
ples� calculating this convolution product with the sum ����� requires
MM  �� multiplications and additions� When M � ��� the number
of computations is reduced by using the fast Fourier transform ���� ����
To use the fast Fourier transform with the circular convolution The�

orem ���� the non�circular convolution ����� is written as a circular
convolution� We de�ne two signals of period �M �

a�n� �

�
f �n� if � � n � M
� if M � n � �M

�����

b�n� �

�
h�n� if � � n � M
� if M � n � �M

� �����

Let c � a �	 b� one can verify that c�n� � g�n� for � � n � �M � The �M
non�zero coe�cients of g are thus obtained by computing �a and �b from
a and b and then calculating the inverse discrete Fourier transform of
�c � �a�b� With the fast Fourier transform algorithm� this requires a total
of OM log�M� additions and multiplications instead of MM  ��� A
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single FFT or inverse FFT of a real signal of size N is calculated with
���N log�N multiplications� using a split�radix algorithm� The FFT
convolution is thus performed with a total of �M log�M  ��M real
multiplications� For M � �� the FFT algorithm is faster than the
direct convolution approach� For M � ��� it is faster to use a direct
convolution sum�

Fast Overlap
Add Convolutions The convolution of a signal f
of L non�zero samples with a smaller causal signal h of M samples
is calculated with an overlap�add procedure that is faster than the
previous algorithm� The signal f is decomposed with a sum of LM
blocks fr having M non�zero samples�

f �n� �

L�M��X
r��

fr�n� rM � with fr�n� � f �n  rM � ����M����n�� �����

For each � � r � LM � the �M non�zero samples of gr � fr � h are
computed with the FFT based convolution algorithm� which requires
OM log�M� operations� These LM convolutions are thus obtained
with OL log�M� operations� The block decomposition ����� implies
that

f � h�n� �

L�M��X
r��

gr�n� rM �� �����

The addition of these LM translated signals of size �M is done with �L
additions� The overall convolution is thus performed with OL log�M�
operations�

��� Discrete Image Processing �

Two�dimensional signal processing poses many speci�c geometrical and
topological problems that do not exist in one dimension ���� ���� For
example� a simple concept such as causality is not well de�ned in two di�
mensions� We avoid the complexity introduced by the second dimension
by extending one�dimensional algorithms with a separable approach�
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This not only simpli�es the mathematics but also leads to faster nu�
merical algorithms along the rows and columns of images� Appendix
A�� reviews the properties of tensor products for separable calculations�

����� Two�Dimensional Sampling Theorem

The light intensity measured by a camera is generally sampled over a
rectangular array of picture elements� called pixels� The one�dimensional
sampling theorem is extended to this two�dimensional sampling array�
Other two�dimensional sampling grids such as hexagonal grids are also
possible� but non�rectangular sampling arrays are hardly ever used� We
avoid studying them following our separable extension principle�
Let T� and T� be the sampling intervals along the x� and x� axes

of an in�nite rectangular sampling grid� A discrete image obtained by
sampling fx�� x�� can be represented as a sum of Diracs located at the
grid points�

fdx�� x�� �
��X

n��n���
fn�T�� n�T�� �x� � n�T�� �x� � n�T���

The two�dimensional Fourier transform of

�x� � n�T�� �x� � n�T�� is exp��in�T���  n�T������

The Fourier transform of fd is thus a two�dimensional Fourier series

�fd��� ��� �
��X

n��n����
fn�T�� n�T�� exp��in�T���  n�T������ �����

It has period ��T� along �� and period ��T� along ��� An extension
of Proposition ��� relates �fd to the two�dimensional Fourier transform
�f of f �

Proposition ��� The Fourier transform of the discrete image obtained
by sampling f at intervals T� and T� along x� and x� is

�fd��� ��� �
�

T� T�

��X
k��k����

�f
�
�� � �k��

T�
� �� � �k��

T�

�
� ���	�
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We derive the following two�dimensional sampling theorem� which
is analogous to Theorem ����

Theorem ��� If �f has a support included in ���T�� �T������T�� �T��
then

fx�� x�� �
��X

n��n����
fn�T�� n�T�� hT�x� � n�T�� hT�x� � n�T���

�����
where

hT t� �
sin�tT �

�tT
� �����

Aliasing If the support of �f is not included in the low�frequency rect�
angle ���T�� �T�� � ���T�� �T��� the interpolation formula �����
introduces aliasing errors� This aliasing is eliminated by pre�ltering
f with the ideal low�pass separable �lter hT�x�� hT�x��T� T�� whose
Fourier transform is the indicator function of ���T�� �T������T�� �T���

����� Discrete Image Filtering

The properties of two�dimensional space�invariant operators are essen�
tially the same as in one dimension� The sampling intervals T� and
T� are normalized to �� A pixel value located at n�� n�� is written
f �n�� n��� A linear operator L is space�invariant if for any fp��p��n�� n�� �
f �n� � p�� n� � p��� with p�� p�� � Z��

Lfp��p��n�� n�� � Lf �n� � p�� n� � p���

Impulse Response Since an image can be decomposed as a sum of
discrete Diracs�

f �n�� n�� �
��X

p��p����
f �p�� p�� ��n� � p�� ��n� � p���

the linearity and time invariance implies

Lf �n�� n�� �

��X
p��p����

f �p�� p�� h�n�� p�� n�� p�� � f � h�n�� n��� �����
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where h�n�� n�� is the response of the impulse �����p�� p�� � ��p����p���

h�n�� n�� � L�����n�� n���

If the impulse response is separable�

h�n�� n�� � h��n�� h��n��� �����

the two�dimensional convolution ����� is computed as one�dimensional
convolutions along the columns of the image followed by one�dimensional
convolutions along the rows or vice�versa��

f � h�n�� n�� �
��X

p����
h��n� � p��

��X
p����

h��n� � p�� f �p�� p��� �����

This factorization reduces the number of operations� For example� a
moving average over squares of �M  ��� pixels�

Lf �n�� n�� �
�

�M  ���

MX
p���M

MX
p���M

f �n� � p�� n� � p�� �����

is a separable convolution with h� � h� � �M  �������M�M �� A
direct calculation with ����� requires �M  ��� additions per pixel
whereas the factorization ����� performs this calculation with ��M  
�� additions per point�

Transfer Function The Fourier transform of a discrete image f is
de�ned by the Fourier series

�f��� ��� �
��X

n����

��X
n����

f �n�� n�� exp��i��n�  ��n���� �����

The two�dimensional extension of the convolution Theorem ��� proves
that if g � Lf � f � h then its Fourier transform is

�g��� ��� � �f��� ��� �h��� ����

and �h is the transfer function of the �lter� When a �lter is separable
h�n�� n�� � h��n�� h��n��� its transfer function is also separable�

�h��� ��� � �h���� �h����� �����
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����� Circular Convolutions and Fourier Basis

The discrete convolution of a �nite image $f raises border problems�
As in one dimension� these border issues are solved by extending the
image� making it periodic along its rows and columns�

f �n�� n�� � $f �n�modN � n�modN ��

The resulting image f �n�� n�� is de�ned for all n�� n�� � Z�� and each
of its rows and columns is a one�dimensional signal of period N �
A discrete convolution is replaced by a circular convolution over the

image period� If f and h have period N along their rows and columns�
then

f �	 h�n�� n�� �
N��X

p��p���

f �p�� p�� h�n� � p�� n� � p��� �����

Discrete Fourier Transform The eigenvectors of circular convolu�
tions are two�dimensional discrete sinusoidal waves�

ek��k��n�� n�� � exp

�
i��

N
k�n�  k�n��

�
�

This family of N� discrete vectors is the separable product of two one�
dimensional discrete Fourier bases fexp i��knN�g��k�N � Theorem
A�� thus proves that the family�

ek��k��n�� n�� � exp
� i��
N
k�n�  k�n��

��
��k��k��N

is an orthogonal basis of the space of images that are periodic with
period N along their rows and columns� Any discrete periodic image f
can be decomposed in this orthogonal basis�

f �n�� n�� �
�

N�

N��X
k��k���

�f �k�� k�� exp

�
i��

N
k�n�  k�n��

�
� ���	�

where �f is the two�dimensional discrete Fourier transform of f

�f �k�� k�� � hf� ek��k�i �
N��X

n��n���

f �n�� n�� exp

��i��
N

k�n�  k�n��

�
�

�����
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Fast Convolutions Since exp�i��
N
k�n� k�n��� are eigenvectors of

two�dimensional circular convolutions� the discrete Fourier transform
of g � f �	 h is

�g�k�� k�� � �f �k�� k�� �h�k�� k��� �����

A direct computation of f �	 h with the summation ����� requires
ON�� multiplications� With the two�dimensional FFT described next�
�f �k�� k�� and �h�k�� k�� as well as the inverse DFT of their product �����
are calculated with ON� logN� operations� Non�circular convolutions
are computed with a fast algorithm by reducing them to circular con�
volutions� with the same approach as in Section ������

Separable Basis Decomposition Let fekg��k�N be an orthogonal
basis of signals of sizeN � The family fek��n�� ek��n��g��k��k��N is then an
orthogonal basis of the space of images of N� pixels� The decomposition
coe�cients of an image f in such a basis is calculated with a separable
algorithm� The application to the two�dimensional FFT is explained�
Two�dimensional inner products are calculated with

hf� ek�ek�i �
N��X
n���

N��X
n���

f �n�� n�� e
�
k�
�n�� e

�
k�
�n��

�
N��X
n���

e�k��n�
N��X
n���

f �n�� n�� e
�
k�
�n��� �����

For � � n� � N � we must compute

Tf �n�� k�� �
N��X
n���

f �n�� n�� e
�
k�
�n���

which are the decomposition coe�cients of the N image rows in the
basis fek�g��k��N � The coe�cients fhf� ek�ek�ig��k��k��N are calculated
in ����� as the inner products of the columns of the transformed image
Tf �n�� k�� in the same basis fekg��k�N � This requires expanding �N
one�dimensional signals N rows and N columns� in fekg��k�N �
The fast Fourier transform algorithm of Section ����� decomposes a

signal of sizeN in the discrete Fourier basis fek�n� � exp �i��knN�g��k�N
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with KN log�N operations� A separable implementation of a two�
dimensional FFT thus requires �KN� log�N operations� A split�radix
FFT corresponds to K � ��

��� Problems

���� � Suppose that �f has a support in ���n�����T��n��T ���n��T� �n�
����T � and that f�t� is real� Find an interpolation formula that
recovers f�t� from ff�nT �gn�Z�

���� � Suppose that �f has a support in ����T� ��T �� Find a formula
that recovers f�t� from the average samples

�n � Z � �f�nT � �

Z �n�����T

�n�����T
f�t� dt �

���� � An interpolation function f�t� satis�es f�n� � ��n��

�a� Prove that
P��

k��� �f�� � �k�� � � if and only if f is an
interpolation function�

�b� Suppose that f�t� �
P��

n��� h�n� ��t � n� with � � L
��R��

Find �h��� so that f�n� � ��n�	 and relate �f��� to ������ Give
a su�cient condition on �� to guarantee that f � L��R��

��
� � Prove that if f � L��R� and
P��

n��� f�t� n� � L���� �� then
��X

n���
f�t� n� �

��X
k���

�f��k�� ei��kt �

���� � Verify that

�h��� �

KY
k��

a�k � e�i�

� � ak ei�

is an all�pass �lter	 i�e� j�h���j � �� Prove that fh�n �m�gm�Z is
an orthonormal basis of l��Z��

���� � Let g�n� � ����n h�n�� Relate �g��� to �h���� If h is a low�pass
�lter can �g��� be a low�pass �lter�

���� � Prove the convolution Theorem ����

���� � Recursive �lters
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�a� Compute the Fourier transform of h�n� � an ��������n� for

jaj � �� Compute the inverse Fourier transform of �h��� �
��� a e�i���p�

�b� Suppose that g � f � h is calculated by a recursive equation
with real coe�cients

KX
k��

ak f �n� k� �

MX
k��

bk g�n� k�

Show that h is a stable �lter if and only if the equation
PM

k�� bk z
�k �

� has roots with a modulus strictly smaller than ��
�c� Suppose that j�h���j� � jP �e�i��j��jD�e�i��j� where P �z� and

D�z� are polynomials� If D�z� has no root of modulus �	 prove
that one can �nd two polynomials P��z� and D��z� such that
�h��� � P��e

�i���D��e
�i�� is the Fourier transform of a stable

and causal recursive �lter� Hint� �nd the complex roots of
D�z� and compute D��z� by choosing the appropriate roots�

�d� A discrete Butterworth �lter with cut�o� frequency �c � �
satis�es

j�h���j� �
�

� �
�

tan�����
tan��c���

��N
Compute �h��� for N � � in order to obtain a �lter h which is
real	 stable and causal�

��� � Let a and b be two integers with many digits� Relate the product
a b to a convolution� Explain how to use the FFT to compute this
product�

����� � Let h�� be the inverse of h de�ned by h � h���n� � ��n��

�a� Prove that if h has a �nite support then h�� has a �nite sup�
port if and only if h�n� � ��n� p� for some p � Z�

�b� Find a su�cient condition on �h��� for h�� to be a stable �lter�

����� � Discrete interpolation Let �f �k� be the DFT of a signal f �n� of

size N � We de�ne b�f �N��� � b�f ��N��� � bf �N��� and
b�f �k� �

�	
	�
� �f �k� if � � k � N��

� if N�� � k � �N��

� �f �k �N � if �N�� � k � �N

�

Prove that �f ��n� � f �n��
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����� � Decimation Let x�n� � y�Mn� with M 
 ��

�a� Show that �x��� � M��PM��
k�� �y�M���� � �k����

�b� Give a su�cient condition on �y��� to recover y from x� De�
scribe the interpolation algorithm�

����� � Complexity of FFT

�a� Find an algorithm that multiplies two complex numbers with
� additions and � multiplications�

�b� Compute the total number of additions and multiplications of
the FFT algorithm described in Section �����	 for a signal of
size N �

���
� � We want to compute numerically the Fourier transform of f�t��
Let fd�n� � f�nT �	 and fp�n� �

P��
p��� fd�n� pN ��

�a� Prove that the DFT of fp�n� is related to the Fourier series of
fd�n� and to the Fourier transform of f�t� by

�fp�k� � �fd

�
��k

N

�
�

�

T

��X
l���

�f

�
�k�

NT
� �l�

T

�
�

�b� Suppose that jf�t�j and j �f���j are negligible when t �� ��t�� t��
and � �� ����� ���� Relate N and T to t� and �� so that one
can compute an approximation value of �f��� at all � � R

by interpolating the samples �fp�k�� Is it possible to compute

exactly �f��� with such an interpolation formula�

�c� Let f�t� �
�
sin��t����t�

��
� What is the support of �f� Sample

f appropriately and compute �f with the FFT algorithm of
Matlab�

����� � Suppose that f �n�� n�� is an image with N� non�zero pixels for
� � n�� n� � N � Let h�n�� n�� be a non�separable �lter with M�

non�zero coe�cients for � � n�� n� � M � Describe an overlap�
add algorithm to compute g�n�� n�� � f � h�n�� n��� How many
operations does it require� For what range of M is it better to
compute the convolution with a direct summation�
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Chapter �

Time Meets Frequency

When we listen to music� we clearly �hear� the time variation of the
sound �frequencies�� These localized frequency events are not pure
tones but packets of close frequencies� The properties of sounds are re�
vealed by transforms that decompose signals over elementary functions
that are well concentrated in time and frequency� Windowed Fourier
transforms and wavelet transforms are two important classes of local
time�frequency decompositions� Measuring the time variations of �in�
stantaneous� frequencies is an important application that illustrates
the limitations imposed by the Heisenberg uncertainty�

There is no unique de�nition of time�frequency energy density� which
makes this topic di�cult� Yet� some order can be established by proving
that quadratic time�frequency distributions are obtained by averaging
a single quadratic form called the Wigner�Ville distribution� This uni�
�ed framework gives a more general perspective on windowed Fourier
transforms and wavelet transforms�

��� Time�Frequency Atoms �

A linear time�frequency transform correlates the signal with a family of
waveforms that are well concentrated in time and in frequency� These
waveforms are called time�frequency atoms� Let us consider a general
family of time�frequency atoms f��g��	� where � might be a multi�
index parameter� We suppose that �� � L�R� and that k��k � ��

���
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The corresponding linear time�frequency transform of f � L�R� is
de�ned by

Tf�� �

Z ��

��
ft����t� dt � hf� ��i�

The Parseval formula ����� proves that

Tf�� �

Z ��

��
ft����t� dt �

�

��

Z ��

��
�f�� ������ d�� ����

If ��t� is nearly zero when t is outside a neighborhood of an abscissa
u� then hf� ��i depends only on the values of f in this neighborhood�
Similarly� if ����� is negligible for � far from �� then the right integral of

���� proves that hf� ��i reveals the properties of �f in the neighborhood
of ��

Example ��� A windowed Fourier atom is constructed with a window
g translated by u and modulated by the frequency ��

��t� � g��ut� � e
i�t gt� u�� ����

A wavelet atom is a dilation by s and a translation by u of a mother
wavelet ��

��t� � �s�ut� �
�p
s
�

�
t� u

s

�
� ����

Wavelets and windowed Fourier functions have their energy well local�
ized in time� while their Fourier transform is mostly concentrated in a
limited frequency band� The properties of the resulting transforms are
studied in Sections ��� and ����

Heisenberg Boxes The slice of information provided by hf� ��i is
represented in a time�frequency plane t� �� by a region whose location
and width depends on the time�frequency spread of ��� Since

k��k� �
Z ��

��
j��t�j� dt � ��
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we interpret j��t�j� as a probability distribution centered at

u� �

Z ��

��
t j��t�j� dt� ����

The spread around u� is measured by the variance


�t �� �

Z ��

��
t� u��

� j��t�j� dt� ����

The Plancherel formula ����� proves that
R ��
�� j�����j� d� � ��k��k��

The center frequency of ��� is therefore de�ned by

�� �
�

��

Z ��

��
� j�����j� d�� ����

and its spread around �� is


���� �
�

��

Z ��

��
� � ���

� j�����j� d�� ����

The time�frequency resolution of �� is represented in the time�
frequency plane t� �� by a Heisenberg box centered at u�� ���� whose
width along time is 
t�� and whose width along frequency is 
����
This is illustrated by Figure ���� The Heisenberg uncertainty Theorem
��� proves that the area of the rectangle is at least ���


t 
� � �

�
� ����

This limits the joint resolution of �� in time and frequency� The time�
frequency plane must be manipulated carefully because a point t�� ���
is ill�de�ned� There is no function that is perfectly well concentrated
at a point t� and a frequency ��� Only rectangles with area at least
�� may correspond to time�frequency atoms�

Energy Density Suppose that for any u� �� there exists a unique
atom ���u��� centered at u� �� in the time�frequency plane� The time�
frequency box of ���u��� speci�es a neighborhood of u� �� where the
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energy of f is measured by

PTfu� �� � jhf� ���u���ij� �




Z ��

��
ft�����u���t� dt





� � ��	�

Section ����� proves that any such energy density is an averaging of the
Wigner�Ville distribution� with a kernel that depends on the atoms ���

tγ|φ  (  )|

|φ       |

u

ξ

0 t

ω

(ω) σ

σ
 t  

ω
γ

^

Figure ���� Heisenberg box representing an atom ���

��� Windowed Fourier Transform �

In �	��� Gabor ����� introduced windowed Fourier atoms to measure
the �frequency variations� of sounds� A real and symmetric window
gt� � g�t� is translated by u and modulated by the frequency ��

gu��t� � e
i�tgt� u�� �����

It is normalized kgk � � so that kgu��k � � for any u� �� � R� � The
resulting windowed Fourier transform of f � L�R� is

Sfu� �� � hf� gu��i �
Z ��

��
ft� gt� u� e�i�t dt� �����

This transform is also called the short time Fourier transform because
the multiplication by gt�u� localizes the Fourier integral in the neigh�
borhood of t � u�
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As in ��	�� one can de�ne an energy density called a spectrogram�
denoted PS�

PSfu� �� � jSfu� ��j� �




Z ��

��
ft� gt� u� e�i�t dt





� � �����

The spectrogram measures the energy of f in the time�frequency neigh�
borhood of u� �� speci�ed by the Heisenberg box of gu���

Heisenberg Boxes Since g is even� gu��t� � e
i�tgt� u� is centered

at u� The time spread around u is independent of u and ��


�t �

Z ��

��
t� u�� jgu��t�j� dt �

Z ��

��
t� jgt�j� dt� �����

The Fourier transform �g of g is real and symmetric because g is real
and symmetric� The Fourier transform of gu�� is

�gu���� � �g� � �� exp��iu� � ��� � �����

It is a translation by � of the frequency window �g� so its center frequency
is �� The frequency spread around � is


�� �
�

��

Z ��

��
� � ��� j�gu����j d� � �

��

Z ��

��
�� j�g��j d�� �����

It is independent of u and �� Hence gu�� corresponds to a Heisenberg
box of area 
t 
� centered at u� ��� as illustrated by Figure ���� The
size of this box is independent of u� ��� which means that a windowed
Fourier transform has the same resolution across the time�frequency
plane�

Example ��� A sinusoidal wave ft� � expi��t� whose Fourier trans�

form is a Dirac �f�� � ���� � ��� has a windowed Fourier transform

Sfu� �� � �g� � ��� exp��iu� � ���� �

Its energy is spread over the frequency interval ��� � 
��� ��  
����
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Figure ���� Heisenberg boxes of two windowed Fourier atoms gu�� and
g����

Example ��� The windowed Fourier transform of a Dirac ft� �
�t� u�� is

Sfu� �� � gu� � u� exp�i�u�� �
Its energy is spread in the time interval �u� � 
t�� u�  
t���

Example ��� A linear chirp ft� � expiat�� has an �instantaneous
frequency� that increases linearly in time� For a Gaussian window
gt� � �
������ exp��t��
���� the windowed Fourier transform of f
is calculated using the Fourier transform ����� of Gaussian chirps� One
can verify that its spectrogram is

PSfu� �� � jSfu� ��j� �
�

��
�

�  �a�
�

����

exp

�
�


�� � �au��
�  �a�
�

�
�

�����

For a �xed time u� PSfu� �� is a Gaussian that reaches its maximum at
the frequency �u� � �au� Observe that if we write ft� � exp�i�t���
then �u� is equal to the �instantaneous frequency�� de�ned as the
derivative of the phase� �u� � ��u� � �au� Section ����� explains
this result�
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Figure ���� The signal includes a linear chirp whose frequency in�
creases� a quadratic chirp whose frequency decreases� and two mod�
ulated Gaussian functions located at t � ��� and t � ����� a� Spectro�
gram PSfu� ��� Dark points indicate large amplitude coe�cients� b�
Complex phase of Sfu� �� in regions where the modulus PSfu� �� is
non�zero�
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Example ��� Figure ��� gives the spectrogram of a signal that in�
cludes a linear chirp� a quadratic chirp and two modulated Gaus�
sians� The spectrogram is computed with a Gaussian window dilated
by 
 � ����� As expected from ������ the linear chirp yields large am�
plitude coe�cients along the trajectory of its instantaneous frequency�
which is a straight line� The quadratic chirp yields large coe�cients
along a parabola� The two modulated Gaussians produce low and high
frequency blobs at u � ��� and u � �����

����� Completeness and Stability

When the time�frequency indices u� �� vary across R� � the Heisenberg
boxes of the atoms gu�� cover the whole time�frequency plane� One can
thus expect that f can be recovered from its windowed Fourier trans�
form Sfu� ��� The following theorem gives a reconstruction formula
and proves that the energy is conserved�

Theorem ��� If f � L�R� then

ft� �
�

��

Z ��

��

Z ��

��
Sfu� �� gt� u� ei�t d� du �����

and Z ��

��
jft�j� dt � �

��

Z ��

��

Z ��

��
jSfu� ��j� d� du� �����

Proof �� The reconstruction formula �
���� is proved �rst� Let us apply
the Fourier Parseval formula ������ to the integral �
���� with respect
to the integration in u� The Fourier transform of f��u� � Sf�u� �� with
respect to u is computed by observing that

Sf�u� �� � exp��iu��
Z ��

��
f�t� g�t�u� exp�i��u�t�� dt � exp��iu�� f�g��u��

where g��t� � g�t� exp�i�t�	 because g�t� � g��t�� Its Fourier transform
is therefore

�f���� � �f�� � �� �g��� � �� � �f�� � �� �g����



���� WINDOWED FOURIER TRANSFORM ���

The Fourier transform of g�t � u� with respect to u is �g��� exp��it���
Hence

�

��

�Z ��

��

Z ��

��
Sf�u� �� g�t � u� exp�i�t� du

�
d� �

�

��

Z ��

��

�
�

��

Z ��

��
�f�� � �� j�g���j� exp�it�� � ��� d�

�
d� �

If �f � L
��R�	 we can apply the Fubini Theorem A�� to reverse the

integration order� The inverse Fourier transform proves that

�

��

Z ��

��
�f�� � �� exp�it�� � ��� d� � f�t��

Since �
��

R ��
�� j�g���j� d� � �� we derive �
����� If �f �� L

��R�	 a density
argument is used to verify this formula�

Let us now prove the energy conservation �
����� Since the Fourier
transform in u of Sf�u� �� is �f��� �� �g���	 the Plancherel formula ������
applied to the right�hand side of �
���� gives

�

��

Z ��

��

Z ��

��
jSf�u� ��j� du d� �

�

��

Z ��

��

�

��

Z ��

��
j �f����� �g���j� d� d��

The Fubini theorem applies and the Plancherel formula proves that

�

��

Z ��

��
j �f�� � ��j� d� � kfk��

which implies �
�����

The reconstruction formula ����� can be rewritten

ft� �
�

��

Z ��

��

Z ��

��
hf� gu��i gu��t� d� du� ���	�

It resembles the decomposition of a signal in an orthonormal basis but it
is not� since the functions fgu��gu���R� are very redundant in L�R�� The
second equality ����� justi�es the interpretation of the spectrogram
PSfu� �� � jSfu� ��j� as an energy density� since its time�frequency
sum equals the signal energy�
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Reproducing Kernel A windowed Fourier transform represents a
one�dimensional signal ft� by a two�dimensional function Sfu� ���
The energy conservation proves that Sf � L�R��� Because Sfu� �� is
redundant� it is not true that any ) � L�R�� is the windowed Fourier
transform of some f � L�R�� The next proposition gives a necessary
and su�cient condition for such a function to be a windowed Fourier
transform�

Proposition ��� Let ) � L�R��� There exists f � L�R� such that
)u� �� � Sfu� �� if and only if

)u�� ��� �
�

��

Z ��

��

Z ��

��
)u� ��Ku�� u� ��� �� du d�� �����

with
Ku�� u� ��� �� � hgu��� gu����i � �����

Proof �� Suppose that there exists f such that ��u� �� � Sf�u� ��� Let us
replace f with its reconstruction integral �
���� in the windowed Fourier
transform de�nition�

Sf�u�� ��� �

Z ��

��

�
�

��

Z ��

��

Z ��

��
Sf�u� �� gu���t� du d�

�
g�u�����t� dt�

�
����
Inverting the integral on t with the integrals on u and � yields �
�����
To prove that the condition �
���� is su�cient	 we de�ne f as in the
reconstruction formula �
�����

f�t� �
�

��

Z ��

��

Z ��

��
��u� �� g�t � u� exp�i�t� d� du

and show that �
���� implies that ��u� �� � Sf�u� ���

Ambiguity Function The reproducing kernel Ku�� u� ��� �� mea�
sures the time�frequency overlap of the two atoms gu�� and gu���� � The
amplitude of Ku�� u� ��� �� decays with u� � u and �� � � at a rate
that depends on the energy concentration of g and �g� Replacing gu��
and gu���� by their expression and making the change of variable v �
t� u u��� in the inner product integral ����� yields

Ku�� u� ��� �� � exp

�
� i

�
�� � ��u u��

�
Agu� � u� �� � �� �����
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where

Ag	� �� �

Z ��

��
g
�
v  

	

�

�
g
�
v � 	

�

�
e�i�v dv �����

is called the ambiguity function of g� Using the Parseval formula to
replace this time integral with a Fourier integral gives

Ag	� �� �
�

��

Z ��

��
�g
�
�  

�

�

�
�g
�
� � �

�

�
ei�� d�� �����

The decay of the ambiguity function measures the spread of g in time
and of �g in frequency� For example� if g has a support included in an
interval of size T � then Ag	� �� � � for j	 j � T�� The integral �����
shows that the same result applies to the support of �g�

����� Choice of Window �

The resolution in time and frequency of the windowed Fourier transform
depends on the spread of the window in time and frequency� This can
be measured from the decay of the ambiguity function ����� or more
simply from the area 
t 
� of the Heisenberg box� The uncertainty
Theorem ��� proves that this area reaches the minimum value �� if
and only if g is a Gaussian� The ambiguity function Ag	� �� is then a
two�dimensional Gaussian�

Window Scale The time�frequency localization of g can be modi�ed
with a scaling� Suppose that g has a Heisenberg time and frequency
width respectively equal to 
t and 
�� Let gst� � s���� gts� be its
dilation by s� A change of variables in the integrals ����� and �����
shows that the Heisenberg time and frequency width of gs are respec�
tively s
t and 
�s� The area of the Heisenberg box is not modi�ed but
it is dilated by s in time and compressed by s in frequency� Similarly�
a change of variable in the ambiguity integral ����� shows that the
ambiguity function is dilated in time and frequency respectively by s
and �s

Ags	� �� � Ag
�	
s
� s�
�
�

The choice of a particular scale s depends on the desired resolution
trade�o� between time and frequency�
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Finite Support In numerical applications� g must have a compact
support� Theorem ��� proves that its Fourier transform �g necessarily
has an in�nite support� It is a symmetric function with a main lobe
centered at � � �� which decays to zero with oscillations� Figure ���
illustrates its behavior� To maximize the frequency resolution of the
transform� we must concentrate the energy of �g near � � �� Three
important parameters evaluate the spread of �g�

� The root mean�square bandwidth &�� which is de�ned by
j�g&���j�
j�g��j� �

�

�
�

� The maximum amplitude A of the �rst side�lobes located at � �
��� in Figure ���� It is measured in decibels�

A � �� log��
j�g���j�
j�g��j� �

� The polynomial exponent p� which gives the asymptotic decay of
j�g��j for large frequencies�

j�g��j � O��p���� �����

Table ��� gives the values of these three parameters for several
windows g whose supports are restricted to ����� ��� ������ Fig�
ure ��� shows the graph of these windows�

To interpret these three frequency parameters� let us consider the
spectrogram of a frequency tone ft� � expi��t�� If &� is small� then
jSfu� ��j� � j�g� � ���j� has an energy concentrated near � � ��� The
side�lobes of �g create �shadows� at � � ������ which can be neglected
if A is also small�
If the frequency tone is embedded in a signal that has other compo�

nents of much higher energy at di�erent frequencies� the tone can still
be detected if �g���� attenuates these components rapidly when j���j
increases� This means that j�g��j has a rapid decay� and Proposition
��� proves that this decay depends on the regularity of g� Property
����� is typically satis�ed by windows that are p times di�erentiable�
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Figure ���� The energy spread of �g is measured by its bandwidth &�
and the maximum amplitude A of the �rst side�lobes� located at � �
����

Name gt� &� A p

Rectangle � ���	 ���db �

Hamming ����  ���� cos��t� ���� ���db �

Gaussian exp���t�� ���� ���db �

Hanning cos��t� ���� ���db �

Blackman ����  ��� cos��t�
 ���� cos��t� ���� ���db �

Table ���� Frequency parameters of �ve windows g whose supports
are restricted to ����� ���� These windows are normalized so that
g�� � � but kgk �� ��
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Figure ���� Graphs of four windows g whose support are ����� ����

����� Discrete Windowed Fourier Transform �

The discretization and fast computation of the windowed Fourier trans�
form follow the same ideas as the discretization of the Fourier transform
described in Section ���� We consider discrete signals of period N � The
window g�n� is chosen to be a symmetric discrete signal of period N
with unit norm kgk � �� Discrete windowed Fourier atoms are de�ned
by

gm�l�n� � g�n�m� exp

�
i��ln

N

�
�

The discrete Fourier transform of gm�l is

�gm�l�k� � �g�k � l� exp

��i��mk � l�

N

�
�

The discrete windowed Fourier transform of a signal f of period N is

Sf �m� l� � hf� gm�li �
N��X
n��

f �n� g�n�m� exp

��i��ln
N

�
� �����

For each � � m � N � Sf �m� l� is calculated for � � l � N with a
discrete Fourier transform of f �n�g�n �m�� This is performed with N
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FFT procedures of size N � and thus requires a total of ON� log�N�
operations� Figure ��� is computed with this algorithm�

Inverse Transform The following theorem discretizes the recon�
struction formula and the energy conservation of Theorem ����

Theorem ��� If f is a signal of period N then

f �n� �
�

N

N��X
m��

N��X
l��

Sf �m� l� g�n�m� exp

�
i��ln

N

�
�����

and
N��X
n��

jf �n�j� � �

N

N��X
l��

N��X
m��

jSf �m� l�j�� ���	�

This theorem is proved by applying the Parseval and Plancherel
formulas of the discrete Fourier transform� exactly as in the proof of
Theorem ���� The reconstruction formula ����� is rewritten

f �n� �
�

N

N��X
m��

g�n�m�
N��X
l��

Sf �m� l� exp

�
i��ln

N

�
�

The second sum computes for each � � m � N the inverse discrete
Fourier transform of Sf �m� l� with respect to l� This is calculated with
N FFT procedures� requiring a total of ON� log�N� operations�
A discrete windowed Fourier transform is an N� image Sf �l� m�

that is very redundant� since it is entirely speci�ed by a signal f of size
N � The redundancy is characterized by a discrete reproducing kernel
equation� which is the discrete equivalent of ������

��� Wavelet Transforms �

To analyze signal structures of very di�erent sizes� it is necessary to
use time�frequency atoms with di�erent time supports� The wavelet
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transform decomposes signals over dilated and translated wavelets� A
wavelet is a function � � L�R� with a zero average�Z ��

��
�t� dt � �� �����

It is normalized k�k � �� and centered in the neighborhood of t � ��
A family of time�frequency atoms is obtained by scaling � by s and
translating it by u�

�u�st� �
�p
s
�

�
t� u

s

�
�

These atoms remain normalized� k�u�sk � �� The wavelet transform of
f � L�R� at time u and scale s is

Wfu� s� � hf� �u�si �
Z ��

��
ft�

�p
s
��
�
t� u

s

�
dt� �����

Linear Filtering The wavelet transform can be rewritten as a con�
volution product�

Wfu� s� �

Z ��

��
ft�

�p
s
��
�
t� u

s

�
dt � f � (�su� �����

with
(�st� �

�p
s
��
��t

s

�
�

The Fourier transform of (�st� isc(�s�� � ps ���s��� �����

Since ���� �
R ��
�� �t� dt � �� it appears that �� is the transfer function

of a band�pass �lter� The convolution ����� computes the wavelet
transform with dilated band�pass �lters�

Analytic Versus Real Wavelets Like a windowed Fourier trans�
form� a wavelet transform can measure the time evolution of frequency
transients� This requires using a complex analytic wavelet� which can
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separate amplitude and phase components� The properties of this an�
alytic wavelet transform are described in Section ������ and its appli�
cation to the measurement of instantaneous frequencies is explained in
Section ������ In contrast� real wavelets are often used to detect sharp
signal transitions� Section ����� introduces elementary properties of
real wavelets� which are developed in Chapter ��

����� Real Wavelets

Suppose that � is a real wavelet� Since it has a zero average� the wavelet
integral

Wfu� s� �

Z ��

��
ft�

�p
s
��
�
t� u

s

�
dt

measures the variation of f in a neighborhood of u� whose size is pro�
portional to s� Section ����� proves that when the scale s goes to zero�
the decay of the wavelet coe�cients characterizes the regularity of f
in the neighborhood of u� This has important applications for detect�
ing transients and analyzing fractals� This section concentrates on the
completeness and redundancy properties of real wavelet transforms�

Example ��� Wavelets equal to the second derivative of a Gaussian
are called Mexican hats� They were �rst used in computer vision to
detect multiscale edges ������ The normalized Mexican hat wavelet is

�t� �
�

����
p
�


�
t�


�
� �

�
exp

��t�
�
�

�
� �����

For 
 � �� Figure ��� plots �� and its Fourier transform

���� �
�p�
��� ����p

�
�� exp

��
���

�

�
� �����

Figure ��� shows the wavelet transform of a signal that is piecewise
regular on the left and almost everywhere singular on the right� The
maximum scale is smaller than � because the support of f is normal�
ized to ��� ��� The minimum scale is limited by the sampling interval of
the discretized signal used in numerical calculations� When the scale
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decreases� the wavelet transform has a rapid decay to zero in the re�
gions where the signal is regular� The isolated singularities on the left
create cones of large amplitude wavelet coe�cients that converge to the
locations of the singularities� This is further explained in Chapter ��

��t� � ����
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Figure ���� Mexican hat wavelet ����� for 
 � � and its Fourier trans�
form�

A real wavelet transform is complete and maintains an energy con�
servation� as long as the wavelet satis�es a weak admissibility condi�
tion� speci�ed by the following theorem� This theorem was �rst proved
in �	�� by the mathematician Calder�on ������ from a di�erent point
of view� Wavelets did not appear as such� but Calder�on de�nes a
wavelet transform as a convolution operator that decomposes the iden�
tity� Grossmann and Morlet ����� were not aware of Calder�on�s work
when they proved the same formula for signal processing�

Theorem ��� �Calder�on� Grossmann� Morlet Let � � L�R� be
a real function such that

C� �

Z ��

�

j ����j�
�

d� �  �� �����

Any f � L�R� satis�es

ft� �
�

C�

Z ��

�

Z ��

��
Wfu� s�

�p
s
�

�
t� u

s

�
du

ds

s�
� �����

and Z ��

��
jft�j�dt � �

C�

Z ��

�

Z ��

��
jWfu� s�j� du ds

s�
� �����
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Figure ���� Real wavelet transformWfu� s� computed with a Mexican
hat wavelet ������ The vertical axis represents log� s� Black� grey
and white points correspond respectively to positive� zero and negative
wavelet coe�cients�
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Proof �� The proof of �
���� is almost identical to the proof of �
�����
Let us concentrate on the proof of �
����� The right integral b�t� of �
����
can be rewritten as a sum of convolutions� InsertingWf�u� s� � f � �	s�u�
with 	s�t� � s���� 	�t�s� yields

b�t� �
�

C�

Z ��

�
Wf��� s� � 	s�t�

ds

s�

�
�

C�

Z ��

�
f � �	s � 	s�t�

ds

s�
� �
���

The �� indicates the variable over which the convolution is calculated�
We prove that b � f by showing that their Fourier transforms are equal�
The Fourier transform of b is

�b��� �
�

C�

Z ��

�

�f���
p
s �	��s��

p
s �	�s��

ds

s�
�

�f���

C�

Z ��

�
j �	�s��j� ds

s
�

Since 	 is real we know that j �	����j� � j �	���j�� The change of variable
� � s� thus proves that

�b��� �
�

C�

�f���

Z ��

�

j �	���j�
�

d� � �f���� �
���

The theorem hypothesis

C� �

Z ��

�

j ����j�
�

d� �  �

is called the wavelet admissibility condition� To guarantee that this
integral is �nite we must ensure that ���� � �� which explains why
we imposed that wavelets must have a zero average� This condition is
nearly su�cient� If ���� � � and ���� is continuously di�erentiable
then the admissibility condition is satis�ed� One can verify that ����
is continuously di�erentiable if � has a su�cient time decayZ ��

��
�  jtj� j�t�j dt �  ��
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Reproducing Kernel Like a windowed Fourier transform� a wavelet
transform is a redundant representation� whose redundancy is charac�
terized by a reproducing kernel equation� Inserting the reconstruction
formula ����� into the de�nition of the wavelet transform yields

Wfu�� s�� �

Z ��

��

�
�

C�

Z ��

�

Z ��

��
Wfu� s��u�st� du

ds

s�

�
��u��s�t� dt�

Interchanging these integrals gives

Wfu�� s�� �
�

C�

Z ��

��
Ku� u�� s� s��Wfu� s� du

ds

s�
� �����

with
Ku�� u� s�� s� � h�u�s� �u��s�i � �����

The reproducing kernel Ku�� u� s�� s� measures the correlation of two
wavelets �u�s and �u��s�� The reader can verify that any function )u� s�
is the wavelet transform of some f � L�R� if and only if it satis�es
the reproducing kernel equation ������

Scaling Function When Wfu� s� is known only for s � s�� to re�
cover f we need a complement of information corresponding toWfu� s�
for s � s�� This is obtained by introducing a scaling function � that is
an aggregation of wavelets at scales larger than �� The modulus of its
Fourier transform is de�ned by

j����j� �
Z ��

�

j ��s��j� ds
s
�

Z ��

�

j ����j�
�

d�� �����

and the complex phase of ���� can be arbitrarily chosen� One can verify
that k�k � � and we derive from the admissibility condition ����� that

lim
���

j����j� � C�� �����

The scaling function can thus be interpreted as the impulse response
of a low�pass �lter� Let us denote

�st� �
�p
s
�

�
t

s

�
and (�st� � ��s�t��
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The low�frequency approximation of f at the scale s is

Lfu� s� �

�
ft��

�p
s
�

�
t� u

s

��
� f � (�su�� �����

With a minor modi�cation of the proof of Theorem ���� it can be shown
that

ft� �
�

C�

Z s�

�

Wf�� s� � �st�
ds

s�
 

�

C�s�
Lf�� s�� � �s�t�� �����

Example ��� If � is the second order derivative of a Gaussian whose
Fourier transform is given by ������ then the integration ����� yields

���� �
�
������p

�

r
��  

�


�
exp

�
�


���

�

�
� �����

Figure ��� displays � and �� for 
 � ��

�t� ����
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Figure ���� Scaling function associated to a Mexican hat wavelet and
its Fourier transform calculated with ������

����� Analytic Wavelets

To analyze the time evolution of frequency tones� it is necessary to use
an analytic wavelet to separate the phase and amplitude information
of signals� The properties of the resulting analytic wavelet transform
are studied�
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Analytic Signal A function fa � L�R� is said to be analytic if its
Fourier transform is zero for negative frequencies�

�fa�� � � if � � ��

An analytic function is necessarily complex but is entirely characterized
by its real part� Indeed� the Fourier transform of its real part f �
Real�fa� is

�f�� �
�fa��  �f �a ���

�
�

and this relation can be inverted�

�fa�� �

�
� �f�� if � � �
� if � � �

� �����

The analytic part fat� of a signal ft� is the inverse Fourier transform
of �fa�� de�ned by ������

Discrete Analytic Part The analytic part fa�n� of a discrete sig�
nal f �n� of size N is also computed by setting to zero the negative
frequency components of its discrete Fourier transform� The Fourier
transform values at k � � and k � N� must be carefully adjusted so
that Real�fa� � f �

�fa�k� �

���
�f �k� if k � �� N�

� �f �k� if � � k � N�
� if N� � k � N

� �����

We obtain fa�n� by computing the inverse discrete Fourier transform�

Example ��	 The Fourier transform of

ft� � a cos��t �� �
a

�

�
exp�i��t ���  exp��i��t ���

�
is

�f�� � �a
�
expi�� �� � ���  exp�i�� ��  ���

�
�

The Fourier transform of the analytic part computed with ����� is
�fa�� � ��a expi�� �� � ��� and hence

fat� � a exp�i��t  ���� ���	�
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Time
Frequency Resolution An analytic wavelet transform is cal�
culated with an analytic wavelet ��

Wfu� s� � hf� �u�si �
Z ��

��
ft�

�p
s
��
�
t� u

s

�
dt� �����

Its time�frequency resolution depends on the time�frequency spread of
the wavelet atoms �u�s� We suppose that � is centered at �� which
implies that �u�s is centered at t � u� With the change of variable
v � t�u

s
� we verify thatZ ��

��
t� u�� j�u�st�j� dt � s� 
�t � �����

with 
�t �
R ��
�� t� j�t�j� dt� Since ���� is zero at negative frequencies�

the center frequency � of �� is

� �
�

��

Z ��

�

� j ����j� d�� �����

The Fourier transform of �u�s is a dilation of �� by �s�

��u�s�� �
p
s ��s�� exp�i�u� � �����

Its center frequency is therefore �s� The energy spread of ��u�s around
�s is

�

��

Z ��

�

�
� � �

s

�� 


 ��u�s��


� d� � 
��
s�
� �����

with


�� �
�

��

Z ��

�

� � ��� j ����j� d��

The energy spread of a wavelet time�frequency atom �u�s thus corre�
sponds to a Heisenberg box centered at u� �s�� of size s
t along time
and 
�s along frequency� The area of the rectangle remains equal to

t 
� at all scales but the resolution in time and frequency depends on
s� as illustrated in Figure ��	�
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An analytic wavelet transform de�nes a local time�frequency energy
density PWf � which measures the energy of f in the Heisenberg box of
each wavelet �u�s centered at u� � � �s��

PWfu� �� � jWfu� s�j� �



Wf

�
u�
�

�

�


�� �����

This energy density is called a scalogram�
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Figure ��	� Heisenberg boxes of two wavelets� Smaller scales decrease
the time spread but increase the frequency support� which is shifted
towards higher frequencies�

Completeness An analytic wavelet transform of f depends only on
its analytic part fa� The following theorem derives a reconstruction
formula and proves that energy is conserved for real signals�

Theorem ��� For any f � L�R�

Wfu� s� �
�

�
Wfau� s�� �����

If C� �
R ��
�

��� j ����j� d� �  � and f is real then

ft� �
�

C�

Real

�Z ��

�

Z ��

��
Wfu� s��st� u� du

ds

s�


� �����
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and

kfk� � �

C�

Z ��

�

Z ��

��
jWfu� s�j� du ds

s�
� �����

Proof �� Let us �rst prove �
����� The Fourier transform with respect
to u of

fs�u� � Wf�u� s� � f � �	s�u�

is
�fs��� � �f���

p
s �	��s���

Since �	��� � � at negative frequencies	 and �fa��� � � �f��� for � � �	
we derive that

�fs��� �
�

�
�fa���

p
s �	��s���

which is the Fourier transform of �
�����

With the same derivations as in the proof of �
���� one can verify
that the inverse wavelet formula reconstructs the analytic part of f �

fa�t� �
�

C�

Z ��

�

Z ��

��
Wfa�u� s�	s�t� u�

ds

s�
du� �
���

Since f � Real�fa�	 inserting �
���� proves �
�����

An energy conservation for the analytic part fa is proved as in �
����
by applying the Plancherel formula�Z ��

��
jfa�t�j� dt � �

C�

Z ��

�

Z ��

��
jWaf�u� s�j� du ds

s�
�

SinceWfa�u� s� � �Wf�u� s� and kfak� � �kfk�	 equation �
���� follows�

If f is real the change of variable � � �s in the energy conservation
����� proves that

kfk� � �

C�

Z ��

�

Z ��

��
PWfu� �� du d��

It justi�es the interpretation of a scalogram as a time�frequency energy
density�
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Wavelet Modulated Windows An analytic wavelet can be con�
structed with a frequency modulation of a real and symmetric window
g� The Fourier transform of

�t� � gt� expi�t� �����

is ���� � �g� � ��� If �g�� � � for j�j � � then ���� � � for � � ��
Hence � is analytic� as shown in Figure ����� Since g is real and even�
�g is also real and symmetric� The center frequency of �� is therefore �
and

j ����j � sup
��R

j ����j � �g��� �����

A Gabor wavelet �t� � gt� ei
t is obtained with a Gaussian window

gt� �
�


������
exp

��t�
�
�

�
� �����

The Fourier transform of this window is �g�� � ��
����� exp�
������
If 
��� � � then �g�� � � for j�j � �� Such Gabor wavelets are thus
considered to be approximately analytic�

ψ(ω)^

^ ω

0 ωη

g(   )

Figure ����� Fourier transform ���� of a wavelet �t� � gt� expi�t��

Example ��� The wavelet transform of ft� � a expi��t� is

Wfu� s� � a
p
s ���s��� expi��t� � a

p
s �gs�� � �� expi��t��

Observe that the normalized scalogram is maximum at � � ���

�

�
PWfu� �� �

�

s
jWfu� s�j� � a�





�g�����

�
� �

��



� �
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Example ���� The wavelet transform of a linear chirp ft� � expiat�� �
exp�i�t�� is computed for a Gabor wavelet whose Gaussian window is
������ By using the Fourier transform of Gaussian chirps ����� one
can verify that

jWfu� s�j�
s

�

�
��
�

�  �s�a�
�

����

exp

� �
�
�  �a�s�
�

� � �asu��
�
�

As long as �a�s�
� � �� at a �xed time u the renormalized scalogram
����PWfu� �� is a Gaussian function of s that reaches its maximum at

�u� �
�

su�
� ��u� � � a u� �����

Section ����� explains why the amplitude is maximum at the instanta�
neous frequency ��u��

Example ���� Figure ���� displays the normalized scalogram ����PWfu� ���
and the complex phase )W u� �� of Wfu� s�� for the signal f of Fig�
ure ���� The frequency bandwidth of wavelet atoms is proportional to
�s � ��� The frequency resolution of the scalogram is therefore �ner
than the spectrogram at low frequencies but coarser than the spectro�
gram at higher frequencies� This explains why the wavelet transform
produces interference patterns between the high frequency Gabor func�
tion at the abscissa t � ���� and the quadratic chirp at the same
location� whereas the spectrogram in Figure ��� separates them well�

����� Discrete Wavelets �

Let *ft� be a continuous time signal that is uniformly sampled at in�
tervals N�� over ��� ��� Its wavelet transform can only be calculated at
scales N�� � s � �� as shown in Figure ���� In discrete computations�
it is easier to normalize the sampling distance to � and thus consider
the dilated signal ft� � *fN��t�� A change of variable in the wavelet
transform integral ����� proves that

W *fu� s� � N����WfNu�Ns� �
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Figure ����� a� Normalized scalogram ����PWfu� �� computed from
the signal in Figure ���� Dark points indicate large amplitude coe��
cients� b� Complex phase )W u� �� of Wfu� ���� where the modulus
is non�zero�
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To simplify notation� we concentrate on f and denote f �n� � fn� the
discrete signal of size N � Its discrete wavelet transform is computed at
scales s � aj� with a � ���v� which provides v intermediate scales in
each octave ��j� �j����
Let �t� be a wavelet whose support is included in ��K�� K���

For � � aj � N K��� a discrete wavelet scaled by aj is de�ned by

�j�n� �
�p
aj

�
� n
aj

�
�

This discrete wavelet has Kaj non�zero values on ��N�� N��� The
scale aj is larger than � otherwise the sampling interval may be larger
than the wavelet support�

Fast Transform To avoid border problems� we treat f �n� and the
wavelets �j�n� as periodic signals of period N � The discrete wavelet
transform can then be written as a circular convolution (�j�n� � ��j ��n��

Wf �n� aj� �
N��X
m��

f �m���j �m� n� � f �	 (�j�n�� �����

This circular convolution is calculated with the fast Fourier transform
algorithm� which requires ON log�N� operations� If a � ���v� there
are v log�N�K�� scales a

j � ��N��� K���� The total number of op�
erations to compute the wavelet transform over all scales is therefore
OvNlog�N�

�� ��	���
To compute the scalogram PW �n� �� � jWf �n� 


�
�j� we calculate

Wf �n� s� at any scale s with a parabola interpolation� Let j be the
closest integer to log� slog� a� and px� be the parabola such that

pj � �� �Wf �n� aj��� � pj� �Wf �n� aj� � pj  �� � Wf �n� aj����

A second order interpolation computes

Wf �n� s� � p

�
log� s

log� a

�
�

Parabolic interpolations are used instead of linear interpolations in or�
der to locate more precisely the ridges de�ned in Section ������
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Discrete Scaling Filter A wavelet transform computed up to a scale
aJ is not a complete signal representation� It is necessary to add the low
frequencies Lf �n� aJ � corresponding to scales larger than aJ � A discrete
and periodic scaling �lter is computed by sampling the scaling function
�t� de�ned in ������

�J �n� �
�p
aJ

�
� n

aJ

�
for n � ��N�� N���

Let (�J �n� � ��J ��n�� The low frequencies are carried by

Lf �n� aJ � �
N��X
m��

f �m���J �m� n� � f �	 (�J �n�� �����

Reconstruction An inverse wavelet transform is implemented by
discretizing the integral ������ Suppose that aI � � is the �nest scale�
Since dss� � d loge ss and the discrete wavelet transform is computed
along an exponential scale sequence fajgj with a logarithmic increment
d loge s � loge a� we obtain

f �n� � loge a

C�

JX
j�I

�

aj
Wf ��� aj� �	�j�n�  

�

C� aJ
Lf ��� aJ � �	 �J �n�� �����

The ��� indicates the variable over which the convolution is calcu�
lated� These circular convolutions are calculated using the FFT� with
OvNlog�N�

�� operations�
Analytic wavelet transforms are often computed over real signals

f �n� that have no energy at low frequencies� In this case do not use a
scaling �lter �J �n�� Theorem ��� shows that

f �n� � � loge a

C�
Real

	
JX
j�I

�

aj
Wf ��� aj� �	 �j�n�

�
� �����

The error introduced by the discretization of scales decreases when
the number v of voices per octave increases� However� the approxi�
mation of continuous time convolutions with discrete convolutions also
creates high frequency errors� Perfect reconstructions can be obtained
with a more careful design of the reconstruction �lters� Section �����
describes an exact inverse wavelet transform computed at dyadic scales
aj � �j�



��� CHAPTER �� TIME MEETS FREQUENCY

��� Instantaneous Frequency �

When listening to music� we perceive several frequencies that change
with time� This notion of instantaneous frequency remains to be de�
�ned� The time variation of several instantaneous frequencies can be
measured with time�frequency decompositions� and in particular with
windowed Fourier transforms and wavelet transforms�

Analytic Instantaneous Frequency A cosine modulation

ft� � a cosw�t ��� � a cos�t�

has a frequency �� that is the derivative of the phase �t� � w�t ���
To generalize this notion� real signals f are written as an amplitude a
modulated with a time varying phase ��

ft� � at� cos�t� with at� � � � �����

The instantaneous frequency is de�ned as a positive derivative of the
phase�

�t� � ��t� � � �
The derivative can be chosen to be positive by adapting the sign of
�t�� One must be careful because there are many possible choices of
at� and �t�� which implies that �t� is not uniquely de�ned relative
to f �
A particular decomposition ����� is obtained from the analytic part

fa of f � whose Fourier transform is de�ned in ����� by

�fa�� �

�
� �f�� if � � �
� if � � �

� ���	�

This complex signal is represented by separating the modulus and the
complex phase�

fat� � at� exp�i�t�� � �����

Since f � Real�fa�� it follows that

ft� � at� cos�t��

We call at� the analytic amplitude of ft� and ��t� its instantaneous
frequency� they are uniquely de�ned�



���� INSTANTANEOUS FREQUENCY ���

Example ���� If ft� � at� cos��t ���� then

�f�� �
�

�

�
expi��� �a� � ���  exp�i��� �a�  ���

�
�

If the variations of at� are slow compared to the period ��
��
� which is

achieved by requiring that the support of �a be included in ����� ����
then

�fa�� � �a� � ��� expi���

so fat� � at� exp�i��t �����

If a signal f is the sum of two sinusoidal waves�

ft� � a cos��t�  a cos��t��

then

fat� � a expi��t� a expi��t� � a cos

�
�

�
�� � ��� t

�
exp

�
i

�
��  ��� t

�
�

The instantaneous frequency is ��t� � ��  ���� and the amplitude
is

at� � a





cos��� �� � ��� t

�



 �
This result is not satisfying because it does not reveal that the signal
includes two sinusoidal waves of the same amplitude� It measures an
average frequency value� The next sections explain how to measure the
instantaneous frequencies of several spectral components by separating
them with a windowed Fourier transform or a wavelet transform� We
�rst describe two important applications of instantaneous frequencies�

Frequency Modulation In signal communications� information can
be transmitted through the amplitude at� amplitude modulation� or
the instantaneous frequency ��t� frequency modulation� ����� Fre�
quency modulation is more robust in the presence of additive Gaus�
sian white noise� In addition� it better resists multi�path interferences�
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which destroy the amplitude information� A frequency modulation
sends a message mt� through a signal

ft� � a cos�t� with ��t� � ��  kmt��

The frequency bandwidth of f is proportional to k� This constant is
adjusted depending on the transmission noise and the available band�
width� At the reception� the message mt� is restored with a frequency
demodulation that computes the instantaneous frequency ��t� ������

Additive Sound Models Musical sounds and voiced speech seg�
ments can be modeled with sums of sinusoidal partials�

ft� �
KX
k��

fkt� �
KX
k��

akt� cos�kt� � �����

where ak and ��k are vary slowly ��	�� �	��� Such decompositions are
useful for pattern recognition and for modifying sound properties ������
Sections ����� and ����� explain how to compute ak and the instanta�
neous frequency ��k of each partial� from which the phase �k is derived
by integration�
To compress the sound f by a factor � in time� without modifying

the values of ��k and ak� we synthesize

gt� �
KX
k��

ak� t� cos
� �
�
�k� t�

�
� �����

The partials of g at t � � t� and the partials of f at t � t� have the
same amplitudes and instantaneous frequencies� If � � �� the sound g
is shorter but it is perceived as having the same �frequency content�
as f �
A frequency transposition is calculated by multiplying each phase

by a constant ��

gt� �
KX
k��

bkt� cos
�
��kt�

�
� �����
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The instantaneous frequency of each partial is now ���kt�� To compute
new amplitudes bkt�� we use a resonance model� which supposes that
these amplitudes are samples of a smooth frequency envelope F t� ���

akt� � F
�
t� ��kt�

�
and bkt� � F

�
t� � ��kt�

�
�

This envelope is called a formant in speech processing� It depends
on the type of phoneme that is pronounced� Since F t� �� is a regular
function of �� its amplitude at � � ���kt� is calculated by interpolating
the values akt� corresponding to � � ��kt��

����� Windowed Fourier Ridges

The spectrogram PSfu� �� � jSfu� ��j� measures the energy of f in a
time�frequency neighborhood of u� ��� The ridge algorithm computes
instantaneous frequencies from the local maxima of PSfu� ��� This
approach was introduced by Delprat� Escudi�e� Guillemain� Kronland�
Martinet� Tchamitchian and Torr�esani ����� ��� to analyze musical
sounds� Since then it has found applications for a wide range of signals
����� ��� that have time varying frequency tones�
The windowed Fourier transform is computed with a symmetric

window gt� � g�t� whose support is equal to ����� ���� The Fourier
transform �g is a real symmetric function and j�g��j � �g�� for all � � R�

The maximum �g�� �
R ���

���� gt� dt is on the order of �� Table ��� gives
several examples of such windows� The window g is normalized so that
kgk � �� For a �xed scale s� gst� � s����gts� has a support of size s
and a unit norm� The corresponding windowed Fourier atoms are

gs�u��t� � gst� u� ei�t�

and the windowed Fourier transform is de�ned by

Sfu� �� � hf� gs�u��i �
Z ��

��
ft� gst� u� e�i�t dt� �����

The following theorem relates Sfu� �� to the instantaneous frequency
of f �



��� CHAPTER �� TIME MEETS FREQUENCY

Theorem ��� Let ft� � at� cos�t�� If � � � then

hf� gs�u��i �
p
s

�
au� expi��u�� �u��

�
�gs�� � ��u���  �u� ��

�
�

�����
The corrective term satis�es

j�u� ��j � �a��  �a��  ����  sup
j�j�s���u�

j�g��j �����

with

�a�� � s ja�u�j
jau�j � �a�� � sup

jt�uj�s��

s� ja��t�j
jau�j � �����

and if s ja�u�j jau�j�� � �� then
���� � sup

jt�uj�s��
s�j���t�j � �����

If � � ��u� then

�a�� �
s ja�u�j
jau�j




�g��� s ��u��


 � ���	�

Proof �� Observe that

hf� gs�u��i �

Z ��

��
a�t� cos��t� gs�t� u� exp��i�t� dt

�
�

�

Z ��

��
a�t� �exp�i��t�� � exp��i��t��� gs�t� u� exp��i�t� dt

� I��� � I�����
We �rst concentrate on

I��� �
�

�

Z ��

��
a�t� exp�i��t�� gs�t� u� exp��i�t� dt

�
�

�

Z ��

��
a�t� u� ei��t�u� gs�t� exp��i��t� u�� dt�

This integral is computed by using second order Taylor expansions�

a�t� u� � a�u� � t a��u� �
t�

�
��t� with j��t�j � sup

h��u�t�u�
ja���h�j

��t� u� � ��u� � t ���u� �
t�

�
��t� with j��t�j � sup

h��u�t�u�
j����h�j �
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We get

� exp
�
�i���u� � �u�

�
I��� �Z ��

��
a�u� gs�t� exp

�
�it�� � ���u��

�
exp
�
i
t�

�
��t�

�
dt

�

Z ��

��
a��u� t gs�t� exp

�
�it�� � ���u��

�
exp
�
i
t�

�
��t�

�
dt

�
�

�

Z ��

��
��t� t� gs�t� exp

�
�i�t� � ��u�� ��t� u��

�
dt �

A �rst order Taylor expansion of exp�ix� gives

exp
�
i
t�

�
��t�

�
� � �

t�

�
��t� ��t� with j��t�j � � � �
����

Since Z ��

��
gs�t� exp��it�� � ���u��� dt �

p
s �g�s�� � ���u��� �

inserting �
���� in the expression of I��� yields����I���� p
s

�
a�u� exp�i���u� � �u�� �g�� � ���u��

���� � p
s ja�u�j



���a����a��������

�
����
with

��a�� �
�ja��u�j
ja�u�j

����Z ��

��
t

�p
s
gs�t� exp��it�� � ���u��� dt

���� � �
����
�a�� �

Z ��

��
t� j��t�j �p

s
jgs�t�j dt � �
����

���� �

Z ��

��
t� j��t�j �p

s
jgs�t�j dt �
��
�

�
ja��u�j
ja�u�j

Z ��

��
jtj j��t�j �p

s
jgs�t�jdt�

Applying �
���� to I���� gives

jI����j �
p
s ja�u�j
�

j�g�� � ���u��j�
p
s ja�u�j



���a�� � �a�� � ����� �
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with

��a�� �
�ja��u�j
ja�u�j

����Z ��

��
t

�p
s
gs�t� exp��it�� � ���u��� dt

���� � �
����

Since � � � and ���u� � �	 we derive that

j�g�s�� � ���u���j � sup
j�j�s���u�

j�g���j �

and hence

I��� � I���� �
p
s

�
a�u� exp�i���u� � �u��

�
�g�s�� � ���u��� � ��u� ��

�
with

��u� �� �
��a�� � ��a��

�
� �a�� � ���� � sup

j�j�sj���u�j
j�g���j �

Let us now verify the upper bound �
���� for �a�� � ���a�� � ��a������
Since gs�t� � s����g�t�s�	 a simple calculation shows that for n � �Z ��

��
jtjn �p

s
jgs�t�j dt � sn

Z ���

����
jtjn jg�t�j dt � sn

�n
kgk� �

sn

�n
� �
����

Inserting this for n � � in �
���� and �
���� gives

�a�� �
��a�� � ��a��

�
� s ja��u�j

ja�u�j �

The upper bounds �
���� and �
���� of the second order terms �a��
and ���� are obtained by observing that the remainder ��t� and ��t� of
the Taylor expansion of a�t� u� and ��t� u� satisfy

sup
jtj�s��

j��t�j � sup
jt�uj�s��

ja���t�j � sup
jtj�s��

j��t�j � sup
jt�uj�s��

j����t�j� �
����

Inserting this in �
���� yields

�a�� � sup
jt�uj�s��

s� ja���t�j
ja�u�j �
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When s ja��u�jja�u�j�� � �	 replacing j��t�j by its upper bound in �
��
�
gives

���� � �

�

�
� �

s ja��u�j
ja�u�j

�
sup

jt�uj�s��
s�j����t�j � sup

jt�uj�s��
s�j����t�j�

Let us �nally compute �a when � � ���u�� Since g�t� � g��t�	 we
derive from �
���� that

��a�� �
�ja��u�j
ja�u�j

����Z ��

��
t

�p
s
gs�t� dt

���� � � �

We also derive from ������ that the Fourier transform of t �p
s
gs�t� is

i s �g��s��	 so �
���� gives

�a �
�

�
��a�� �

sja��u�j
ja�u�j j�g

���s���u��j � �
����

Delprat et al� ����� give a di�erent proof of a similar result when gt� is
a Gaussian� using a stationary phase approximation� If we can neglect
the corrective term �u� �� we shall see that ����� enables us to measure
au� and ��u� from Sfu� ��� This implies that the decomposition
ft� � at� cos �t� is uniquely de�ned� By reviewing the proof of
Theorem ���� one can verify that a and �� are the analytic amplitude
and instantaneous frequencies of f �
The expressions ����� ����� show that the three corrective terms

�a��� �a�� and ���� are small if at� and �
�t� have small relative variations

over the support of the window gs� Let &� be the bandwidth of �g
de�ned by

j�g��j � � for j�j � &�� �����

The term sup
j�j�sj���u�j

j�g��j of �u� �� is negligible if

��u� � &�

s
�

Ridge Points Let us suppose that at� and ��t� have small variations
over intervals of size s and that ��t� � &�s so that the corrective term
�u� �� in ����� can be neglected� Since j�g��j is maximum at � � ��
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����� shows that for each u the spectrogram jSfu� ��j� � jhf� gs�u��ij�
is maximum at �u� � ��u�� The corresponding time�frequency points
u� �u�� are called ridges� At ridge points� ����� becomes

Sfu� �� �

p
s

�
au� expi��u�� �u��

�
�g��  �u� ��

�
� ���	�

Theorem ��� proves that the �u� �� is smaller at a ridge point because
the �rst order term �a�� becomes negligible in ���	�� This is shown by
verifying that j�g��s��u��j is negligible when s��u� � &�� At ridge
points� the second order terms �a�� and ���� are predominant in �u� ���
The ridge frequency gives the instantaneous frequency �u� � ��u�

and the amplitude is calculated by

au� �
� jSfu� �u��jp

s j�g��j � ��	��

Let )Su� �� be the complex phase of Sfu� ��� If we neglect the correc�
tive term� then ���	� proves that ridges are also points of stationary
phase�

�)Su� ��

�u
� ��u�� � � ��

Testing the stationarity of the phase locates the ridges more precisely�

Multiple Frequencies When the signal contains several spectral
lines whose frequencies are su�ciently apart� the windowed Fourier
transform separates each of these components and the ridges detect
the evolution in time of each spectral component� Let us consider

ft� � a�t� cos��t�  a�t� cos��t��

where akt� and �
�
kt� have small variations over intervals of size s and

s��kt� � &�� Since the windowed Fourier transform is linear� we apply
����� to each spectral component and neglect the corrective terms�

Sfu� �� �

p
s

�
a�u� �gs�� � ���u��� expi���u�� �u��

 

p
s

�
a�u� �gs�� � ���u��� expi���u�� �u�� ���	��
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The two spectral components are discriminated if for all u

�gsj���u�� ���u�j�� �� ��	��

which means that the frequency di�erence is larger than the bandwidth
of �gs���

j���u�� ���u�j �
&�

s
� ��	��

In this case� when � � ���u�� the second term of ��	�� can be neglected
and the �rst term generates a ridge point from which we may recover
���u� and a�u�� using ��	��� Similarly� if � � ���u� the �rst term can
be neglected and we have a second ridge point that characterizes ���u�
and a�u�� The ridge points are distributed along two time�frequency
lines �u� � ���u� and �u� � ���u�� This result is valid for any number
of time varying spectral components� as long as the distance between
any two instantaneous frequencies satis�es ��	��� If two spectral lines
are too close� they interfere� which destroys the ridge pattern�
Generally� the number of instantaneous frequencies is unknown� We

thus detect all local maxima of jSfu� ��j� which are also points of sta�
tionary phase ��S�u���

�u
� ��u� � � � �� These points de�ne curves in

the u� �� planes that are the ridges of the windowed Fourier transform�
Ridges corresponding to a small amplitude au� are often removed be�
cause they can be artifacts of noise variations� or �shadows� of other
instantaneous frequencies created by the side�lobes of �g���
Figure ���� displays the ridges computed from the modulus and

phase of the windowed Fourier transform shown in Figure ���� For
t � ����� ����� the instantaneous frequencies of the linear chirp and the
quadratic chirps are close and the frequency resolution of the window
is not su�cient to discriminate them� As a result� the ridges detect a
single average instantaneous frequency�

Choice of Window The measurement of instantaneous frequencies
at ridge points is valid only if the size s of the window gs is su�ciently
small so that the second order terms �a�� and ���� in ���������� are
small�

sup
jt�uj�s��

s� ja��kt�j
jaku�j � � and sup

jt�uj�s��
s�j���kt�j � � � ��	��
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Figure ����� Larger amplitude ridges calculated from the spectrogram
in Figure ���� These ridges give the instantaneous frequencies of the lin�
ear and quadratic chirps� and of the low and high frequency transients
at t � ��� and t � �����

On the other hand� the frequency bandwidth &�s must also be su��
ciently small to discriminate consecutive spectral components in ��	���
The window scale s must therefore be adjusted as a trade�o� between
both constraints�
Table ��� gives the spectral parameters of several windows of com�

pact support� For instantaneous frequency detection� it is particularly
important to ensure that �g has negligible side�lobes at ���� as illus�
trated by Figure ���� The reader can verify with ����� that these side�
lobes �react� to an instantaneous frequency ��u� by creating shadow
maxima of jSfu� ��j� at frequencies � � ��u� � ��� The ratio of the
amplitude of these shadow maxima to the amplitude of the main lo�
cal maxima at � � ��u� is j�g���j� j�g��j��� They can be removed by
thresholding or by testing the stationarity of the phase�

Example ���� The sum of two parallel linear chirps

ft� � a� cosbt
�  ct�  a� cosbt

�� ��	��

has two instantaneous frequencies ���t� � �bt  c and ���t� � �bt�
Figure ���� gives a numerical example�

The window gs has enough frequency resolution to discriminate both
chirps if

j���t�� ���t�j � jcj � &�

s
� ��	��
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Figure ����� Sum of two parallel linear chirps� a�� Spectrogram
PSfu� �� � jSfu� ��j�� b�� Ridges calculated from the spectrogram�
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Its time support is small enough compared to their time variation if

s� j����u�j � s� j����u�j � � b s� � �� ��	��

Conditions ��	�� and ��	�� prove that we can �nd an appropriate
window g if and only if

cp
b
� &�� ��	��

Since g is a smooth window with a support ����� ���� its frequency
bandwidth &� is on the order of �� The linear chirps in Figure ����
satisfy ��	��� Their ridges are computed with the truncated Gaussian
window of Table ���� with s � ����

Example ���� The hyperbolic chirp

ft� � cos

�
�

� � t

�
for � � t � � has an instantaneous frequency

��t� �
�

� � t��
�

which varies quickly when t is close to �� The instantaneous frequency
of hyperbolic chirps goes from � to  � in a �nite time interval� This
is particularly useful for radars� These chirps are also emitted by the
cruise sonars of bats ������

The instantaneous frequency of hyperbolic chirps cannot be esti�
mated with a windowed Fourier transform because for any �xed window
size the instantaneous frequency varies too quickly at high frequencies�
When u is close enough to � then ��	�� is not satis�ed because

s�j���u�j � s��

� � u�
� ��

Figure ���� shows a signal that is a sum of two hyperbolic chirps�

ft� � a� cos

�
��

�� � t

�
 a� cos

�
��

�� � t

�
� ��		�
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with �� � ���� and �� � ����� At the beginning of the signal� the
two chirps have close instantaneous frequencies that are discriminated
by the windowed Fourier ridge computed with a large size window�
When getting close to �� and ��� the instantaneous frequency varies
too quickly relative to the window size� The resulting ridges cannot
follow these instantaneous frequencies�

����� Wavelet Ridges

Windowed Fourier atoms have a �xed scale and thus cannot follow the
instantaneous frequency of rapidly varying events such as hyperbolic
chirps� In contrast� an analytic wavelet transform modi�es the scale
of its time�frequency atoms� The ridge algorithm of Delprat et al�
����� is extended to analytic wavelet transforms to accurately measure
frequency tones that are rapidly changing at high frequencies�

An approximately analytic wavelet is constructed in ����� by mul�
tiplying a window g with a sinusoidal wave�

�t� � gt� expi�t� �

As in the previous section� g is a symmetric window with a support
equal to ����� ���� and a unit norm kgk � �� Let &� be the band�
width of �g de�ned in ������ If � � &� then


� � � � ���� � �g� � ��� � �

The wavelet � is not strictly analytic because its Fourier transform is
not exactly equal to zero at negative frequencies�

Dilated and translated wavelets can be rewritten

�u�st� �
�p
s
�

�
t� u

s

�
� gs�u��t� exp�i�u� �

with � � �s and

gs�u��t� �
p
s g

�
t� u

s

�
expi�t��
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Figure ����� Sum of two hyperbolic chirps� a�� Spectrogram PSfu� ���
b�� Ridges calculated from the spectrogram
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The resulting wavelet transform uses time�frequency atoms similar to
those of a windowed Fourier transform ����� but in this case the scale
s varies over R� while � � �s�

Wfu� s� � hf� �u�si � hf� gs�u��i expi�u� �
Theorem ��� computes hf� gs�u��i when ft� � at� cos�t�� which

gives

Wfu� s� �

p
s

�
au� exp�i�u��

�
�gs�� � ��u���  �u� ��

�
� ������

The corrective term �u� �� is negligible if at� and ��t� have small
variations over the support of �u�s and if �

�u� � &�s�

Wavelet Ridges The instantaneous frequency is measured from ridges
de�ned over the wavelet transform� The normalized scalogram de�ned
by

�

�
PWfu� �� �

jWfu� s�j�
s

for � � �s

is calculated with �������

�

�
PWfu� �� �

�

�
a�u�





�g��h�� ��u�
�

i�
 �u� ��





� �
Since j�g��j is maximum at � � �� if we neglect �u� ��� this expression
shows that the scalogram is maximum at

�

su�
� �u� � ��u� � ������

The corresponding points u� �u�� are called wavelet ridges� The ana�
lytic amplitude is given by

au� �
�
p
���� PWfu� ��
j�g��j � ������

The complex phase ofWfu� s� in ������ is )W u� �� � �u�� At ridge
points�

�)W u� ��

�u
� ��u� � �� ������
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When � � ��u�� the �rst order term �a�� calculated in ���	� be�
comes negligible� The corrective term is then dominated by �a�� and
����� To simplify their expression we approximate the sup of a

�� and ���

in the neighborhood of u by their value at u� Since s � �� � ���u��
���������� imply that these second order terms become negligible if

��

j��u�j�
ja��u�j
jau�j � � and ��

j���u�j
j��u�j� � �� ������

The presence of �� in the denominator proves that a� and �� must have
slow variations if �� is small but may vary much more quickly for large
instantaneous frequencies�

Multispectral Estimation Suppose that f is a sum of two spectral
components�

ft� � a�t� cos��t�  a�t� cos��t��

As in ��	��� we verify that the second instantaneous frequency ��� does
not interfere with the ridge of ��� if the dilated window has a su�cient
spectral resolution at the ridge scale s � �� � ����u��

�gsj���u�� ���u�j�� �� ������

Since the bandwidth of �g�� is &�� this means that

j���u�� ���u�j
���u�

� &�

�
� ������

Similarly� the �rst spectral component does not interfere with the sec�
ond ridge located at s � �� � ����u� if

j���u�� ���u�j
���u�

� &�

�
� ������

To separate spectral lines whose instantaneous frequencies are close�
these conditions prove that the wavelet must have a small octave band�
width &��� The bandwidth &� is a �xed constant� which is on the
order of �� The frequency � is a free parameter whose value is chosen
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Figure ����� Ridges calculated from the scalogram shown in Figure
����� Compare with the windowed Fourier ridges in Figure �����

as a trade�o� between the time�resolution condition ������ and the
frequency bandwidth conditions ������ and �������
Figure ���� displays the ridges computed from the normalized scalo�

gram and the wavelet phase shown in Figure ����� The ridges of the
high frequency transient located at t � ���� have oscillations because
of the interferences with the linear chirp above� The frequency separa�
tion condition ������ is not satis�ed� This is also the case in the time
interval ������ ������ where the instantaneous frequencies of the linear
and quadratic chirps are too close�

Example ���� The instantaneous frequencies of two linear chirps

ft� � a� cosb t
�  c t�  a� cosb t

��

are not well measured by wavelet ridges� Indeed

j���u�� ���u�j
���u�

�
c

b t

converges to zero when t increases� When it is smaller than &�� the
two chirps interact and create interference patterns like those in Figure
����� The ridges follow these interferences and do not estimate properly
the two instantaneous frequencies� as opposed to the windowed Fourier
ridges shown in Figure �����
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Figure ����� a�� Normalized scalogram ����PWfu� �� of two parallel
linear chirps shown in Figure ����� b�� Wavelet ridges�
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Figure ����� a�� Normalized scalogram ����PWfu� �� of two hyper�
bolic chirps shown in Figure ����� b�� Wavelet ridges�
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Example ���� The instantaneous frequency of a hyperbolic chirp

ft� � cos

�
�

� � t

�
is ��t� � � �� t���� Wavelet ridges can measure this instantaneous
frequency if the time resolution condition ������ is satis�ed�

�� � ��t��

j���t�j �
�

jt� �j �

This is the case if jt� �j is not too large�
Figure ���� displays the scalogram and the ridges of two hyperbolic

chirps

ft� � a� cos

�
��

�� � t

�
 a� cos

�
��

�� � t

�
�

with �� � ���� and �� � ����� As opposed to the windowed Fourier
ridges shown in Figure ����� the wavelet ridges follow the rapid time
modi�cation of both instantaneous frequencies� This is particularly
useful in analyzing the returns of hyperbolic chirps emitted by radars
or sonars� Several techniques have been developed to detect chirps with
wavelet ridges in presence of noise ����� �����

��� Quadratic Time�Frequency Energy �

The wavelet and windowed Fourier transforms are computed by corre�
lating the signal with families of time�frequency atoms� The time and
frequency resolution of these transforms is thus limited by the time�
frequency resolution of the corresponding atoms� Ideally� one would
like to de�ne a density of energy in a time�frequency plane� with no
loss of resolution�
The Wigner�Ville distribution is a time�frequency energy density

computed by correlating f with a time and frequency translation of it�
self� Despite its remarkable properties� the application of Wigner�Ville
distributions is limited by the existence of interference terms� These
interferences can be attenuated by a time�frequency averaging� but this
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results in a loss of resolution� It is proved that the spectrogram� the
scalogram and all squared time�frequency decompositions can be writ�
ten as a time�frequency averaging of the Wigner�Ville distribution�

����� Wigner�Ville Distribution

To analyze time�frequency structures� in �	�� Ville ����� introduced in
signal processing a quadratic form that had been studied by Wigner
����� in a �	�� article on quantum thermodynamics�

PV fu� �� �

Z ��

��
f
�
u 

	

�

�
f �
�
u� 	

�

�
e�i�� d	� ������

The Wigner�Ville distribution remains real because it is the Fourier
transform of fu 	��f �u�	��� which has a Hermitian symmetry in
	 � Time and frequency have a symmetrical role� This distribution can
also be rewritten as a frequency integration by applying the Parseval
formula�

PV fu� �� �
�

��

Z ��

��
�f
�
�  

�

�

�
�f �
�
� � �

�

�
ei�u d�� ����	�

Time
Frequency Support The Wigner�Ville transform localizes the
time�frequency structures of f � If the energy of f is well concentrated
in time around u� and in frequency around �� then PV f has its en�
ergy centered at u�� ���� with a spread equal to the time and frequency
spread of f � This property is illustrated by the following proposition�
which relates the time and frequency support of PV f to the support of
f and �f �

Proposition ��� � If the support of f is �u��T�� u� T��� then
for all � the support in u of PV fu� �� is included in this interval�

� If the support of �f is ����&�� �� &��� then for all u the support
in � of PV fu� �� is included in this interval�

Proof �� Let �f�t� � f��t�� The Wigner�Ville distribution is rewritten

PV f�u� �� �

Z ��

��
f

�
� � �u

�

�
�f�
�
� � �u

�

�
e�i�� d�� �
�����
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Suppose that f has a support equal to �u��T��� u��T���� The supports
of f���� � u� and �f���� � u� are then respectively

���u� � u�� T� ��u� � u� � T � and ����u� � u�� T����u� � u� � T ��

The Wigner�Ville integral �
����� shows that PV f�u� �� is non�zero if
these two intervals overlap	 which is the case only if ju� � uj � T � The
support of PV f�u� �� along u is therefore included in the support of f � If
the support of �f is an interval	 then the same derivation based on �
����
shows that the support of PV f�u� �� along � is included in the support
of �f �

Example ���� Proposition ��� proves that the Wigner�Ville distri�
bution does not spread the time or frequency support of Diracs or
sinusoids� unlike windowed Fourier and wavelet transforms� Direct cal�
culations yield

ft� � �u� u�� � PV fu� �� � �t� u�� � ������

ft� � expi��t� � PV fu� �� �
�

��
�� � ��� � ������

Example ���	 If f is a smooth and symmetric window then its
Wigner�Ville distribution PV fu� �� is concentrated in a neighborhood
of u � � � �� A Gaussian ft� � 
������� exp�t��
��� is trans�
formed into a two�dimensional Gaussian because its Fourier transform
is also a Gaussian ����� and one can verify that

PV fu� �� �
�

�
exp

��u�

�

� 
���
�
� ������

In this particular case PV fu� �� � jfu�j�j �f��j��

The Wigner�Ville distribution has important invariance properties�
A phase shift does not modify its value�

gt� � ei� gt� � PV fu� �� � PV gu� �� � ������

When f is translated in time or frequency� its Wigner�Ville transform
is also translated�

ft� � gt� u�� � PV fu� �� � PV gu� u�� �� �������

ft� � expi��t�gt� � PV fu� �� � PV gu� � � ��� �������
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If f is scaled by s and thus �f is scaled by �s then the time and
frequency parameters of PV f are also scaled respectively by s and �s

ft� �
�p
s
g
� t
s

�
� PV fu� �� � PV f

�u
s
� s�
�
� ������

Example ���� If g is a smooth and symmetric window then PV gu� ��
has its energy concentrated in the neighborhood of �� ��� The time�
frequency atom

f�t� �
ap
s
expi��� f

�t� u�
s

�
expi��t� �

has a Wigner�Ville distribution that is calculated with ������� ������
and �������

PV f�u� �� � jaj� PV g
�u� u�

s
� s� � ���

�
� ������

Its energy is thus concentrated in the neighborhood of u�� ���� on an
ellipse whose axes are proportional to s in time and �s in frequency�

Instantaneous Frequency Ville�s original motivation for studying
time�frequency decompositions was to compute the instantaneous fre�
quency of a signal ������ Let fa be the analytic part of f obtained in
���	� by setting to zero �f�� for � � �� We write fat� � at� exp�i�t��
to de�ne the instantaneous frequency �t� � ��t�� The following
proposition proves that ��t� is the �average� frequency computed rel�
ative to the Wigner�Ville distribution PV fa�

Proposition ��� If fat� � at� exp�i�t�� then

��u� �

R ��
�� � PV fau� �� d�R ��
�� PV fau� �� d�

� ����	�

Proof �� To prove this result	 we verify that any function g satis�esZ Z
� g
�
u�

�

�

�
g�
�
u��

�

�
exp��i��� d� d� � ��i

h
g��u� g��u��g�u� g���u�

i
�

�
�����
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This identity is obtained by observing that the Fourier transform of
i� is the derivative of a Dirac	 which gives an equality in the sense of
distributions� Z ��

��
� exp��i��� d� � �i �� ������

Since
R ��
�� �����h��� � �h����	 inserting h��� � g�u � ���� g��u � ����

proves �
������ If g�u� � fa�u� � a�u� exp�i��u�� then �
����� givesZ ��

��
� PV fa�u� �� d� � �� a��u����u��

We will see in �
���
� that jfa�u�j� �
R ��
�� PV fa�u� �� d�	 and since

jfa�u�j� � a�u�� we derive �
�����

This proposition shows that for a �xed u the mass of PV fau� �� is typ�
ically concentrated in the neighborhood of the instantaneous frequency
� � ��u�� For example� a linear chirp ft� � expiat�� is transformed
into a Dirac located along the instantaneous frequency � � ��u� � �au�

PV fu� �� � �� � �au��
Similarly� the multiplication of f by a linear chirp expiat�� makes a
frequency translation of PV f by the instantaneous frequency �au�

ft� � expiat�� gt� � PV fu� �� � PV gu� � � �au� � ������

Energy Density The Moyal ����� formula proves that the Wigner�
Ville transform is unitary� which implies energy conservation properties�

Theorem ��� �Moyal For any f and g in L�R�



Z ��

��
ft� g�t� dt





� � �

��

Z Z
PV fu� ��PV gu� �� du d�� ������

Proof �� Let us compute the integral

I �

Z Z
PV f�u� ��PV g�u� �� du d�

�

Z Z Z Z
f
�
u�

�

�

�
f�
�
u� �

�

�
g
�
u�

� �

�

�
g�
�
u� � �

�

�
exp��i��� � � ��� d� d� � du d��
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The Fourier transform of h�t� � � is �h��� � ������	 which means that
we have a distribution equality

R
exp��i��� � � ���d� � ����� � � ��� As a

result	

I � ��

Z Z Z
f
�
u�

�

�

�
f�
�
u� �

�

�
g
�
u�

� �

�

�
g�
�
u� � �

�

�
��� � � �� d� d� � du

� ��

Z Z
f
�
u�

�

�

�
f�
�
u� �

�

�
g
�
u� �

�

�
g�
�
u�

�

�

�
d� du�

The change of variable t � u� ��� and t� � u� ��� yields �
������

One can consider jft�j� and j �f��j���� as energy densities in time
and frequency that satisfy a conservation equation�

kfk� �
Z ��

��
jft�j� dt � �

��

Z ��

��
j �f��j� d��

The following proposition shows that these time and frequency densi�
ties are recovered with marginal integrals over the Wigner�Ville distri�
bution�

Proposition ��� For any f � L�R�Z ��

��
PV fu� �� du � j �f��j�� ������

and
�

��

Z ��

��
PV fu� �� d� � jfu�j�� ������

Proof �� The frequency integral �
���� proves that the one�dimensional
Fourier transform of g��u� � PV f�u� �� with respect to u is

�g���� � �f
�
� �

�

�

�
�f�
�
� � �

�

�
�

We derive �
����� from the fact that is

�g���� �

Z ��

��
g��u� du�

Similarly	 �
����� shows that PV f�u� �� is the one�dimensional Fourier
transform of f�u � ����f��u � ���� with respect to � 	 where � is the
Fourier variable� Its integral in � thus gives the value for � � �	 which
is the identity �
���
��



��� CHAPTER �� TIME MEETS FREQUENCY

This proposition suggests interpreting the Wigner�Ville distribution as
a joint time�frequency energy density� However� the Wigner�Ville dis�
tribution misses one fundamental property of an energy density� pos�
itivity� Let us compute for example the Wigner�Ville distribution of
f � ���T�T � with the integral �������

PV fu� �� �
� sin

�
�T � juj��

�
�

���T�T �u��

It is an oscillating function that takes negative values� In fact� one can
prove that translated and frequency modulated Gaussians are the only
functions whose Wigner�Ville distributions remain positive� As we will
see in the next section� to obtain positive energy distributions for all
signals� it is necessary to average the Wigner�Ville transform and thus
lose some time�frequency resolution�

����� Interferences and Positivity

At this point� the Wigner�Ville distribution may seem to be an ideal
tool for analyzing the time�frequency structures of a signal� This is
however not the case because of interferences created by the quadratic
properties of this transform� These interferences can be removed by
averaging the Wigner�Ville distribution with appropriate kernels which
yield positive time�frequency densities� However� this reduces the time�
frequency resolution� Spectrograms and scalograms are examples of
positive quadratic distributions obtained by smoothing the Wigner�
Ville distribution�

Cross Terms Let f � f�  f� be a composite signal� Since the
Wigner�Ville distribution is a quadratic form�

PV f � PV f�  PV f�  PV �f�� f��  PV �f�� f��� ������

where PV �h� g� is the cross Wigner�Ville distribution of two signals

PV �h� g�u� �� �

Z ��

��
h
�
u 

	

�

�
g�
�
u� 	

�

�
e�i�� d	� ������
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The interference term

I�f�� f�� � PV �f�� f��  PV �f�� f��

is a real function that creates non�zero values at unexpected locations
of the u� �� plane�
Let us consider two time�frequency atoms de�ned by

f�t� � a� e
i�� gt� u�� e

i��t and f�t� � a� e
i�� gt� u�� e

i��t�

where g is a time window centered at t � �� Their Wigner�Ville distri�
butions computed in ������ are

PV f�u� �� � a��PV gu�u�� ����� and PV f�u� �� � a��PV gu�u�� ������
Since the energy of PV g is centered at �� ��� the energy of PV f� and
PV f� is concentrated in the neighborhoods of u�� ��� and u�� ��� re�
spectively� A direct calculation veri�es that the interference term is

I�f�� f��u� �� � �a�a� PV gu�u�� ����� cos
�
u�u��&�������&u &�

�
with

u� �
u�  u�
�

� �� �
��  ��
�

&u � u� � u� � &� � �� � ��

&� � �� � ��  u�&��

It is an oscillatory waveform centered at the middle point u�� ���� This
is quite counter�intuitive since f and �f have very little energy in the
neighborhood of u� and ��� The frequency of the oscillations is propor�
tional to the Euclidean distance

p
&��  &u� of u�� ��� and u�� ����

The direction of these oscillations is perpendicular to the line that joins
u�� ��� and u�� ���� Figure ���� displays the Wigner�Ville distribution
of two atoms obtained with a Gaussian window g� The oscillating in�
terference appears at the middle time�frequency point�
This example shows that the interference I�f�� f��u� �� has some

energy in regions where jfu�j� � � and j �f��j� � �� These interferences
can have a complicated structure ���� ���� but they are necessarily
oscillatory because the marginal integrals ������ and ������ vanish�Z ��

��
PV fu� ��d� � ��jfu�j� �

Z ��

��
PV fu� ��du � j �f��j��
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Figure ����� Wigner�Ville distribution PV fu� �� of two Gabor atoms
shown at the top� The oscillating interferences are centered at the
middle time�frequency location�

Analytic Part Interference terms also exist in a real signal f with a
single instantaneous frequency component� Let fat� � at� exp�i�t��
be its analytic part�

f � Real�fa� �
�

�
fa  f �a ��

Proposition ��� proves that for �xed u� PV fau� �� and PV f
�
a u� �� have

an energy concentrated respectively in the neighborhood of �� � ��u�
and �� � ���u�� Both components create an interference term at the
intermediate zero frequency �� � ��  ���� � �� To avoid this low
frequency interference� we often compute PV fa as opposed to PV f �

Figure ���	 displays PV fa for a real signal f that includes a linear
chirp� a quadratic chirp and two isolated time�frequency atoms� The
linear and quadratic chirps are localized along narrow time frequency
lines� which are spread on wider bands by the scalogram and the scalo�
gram shown in Figure ��� and ����� However� the interference terms
create complex oscillatory patterns that make it di�cult to detect the
existence of the two time�frequency transients at t � ��� and t � �����
which clearly appear in the spectrogram and the scalogram�



���� QUADRATIC TIME�FREQUENCY ENERGY ���

0 0.2 0.4 0.6 0.8 1

−2

0

2

 t

f(t)

 ξ / 2π

 u
0 0.2 0.4 0.6 0.8 1

0

100

200

300

400

500

Figure ���	� The bottom displays the Wigner�Ville distribution
PV fau� �� of the analytic part of the top signal�

Positivity Since the interference terms include positive and negative
oscillations� they can be partly removed by smoothing PV f with a ker�
nel ��

Pfu� �� �

Z ��

��

Z ��

��
PV fu

�� ��� �u� u�� �� ��� du� d��� ������

The time�frequency resolution of this distribution depends on the spread
of the kernel � in the neighborhood of u� ��� Since the interferences
take negative values� one can guarantee that all interferences are re�
moved by imposing that this time�frequency distribution remain posi�
tive Pfu� �� � � for all u� �� � R� �

The spectrogram ����� and scalogram ����� are examples of pos�
itive time�frequency energy distributions� In general� let us consider a
family of time�frequency atoms f��g��	� Suppose that for any u� ��
there exists a unique atom ���u��� centered in time�frequency at u� ���
The resulting time�frequency energy density is

Pfu� �� � jhf� ���u���ij��

The Moyal formula ������ proves that this energy density can be writ�
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ten as a time�frequency averaging of the Wigner�Ville distribution

Pfu� �� �
�

��

Z Z
PV fu

�� ��� PV ���u���u
�� ��� du� d��� ������

The smoothing kernel is the Wigner�Ville distribution of the atoms

�u� u�� �� ��� �
�

��
PV ���u���u

�� ����

The loss of time�frequency resolution depends on the spread of the
distribution PV ���u���u

�� ��� in the neighborhood of u� v��

Example ���� A spectrogram is computed with windowed Fourier
atoms

���u���t� � gt� u� ei�t�

The Wigner�Ville distribution calculated in ������ yields

�u� u�� �� ��� �
�

��
PV ���u���u

�� ��� �
�

��
PV gu

� � u� �� � ��� ����	�

For a spectrogram� the Wigner�Ville averaging ������ is therefore a
two�dimensional convolution with PV g� If g is a Gaussian window� then
PV g is a two�dimensional Gaussian� This proves that averaging PV f
with a su�ciently wide Gaussian de�nes a positive energy density� The
general class of time�frequency distributions obtained by convolving
PV f with an arbitrary kernel � is studied in Section ������

Example ���� Let � be an analytic wavelet whose center frequency is

�� The wavelet atom �u�st� � s�����t� u�s� is centered at u� � �
�s� and the scalogram is de�ned by

PWfu� �� � jhf� �u�sij� for � � �s�

Properties ������������ prove that the averaging kernel is

�u� u�� �� ��� �
�

��
PV �

�
u� � u

s
� s��

�
�
�

��
PV �

�
�

�
u� � u��

�

�
��
�
�
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Positive time�frequency distributions totally remove the interference
terms but produce a loss of resolution� This is emphasized by the
following theorem� due to Wigner ������

Theorem ��� �Wigner There is no positive quadratic energy distri�
bution Pf that satis�esZ ��

��
Pfu� �� d� � �� jfu�j� and

Z ��

��
Pfu� �� du � j �f��j��

������

Proof �� Suppose that Pf is a positive quadratic distribution that sat�
is�es these marginals� Since Pf�u� �� � �	 the integrals �
����� imply
that if the support of f is included in an interval I then Pf�u� �� � � for
u �� I� We can associate to the quadratic form Pf a bilinear distribution
de�ned for any f and g by

P �f� g� �
�




�
P �f � g�� P �f � g�

�
�

Let f� and f� be two non�zero signals whose supports are two intervals
I� and I� that do not intersect	 so that f� f� � �� Let f � a f� � b f��

Pf � jaj� Pf� � ab� P �f�� f�� � a�b P �f�� f�� � jbj� Pf��

Since I� does not intersect I�	 Pf��u� �� � � for u � I�� Remem�
ber that Pf�u� �� � � for all a and b so necessarily P �f�� f���u� �� �
P �f�� f���u� �� � � for u � I�� Similarly we prove that these cross terms
are zero for u � I� and hence

Pf�u� �� � jaj� Pf��u� �� � jbj� Pf��u� ���

Integrating this equation and inserting �
����� yields

j �f���j� � jaj� j �f����j� � jbj� j �f����j��

Since �f��� � a �f���� � b �f���� it follows that �f���� �f���� � �� But this
is not possible because f� and f� have a compact support in time and
Theorem ��� proves that �f� and �f� are C� functions that cannot vanish
on a whole interval� We thus conclude that one cannot construct a
positive quadratic distribution Pf that satis�es the marginals �
������
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����� Cohen�s Class �

While attenuating the interference terms with a smoothing kernel ��
we may want to retain certain important properties� Cohen ����� in�
troduced a general class of quadratic time�frequency distributions that
satisfy the time translation and frequency modulation invariance prop�
erties ������ and ������� If a signal is translated in time or fre�
quency� its energy distribution is just translated by the correspond�
ing amount� This was the beginning of a systematic study of quadratic
time�frequency distributions obtained as a weighted average of aWigner�
Ville distribution ���� ��� ���� �����
Section ��� proves that linear translation invariant operators are

convolution products� The translation invariance properties ������������
are thus equivalent to imposing that the smoothing kernel in ������
be a convolution kernel

�u� u�� �� ��� � �u� u�� � � ���� ������

and hence

Pfu� �� � PV f � �u� �� �

Z Z
�u� u�� � � ���PV fu�� ��� du� d���

������
The spectrogram is an example of Cohen�s class distribution� whose
kernel in ����	� is the Wigner�Ville distribution of the window

�u� �� �
�

��
PV gu� �� �

�

��

Z ��

��
g
�
u 

	

�

�
g
�
u� 	

�

�
e�i�� d	�

������

Ambiguity Function The properties of the convolution ������ are
more easily studied by calculating the two�dimensional Fourier trans�
form of PV fu� �� with respect to u and �� We denote by Af	� �� this
Fourier transform

Af	� �� �

Z ��

��

Z ��

��
PV fu� �� exp��iu�  �	�� du d��

Note that the Fourier variables 	 and � are inverted with respect to the
usual Fourier notation� Since the one�dimensional Fourier transform of
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PV fu� �� with respect to u is �f�  ��� �f �� � ���� applying the
one�dimensional Fourier transform with respect to � gives

Af	� �� �

Z ��

��
�f
�
�  

�

�

�
�f �
�
� � �

�

�
e�i�� d�� ������

The Parseval formula yields

Af	� �� �

Z ��

��
f
�
u 

	

�

�
f �
�
u� 	

�

�
e�i�u du� ������

We recognize the ambiguity function encountered in ����� when study�
ing the time�frequency resolution of a windowed Fourier transform� It
measures the energy concentration of f in time and in frequency�

Kernel Properties The Fourier transform of �u� �� is

��	� �� �

Z ��

��

Z ��

��
�u� �� exp��iu�  �	�� du d��

As in the de�nition of the ambiguity function ������� the Fourier pa�
rameters 	 and � of �� are inverted� The following proposition gives nec�
essary and su�cient conditions to ensure that P satis�es marginal en�
ergy properties like those of the Wigner�Ville distribution� The Wigner
Theorem ��� proves that in this case Pfu� �� takes negative values�

Proposition ��� For all f � L�R�Z ��

��
Pfu� �� d� � �� jfu�j� �

Z ��

��
Pfu� �� du � j �f��j��

������
if and only if


	� �� � R
� � ��	� �� � ���� �� � �� ������

Proof �� Let Af��� �� be the two�dimensional Fourier transform of Pf�u� ���
The Fourier integral at ��� �� givesZ ��

��

Z ��

��
Pf�u� �� e

�iu� d� du � Af��� ��� �
�����
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Since the ambiguity functionAf��� �� is the Fourier transform of PV f�u� ��	
the two�dimensional convolution �
����� gives

A��� �� � Af��� �� ����� ��� �
����

The Fourier transform of ��jf�u�j� is �f � �f���	 with �f��� � �f������ The
relation �
����� shows that �
����� is satis�ed if and only if

Af��� �� � Af��� �� ����� �� � �f � �f���� �
��
��

Since PV f satis�es the marginal property �
�����	 we similarly prove
that

Af��� �� � �f � �f����

Requiring that �
��
�� be valid for any �f���	 is equivalent to requiring
that ����� �� � � for all � � R�

The same derivation applied to the other marginal integration yields
����� �� � ��

In addition to requiring time�frequency translation invariance� it may
be useful to guarantee that P satis�es the same scaling property as a
Wigner�Ville distribution�

gt� �
�p
s
f

�
t

s

�
� Pgu� �� � Pf

�u
s
� s�
�
�

Such a distribution P is a	ne invariant� One can verify Problem
����� that a�ne invariance is equivalent to imposing that


s � R
� � �

�
s u�

�

s

�
� �u� ��� ������

and hence
�u� �� � �u �� �� � �u ���

Example ���� The Rihaczek distribution is an a�ne invariant dis�
tribution whose convolution kernel is

��	� �� � exp

�
i 	 �

�

�
� ������
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Figure ����� Choi�William distribution Pfu� �� of the two Gabor
atoms shown at the top� The interference term that appears in the
Wigner�Ville distribution of Figure ���� has nearly disappeared�
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Figure ����� Choi�William distribution Pfau� �� of the analytic part
of the signal shown at the top� The interferences remain visible�
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A direct calculation shows that

Pfu� �� � fu� �f ��� exp�iu��� ������

Example ���� The kernel of the Choi�William distribution is �����

��	� �� � exp�
� 	 � ��� � ������

It is symmetric and thus corresponds to a real function �u� ��� This dis�
tribution satis�es the marginal conditions ������� Since lim���

��	� �� �
�� when 
 is small the Choi�William distribution is close to a Wigner�
Ville distribution� Increasing 
 attenuates the interference terms� but
spreads �u� ��� which reduces the time�frequency resolution of the dis�
tribution�

Figure ���� shows that the interference terms of two modulated
Gaussians nearly disappear when the Wigner�Ville distribution of Fig�
ure ���� is averaged by a Choi�William kernel having a su�ciently large

� Figure ���� gives the Choi�William distribution of the analytic sig�
nal whose Wigner�Ville distribution is in Figure ���	� The energy of
the linear and quadratic chirps are spread over wider time�frequency
bands but the interference terms are attenuated� although not totally
removed� It remains di�cult to isolate the two modulated Gaussians
at t � ��� and t � ����� which clearly appear in the spectrogram of
Figure ����

����� Discrete Wigner�Ville Computations �

The Wigner integral ������ is the Fourier transform of fu 	��f �u�
	���

PV fu� �� �

Z ��

��
f
�
u 

	

�

�
f �
�
u� 	

�

�
e�i�� d	� ������

For a discrete signal f �n� de�ned over � � n � N � the integral is
replaced by a discrete sum�

PV f �n� k� �
N��X
p��N

f
h
n 

p

�

i
f �
h
n� p

�

i
exp

��i��kp
N

�
� ������
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When p is odd� this calculation requires knowing the value of f at
half integers� These values are computed by interpolating f � with an
addition of zeroes to its Fourier transform� This is necessary to avoid
the aliasing produced by the discretization of the Wigner�Ville integral
������
The interpolation $f of f is a signal of size �N whose discrete Fourier

transform b$f is de�ned from the discrete Fourier transform �f of f by

b$f �k� �
�����������
� �f �k� if � � k � N�

� if N� � k � �N�

� �f �k �N � if �N� � k � �N

�f �N�� if k � N� � �N�

�

Computing the inverse discrete Fourier transform shows that $f ��n� �
f �n� for n � ��� N � ��� When n � ��� �N � ��� we set $f �n� � �� The
Wigner summation ������ is calculated from $f �

PV f �n� k� �
N��X
p��N

$f ��n  p� $f ���n� p� exp

��i��kp
N

�

�
�N��X
p��

$f ��n p�N � $f ���n� p N � exp

��i���k�p
�N

�
�

For � � n � N �xed� PV f �n� k� is the discrete Fourier transform of
size �N of g�p� � $f ��n  p � N � $f ���n � p  N � at the frequency �k�
The discrete Wigner�Ville distribution is thus calculated with N FFT
procedures of size �N � which requires ON� logN� operations� To com�
pute the Wigner�Ville distribution of the analytic part fa of f � we use
������

Cohen�s Class A Cohen�s class distribution is calculated with a cir�
cular convolution of the discrete Wigner�Ville distribution with a kernel
��p� q��

P�n� k� � PV �	 ��n� k�� ������

Its two�dimensional discrete Fourier transform is therefore

A�p� q� � Af �p� q� ���p� q�� ������
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The signal Af �p� q� is the discrete ambiguity function� calculated with a
two�dimensional FFT of the discrete Wigner�Ville distribution PV f �n� k��
As in the case of continuous time� we have inverted the index p and q of
the usual two�dimensional Fourier transform� The Cohen�s class distri�
bution ������ is obtained by calculating the inverse Fourier transform
of ������� This also requires a total of ON� logN� operations�

��� Problems


��� � Instantaneous frequency Let f�t� � exp�i��t���

�a� Prove that
R ��
�� jSf�u� ��j� d� � ��� Hint� Sf�u� �� is a Fourier

transform! use the Parseval formula�
�b� Similarly	 show thatZ ��

��
� jSf�u� ��j� d� � ��

Z ��

��
���t� jg�t � u�j� dt�

and interpret this result�


��� � Write a reproducing kernel equation for the discrete windowed
Fourier transform Sf �m� l� de�ned in �
�����


��� � When g�t� � �������� exp��t�������	 compute the ambiguity
function Ag��� ���


�
� � Let g�n� be a window with L non�zero coe�cients� For signals
of size N 	 describe a fast algorithm that computes the discrete
windowed Fourier transform �
���� with O�N log� L� operations�
Implement this algorithm in WaveLab� Hint� Use a fast overlap�
add convolution algorithm�


��� � Let K be the reproducing kernel �
���� of a windowed Fourier
transform�

�a� For any � � L��R�� we de�ne�

T��u�� ��� �
�

��

Z ��

��

Z ��

��
��u� ��K�u�� u� ��� �� du d��

Prove that T is an orthogonal projector on the space of func�
tions ��u� �� that are windowed Fourier transforms of func�
tions in L��R��

�b� Suppose that for all �u� �� � R� we are given �Sf�u� �� �

Q
�
Sf�u� ��

�
	 which is a quantization of the windowed Fourier
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coe�cients� How can we reduce the norm L
��R� � of the quan�

ti�cation error ��u� �� � Sf�u� ���Q
�
Sf�u� ��

�
�


��� � Prove that a scaling function � de�ned by �
�
�� satis�es k�k �
��


��� � Let 	 be a real and even wavelet such that C �
R ��
� ��� �	��� d� �

��� Prove that

�f � L��R� � f�t� �
�

C

Z ��

�
Wf�t� s�

ds

s��
� �
��
�


��� � Analytic Continuation Let f � L
��R� be a function such that

�f��� � � for � � �� For any complex z � C such that Im�z� � �	
we de�ne

f �p��z� �
�

�

Z ��

�
�i��p �f��� eiz� d� �

�a� Verify that if f is Cp then f �p��t� is the derivative of order p
of f�t��

�b� Prove that if Im�z� 
 �	 then f �p��z� is di�erentiable relative
to the complex variable z� Such a function is said to be analytic
on the upper half complex plane�

�c� Prove that this analytic extension can be written as a wavelet
transform

f �p��x� iy� � y�p����Wf�x� y� �

calculated with an analytic wavelet 	 that you will specify�


�� � Let f�t� � cos�a cos bt�� We want to compute precisely the in�
stantaneous frequency of f from the ridges of its windowed Fourier
transform� Find a necessary condition on the window support as a
function of a and b� If f�t� � cos�a cos bt��cos�a cos bt�ct�	 �nd a
condition on a	 b and c in order to measure both instantaneous fre�
quencies with the ridges of a windowed Fourier transform� Verify
your calculations with a numerical implementation in WaveLab�


���� � Sound manipulation

�a� Make a program that synthesizes sounds with the model �
����
where the amplitudes ak and phase �k are calculated from
the ridges of a windowed Fourier transform or of a wavelet
transform� Test your results on the Tweet and Greasy signals
in WaveLab�
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�b� Make a program that modi�es the sound duration with the
formula �
���� or which transposes the sound frequency with
�
�����


���� � Prove that Pf�u� �� � kfk�� jf�u�j� j �f���j� satis�es the marginal
properties �
����	
���
�� Why can�t we apply the Wigner Theorem

���


���� � Let g� be a Gaussian of variance �� Prove that Pf�u� �� �
PV f � ��u� �� is a positive distribution if ��u� �� � g��u� g���� with
 � � ���� Hint� consider a spectrogram calculated with a Gaus�
sian window�


���� � Let fgn�t�gn�N be an orthonormal basis of L��R�� Prove that

��t� �� � R
� �

��X
n��

PV gn�t� �� � � �


��
� � Let fa�t� � a�t� exp�i��t�� be the analytic part of f�t�� Prove
that Z ��

��

�
� � ���t�

��
PV fa�t� �� d� � �� a��t� d

� log a�t�

dt�
�


���� � Quadratic a�ne time�frequency distributions satisfy time shift
�
�����	 scaling invariance �
�����	 and phase invariance �
���
��
Prove that any such distribution can be written as an a�ne smooth�
ing of the Wigner�Ville distribution

P�u� �� �

Z ��

��

Z ��

��
�
�
��u� ���

�

�

�
PV ��� �� d� d�� �
�����

where ��a� b� depends upon dimensionless variables�


���� � To avoid the time�frequency resolution limitations of a win�
dowed Fourier transform	 we want to adapt the window size to the
signal content� Let g�t� be a window of variance �� We denote
by Sjf�u� �� the windowed Fourier transform calculated with the
dilated window gj�t� � ��j��g���jt�� Find a procedure that com�
putes a single map of ridges by choosing a �best window size at
each �u� ��� One approach is to choose the scale �l for each �u� ��
such that jSlf�u� ��j� � supj jSjf�u� ��j�� Test your algorithm on
the linear and hyperbolic chirp signals �
��	
��� Test it on the
Tweet and Greasy signals in WaveLab�
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���� � The sinusoidal model �
���� is improved for speech signals by
adding a �noise component B�t� to the partials ��
���

F �t� �

KX
k��

ak�t� cos�k�t� �B�t�� �
�����

Given a signal f�t� that is considered to be a realization of F �t�	
compute the ridges of a windowed Fourier transform	 �nd the
�main partials and compute their amplitude ak and phase �k�
These partials are subtracted from the signal� Over intervals of
�xed size	 the residue is modeled as the realization of an autore�
gressive process B�t�	 of order �� to ��� Use a standard algo�
rithm to compute the parameters of this autoregressive process
����� Evaluate the audio quality of the sound restored from the
calculated model �
������ Study an application to audio compres�
sion by quantizing and coding the parameters of the model�
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Chapter �

Frames

Frame theory analyzes the completeness� stability and redundancy of
linear discrete signal representations� A frame is a family of vec�
tors f�ngn�	 that characterizes any signal f from its inner products
fhf� �nign�	� Signal reconstructions from regular and irregular sam�
plings are examples of applications�

Discrete windowed Fourier transforms and discrete wavelet trans�
forms are studied through the frame formalism� These transforms gen�
erate signal representations that are not translation invariant� which
raises di�culties for pattern recognition applications� Dyadic wavelet
transforms maintain translation invariance by sampling only the scale
parameter of a continuous wavelet transform� A fast dyadic wavelet
transform is calculated with a �lter bank algorithm� In computer vi�
sion� dyadic wavelet transforms are used for texture discrimination and
edge detection�

��� Frame Theory �

����� Frame De�nition and Sampling

The frame theory was originally developed by Du�n and Schae�er �����
to reconstruct band�limited signals f from irregularly spaced samples
fftn�gn�Z� If f has a Fourier transform included in ���T� �T �� we

��	
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prove as in ����� that

ftn� �
�

T
hft�� hT t� tn�i with hT t� �

sin�tT �

�tT
� ����

This motivated Du�n and Schae�er to establish general conditions
under which one can recover a vector f in a Hilbert space H from
its inner products with a family of vectors f�ngn�	� The index set
+ might be �nite or in�nite� The following frame de�nition gives an
energy equivalence to invert the operator U de�ned by


n � + � Uf �n� � hf� �ni� ����

De�nition ��� The sequence f�ngn�	 is a frame of H if there exist
two constants A � � and B � � such that for any f � H

A kfk� �
X
n�	

jhf� �nij� � B kfk�� ����

When A � B the frame is said to be tight�

If the frame condition is satis�ed then U is called a frame operator�
Section ����� proves that ���� is a necessary and su�cient condition
guaranteeing that U is invertible on its image� with a bounded inverse�
A frame thus de�nes a complete and stable signal representation� which
may also be redundant� When the frame vectors are normalized k�nk �
�� this redundancy is measured by the frame bounds A and B� If the
f�ngn�	 are linearly independent then it is proved in ����� that

A � � � B�

The frame is an orthonormal basis if and only if A � B � �� This
is veri�ed by inserting f � �n in ����� If A � � then the frame is
redundant and A can be interpreted as a minimum redundancy factor�

Example ��� Let e�� e�� be an orthonormal basis of a two�dimensional
plane H� The three vectors

�� � e� � �� � �e�
�
 

p
�

�
e� � � � �e�

�
�
p
�

�
e�
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have equal angles of ��� between themselves� For any f � H
X

n��

jhf� �nij� � �
�
kfk��

These three vectors thus de�ne a tight frame with A � B � 
�
� The

frame bound 
�
measures their redundancy in a space of dimension ��

Example ��� For any � � k � K� suppose that fek�ngn�Z is an
orthonormal basis of H� The union of these K orthonormal bases
fek�ngn�Z���k�K is a tight frame with A � B � K� Indeed� the en�
ergy conservation in an orthonormal basis implies that for any f � H�X

n�Z
jhf� ek�nij� � kfk��

hence
K��X
k��

X
n�Z

jhf� ek�nij� � K kfk��

Example ��� One can verify Problem ���� that a �nite set of N
vectors f�ng��n�N is always a frame of the space V generated by linear
combinations of these vectors� When N increases� the frame bounds A
and B may go respectively to � and  �� This illustrates the fact that
in in�nite dimensional spaces� a family of vectors may be complete and
not yield a stable signal representation�

Irregular Sampling Let UT be the space of L
�R� functions whose

Fourier transforms have a support included in ���T� �T �� For a uni�
form sampling� tn � nT � Proposition ��� proves that fT���� hT t �
nT �gn�Z is an orthonormal basis of UT � The reconstruction of f from
its samples is then given by the sampling Theorem ����
The irregular sampling conditions of Du�n and Schae�er ����� for

constructing a frame were later re�ned by several researchers �	�� ����
���� Grochenig proved ��	�� that if lim

n���
tn �  � and lim

n���
tn � ���

and if the maximum sampling distance � satis�es

� � sup
n�Z

jtn�� � tnj � T � ����
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then �r
tn�� � tn��

�T
hT t� tn�

�
n�Z

is a frame with frame bounds A � � � �T �� and B � �  �T ���
The amplitude factor �����tn�� � tn������ compensates for the non�
uniformity of the density of samples� It attenuates the amplitude of
frame vectors where there is a high density of samples� The reconstruc�
tion of f requires inverting the frame operator Uf �n� � hft�� hT t �
tn�i�

����� Pseudo Inverse

The reconstruction of f from its frame coe�cients Uf �n� is calculated
with a pseudo inverse� This pseudo inverse is a bounded operator that
is expressed with a dual frame� We denote

l�+� � fx � kxk� �
X
n�	

jx�n�j� �  �g �

and by ImU the image space of all Uf with f � H�
Proposition ��� If f�ngn�	 is a frame whose vectors are linearly de�
pendent� then ImU is strictly included in l�+�� and U admits an in��
nite number of left inverses (U��



f � H � (U��Uf � f� ����

Proof �� The frame inequality ����� guarantees that ImU 	 l
��"� since

kUfk� �
X
n�	

jhf� �nij� � B kfk�� �����

Since f�ngn�	 is linearly dependent	 there exists a non�zero vector x �
l
��"� such that X

n�	
x��n��n � ��

For any f � H X
n�	

x�n� hf� �ni �
X
n�	

x�n�Uf �n� � ��
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This proves that ImU is orthogonal to x and hence that ImU �� l
��"��

A frame operator U is injective �one to one�� Indeed	 the frame
inequality ����� guarantees that Uf � � implies f � �� Its restriction
to ImU is thus invertible� Let ImU� be the orthogonal complement of
ImU in l��"�� If f�ngn�	 are linearly dependent then ImU� �� f�g and
the restriction of �U�� to ImU� may be any arbitrary linear operator�

The more redundant the frame f�ngn�	� the larger the orthogonal com�
plement ImU� of the image ImU� The pseudo inverse $U�� is the left
inverse that is zero on ImU��


x � ImU� � $U��x � ��

In in�nite dimensional spaces� the pseudo inverse $U�� of an injective op�
erator is not necessarily bounded� This induces numerical instabilities
when trying to reconstruct f from Uf � The following theorem proves
that a frame operator has a pseudo inverse that is always bounded� We
denote by U� the adjoint of U � hUf� xi � hf� U�xi�

Theorem ��� �Pseudo inverse The pseudo inverse satis�es

$U�� � U�U���U�� ����

It is the left inverse of minimum sup norm� If U is a frame operator
with frame bounds A and B then

k $U��kS � �p
A
� ����

Proof �� To prove that �U�� has a minimum sup norm	 let us decompose
any x � l

��"� as a sum x � x� � x� with x� � ImU� and x� � ImU�
Let �U�� be an arbitrary left inverse of U � Then

k �U��xk
kxk �

k �U��x�k
kxk �

k �U��x�k
kxk � k �U��x�k

kx�k �

We thus derive that

k �U��kS � sup
x�l��	��f�g

k �U��xk
kxk � sup

x�l��	��f�g

k �U��xk
kxk � k �U��kS �
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Since x� � ImU	 there exists f � H such that x� � Uf � The
inequality ����� is derived from the frame inequality ����� which shows
that

k �U��xk � kfk � �p
A
kUfk � �p

A
kxk�

To verify �����	 we �rst prove that the self�adjoint operator U�U
is invertible by showing that it is injective and surjective �onto�� If
U�Uf � � then hU�Uf� fi � � and hence hUf�Ufi � �� Since U is
injective then f � �	 which proves that U�U is injective� To prove that
the image of U�U is equal to H we prove that no non�zero vector can
be orthogonal to this image� Suppose that g � H is orthogonal to the
image of U�U � In particular hg� U�Ugi � �	 so hUg�Ugi � �	 which
implies that g � �� This proves that U�U is surjective�

Since U�U is invertible	 proving ����� is equivalent to showing that
for any x the pseudo inverse satis�es

�U�U� �U��x � U�x� ����

If x � ImU� then �U�U� �U��x � � because �U��x � �	 and U�x � �
because

�f �H � hf� U�xi � hUf� xi � ��

It thus veri�es ���� for x � ImU�� If x � ImU	 then U �U��x � x so
���� remains valid� We thus derive that ���� is satis�ed for all x � H�

Dual Frame The pseudo inverse of a frame operator is related to a
dual frame family� which is speci�ed by the following theorem�

Theorem ��� Let f�ngn�Z be a frame with bounds A�B� The dual
frame de�ned by

$�n � U
�U����n �

satis�es


f � H �
�

B
kfk� �

X
n�	

jhf� $�nij� � �

A
kfk� � �����

and
f � $U��Uf �

X
n�	

hf� �ni $�n �
X
n�	

hf� $�ni�n� �����
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If the frame is tight �i�e�� A � B�� then $�n � A�� �n�

Proof �� To prove ������	 we relate U� to f�ngn�	 and use the expression
����� of �U��� For any x � l��"� and f � H

hU�x� fi � hx�Ufi �
X
n�	

x�n� hf� �ni��

Consequently

hU�x� fi �
X
n�	

hx�n��n� fi�

which implies that

U�x �
X
n�	

x�n��n� ������

The pseudo inverse formula ����� proves that

�U��x � �U�U���U�x � �U�U���
X
n�	

x�n��n�

so
�U��x �

X
n�	

x�n� ��n� ������

If x�n� � Uf �n� � hf� �ni then

f � �U��Uf �
X
n�	

hf� �ni ��n� ����
�

The dual family of vectors f�ngn�	 and f��ngn�	 play symmetrical roles�
Indeed ����
� implies that for any f and g in H	

hf� gi �
X
n�	

hf� �ni h��n� gi� ������

hence
g �

X
n�	

hg� ��ni�n� ������

which proves �������

The expression ������ of U� proves that for x�n� � Uf �n� � hf� �ni

U�Uf �
X
n�	

hf� �ni�n� ������
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The frame condition ����� can thus be rewritten

A kfk� � hU�Uf� fi � B kfk�� ������

If A � B then hU�Uf� fi � A kfk�� Since U�U is symmetrical	 one can
show that necessarily U�U � AId where Id is the identity operator� It
thus follows that ��n � �U�U����n � A���n�

Similarly ������ can be rewritten

�

B
kfk� � h�U�U���f� fi � �

A
kfk�� �����

because

�U�U���f �
X
n�	

hf� ��ni �U�U����n �
X
n�	

hf� ��ni ��n�

The double inequality ����� is derived from ������ by applying the fol�
lowing lemma to L � U�U �

Lemma ��� If L is a self�adjoint operator such that there exist A 
 �
and B satisfying

�f � H � A kfk� � hLf� fi � B kfk� ������

then L is invertible and

�f � H �
�

B
kfk� � hL��f� fi � �

A
kfk�� ������

In �nite dimensions	 since L is self�adjoint we know that it is diag�
onalized in an orthonormal basis� The inequality ������ proves that its
eigenvalues are between A and B� It is therefore invertible with eigenval�
ues between B�� and A��	 which proves ������� In in�nite dimensions	
the proof is left to the reader�

This theorem proves that f$�ngn�	 is a dual frame that recovers any
f � H from its frame coe�cients fhf� �nign�	� If the frame is tight
then $�n � A�� �n� so the reconstruction formula becomes

f �
�

A

X
n�	

hf� �ni�n� �����
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Biorthogonal Bases A Riesz basis is a frame of vectors that are
linearly independent� which implies that ImU � l�+�� One can derive
from ����� that the dual frame f$�ngn�	 is also linearly independent�
It is called the dual Riesz basis� Inserting f � �p in ����� yields

�p �
X
n�	

h�p� $�ni�n�

and the linear independence implies that

h�p� $�ni � ��p� n��

Dual Riesz bases are thus biorthogonal families of vectors� If the basis
is normalized i�e�� k�nk � ��� then

A � � � B� �����

This is proved by inserting f � �p in the frame inequality ������

�

B
k�pk� �

X
n�	

jh�p� $�nij� � � � �

A
k�pk��

Partial Reconstruction Suppose that f�ngn�	 is a frame of a sub�
space V of the whole signal space� The inner products Uf �n� � hf� �ni
give partial information on f that does not allow us to fully recover
f � The best linear mean�square approximation of f computed from
these inner products is the orthogonal projection of f on the space V�
This orthogonal projection is computed with the dual frame f$�ngn�	
of f�ngn�	 in V�

PVf � $U��Uf �
X
n�	

hf� �ni $�n� �����

To prove that PVf is the orthogonal projection in V� we verify that
PVf � V and that hf � PVf� �pi � � for all p � +� Indeed�

hf � PVf� �pi � hf� �pi �
X
n�	

hf� �ni h$�n� �pi�
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and the dual frame property in V implies thatX
n�	

h$�n� �pi�n � �p�

Suppose we have a �nite number of data measures fhf� �nig��n�N �
Since a �nite family f�ng��n�N is necessarily a frame of the space V
it generates� the approximation formula ����� reconstructs the best
linear approximation of f �

����� Inverse Frame Computations

We describe e�cient numerical algorithms to recover a signal f from its
frame coe�cients Uf �n� � hf� �ni� If possible� the dual frame vectors
are precomputed�

$�n � U
�U����n�

and we recover each f with the sum

f �
X
n�	

hf� �ni $�n�

In some applications� the frame vectors f�ngn�	 may depend on the
signal f � in which case the dual frame vectors $�n cannot be computed
in advance� For example� the frame ���� associated to an irregular
sampling depends on the position tn of each sample� If the sampling
grid varies from signal to signal it modi�es the frame vectors� It is then
highly ine�cient to compute the dual frame for each new signal� A
more direct approach applies the pseudo inverse to Uf �

f � $U��Uf � U�U���U�U�f � L��Lf� �����

where
Lf � U�Uf �

X
n�	

hf� �ni�n� �����

Whether we precompute the dual frame vectors or apply the pseudo
inverse on the frame data� both approaches require an e�cient way to
compute f � L��g for some g � H� Theorems ��� and ��� describe two
iterative algorithms with exponential convergence� The extrapolated
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Richardson procedure is simpler but requires knowing the frame bounds
A and B� Conjugate gradient iterations converge more quickly when B

A

is large� and do not require knowing the values of A and B�

Theorem ��� �Extrapolated Richardson Let g � H� To compute
f � L��g we initialize f� � �� Let � � � be a relaxation parameter�
For any n � �� de�ne

fn � fn��  � g � Lfn���� �����

If

� � max fj�� �Aj� j�� �Bjg � �� �����

then

kf � fnk � �n kfk� ���	�

and hence lim
n���

fn � f �

Proof �� The induction equation ������ can be rewritten

f � fn � f � fn�� � � L�f � fn����

Let

R � Id� � L�

f � fn � R�f � fn��� � Rn�f � f�� � Rn�f�� ������

We saw in ������ that the frame inequality can be rewritten

A kfk� � hLf� fi � B kfk��

This implies that R � I � �L satis�es

jhRf� fij � � kfk��

where � is given by ������� Since R is symmetric	 this inequality proves
that kRk � �� We thus derive ����� from ������� The error kf � fnk
clearly converges to zero if � � ��
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For frame inversion� the extrapolated Richardson algorithm is some�
times called the frame algorithm ����� The convergence rate is maxi�
mized when � is minimum�

� �
B � A

B  A
�
�� AB

�  AB
�

which corresponds to the relaxation parameter

� �
�

A B
�

The algorithm converges quickly if AB is close to �� If AB is small
then

� � �� � A
B
� �����

The inequality ���	� proves that we obtain an error smaller than � for
a number n of iterations� which satis�es�

kf � fnk
kfk � �n � ��

Inserting ����� gives

n � loge �

loge�� �AB�
� �B
�A

loge �� �����

The number of iterations thus increases proportionally to the frame
bound ratio BA�
The exact values of A and B are often not known� in which case

the relaxation parameter � must be estimated numerically by trial and
error� If an upper bound B� of B is known then we can choose � �
�B�� The algorithm is guaranteed to converge� but the convergence
rate depends on A�
The conjugate gradient algorithm computes f � L��g with a gra�

dient descent along orthogonal directions with respect to the norm in�
duced by the symmetric operator L�

kfk�L � kLfk�� �����

This L norm is used to estimate the error� Grochenig�s ��	�� imple�
mentation of the conjugate gradient algorithm is given by the following
theorem�
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Theorem ��� �Conjugate gradient Let g � H� To compute f �
L��g we initialize

f� � � � r� � p� � g � p�� � �� �����

For any n � �� we de�ne by induction

�n �
hrn� pni
hpn� Lpni �����

fn�� � fn  �n pn �����

rn�� � rn � �n Lpn �����

pn�� � Lpn � hLpn� Lpni
hpn� Lpni pn � hLpn� Lpn��i

hpn��� Lpn��i pn��� �����

If 
 �
p
B�pAp
B�

p
A
then

kf � fnkL � �
n

�  
�n
kfkL� ���	�

and hence lim
n���

fn � f �

Proof �� We give the main steps of the proof as outlined by Grochenig
�����

Step �� Let Un be the subspace generated by fLjfg��j�n� By in�
duction on n	 we derive from ������ that pj � Un	 for j � n�

Step �� We prove by induction that fpjg��j�n is an orthogonal basis
of Un with respect to the inner product hf� hiL � hf� Lhi� Assuming
that hpn� Lpji � �	 for j � n� �	 it can be shown that hpn��� Lpji � �	
for j � n�

Step �� We verify that fn is the orthogonal projection of f onto Un

with respect to h�� �iL which means that

�g � Un � kf � gkL � kf � fnkL�
Since fn �Un	 this requires proving that hf � fn� pjiL � �	 for j � n�

Step �� We compute the orthogonal projection of f in embedded
spaces Un of dimension n	 and one can verify that limn��� kf�fnkL �
�� The exponential convergence ����� is proved in �����
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As in the extrapolated Richardson algorithm� the convergence is slower
when AB is small� In this case


 �
��pAB

�  
p
AB

� �� �
r
A

B
�

The upper bound ���	� proves that we obtain a relative error

kf � fnkL
kfkL � �

for a number of iterations

n � loge
�
�

loge 

� �pB
�
p
A
loge

�

�
�

Comparing this result with ����� shows that when AB is small� the
conjugate gradient algorithm needs many fewer iterations than the ex�
trapolated Richardson algorithm to compute f � L��g at a �xed pre�
cision�

����� Frame Projector and Noise Reduction

Frame redundancy is useful in reducing noise added to the frame coe��
cients� The vector computed with noisy frame coe�cients is projected
on the image of U to reduce the amplitude of the noise� This technique
is used for high precision analog to digital conversion based on over�
sampling� The following proposition speci�es the orthogonal projector
on ImU�

Proposition ��� The orthogonal projection from l�+� onto ImU is

Px�n� � U $U��x�n� �
X
p�	

x�p� h$�p� �ni � �����

Proof �� If x � ImU then x � Uf and

Px � U �U��Uf � Uf � x�

If x � ImU� then Px � � because �U��x � �� This proves that P is
an orthogonal projector on ImU� Since Uf �n� � hf� �ni and �U��x �P

p�	 x�p� ��p	 we derive ���
���



���� FRAME THEORY �	�

A vector x�n� is a sequence of frame coe�cients if and only if x � Px�
which means that x satis�es the reproducing kernel equation

x�n� �
X
p�	

x�p� h$�p� �ni� �����

This equation generalizes the reproducing kernel properties ����� and
����� of windowed Fourier transforms and wavelet transforms�

Noise Reduction Suppose that each frame coe�cient Uf �n� is con�
taminated by an additive noise W �n�� which is a random variable� Ap�
plying the projector P gives

P Uf  W � � Uf  PW�

with
PW �n� �

X
p�	

W �p� h$�p� �ni�

Since P is an orthogonal projector� kPWk � kWk� This projector re�
moves the component ofW that is in ImU�� Increasing the redundancy
of the frame reduces the size of ImU and thus increases ImU�� so a
larger portion of the noise is removed� If W is a white noise� its energy
is uniformly distributed in the space l�+�� The following proposition
proves that its energy is reduced by at least A if the frame vectors are
normalized�

Proposition ��� Suppose that k�nk � C� for all n � +� If W is a
zero�mean white noise of variance EfjW �n�j�g � 
�� then

EfjPW �n�j�g � 
�C�

A
� �����

If the frame is tight then this inequality is an equality�

Proof �� Let us compute

EfjPW �n�j�g � E

�
�
�X

p�	
W �p� h��p� �ni

�A�X
l�	

W ��l� h��l� �ni�
���� �
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Since W is white	

EfW �p�W ��l�g � � ��p� l��

and therefore

EfjPW �n�j�g � �
X
p�	

jh��p� �nij� � � k�nk�
A

�
� C�

A
�

The last inequality is an equality if the frame is tight�

Oversampling This noise reduction strategy is used by high preci�
sion analog to digital converters� After a low�pass �lter� a band�limited
analog signal ft� is uniformly sampled and quantized� In hardware� it
is often easier to increase the sampling rate rather than the quantiza�
tion precision� Increasing the sampling rate introduces a redundancy
between the sample values of the band�limited signal� For a wide range
of signals� it has been shown that the quantization error is nearly a
white noise ��	��� It can thus be signi�cantly reduced by a frame pro�
jector�
After the low�pass �ltering� f belongs to the space UT of functions

whose Fourier transforms have their support included in ���T� �T ��
The Whittaker sampling Theorem ��� guarantees perfect reconstruction
with a sampling interval T � but f is oversampled with an interval T� �
TK that provides K times more coe�cients� We verify that the frame
projector is then a low�pass �lter that reduces by K the energy of the
quantization noise�
Proposition ��� proves that

fnT�� �
�

T
hft�� hT t� nT��i with hT t� �

sin�tT �

�tT
�

and for each � � k � K the family fhT t � kTK � nT �gn�Z is an
orthogonal basis of UT� As a consequencen

�nt� � hT t� nT��
o
n�Z

�

�
hT

�
t� k

T

K
� nT

��
��k�K�n�Z

is a union of K orthogonal bases� with vectors having a square norm
C� � T � It is therefore a tight frame of UT with A � B � K T � T��



���� FRAME THEORY �	�

Proposition ��� proves that the frame projector P reduces the energy
of the quantization white noise W of variance 
� by a factor K�

EfjPW �n�j�g � 
�C�

A
�


�

K
� �����

The frame f�nt�gn�Z is tight so $�n � �
T�
�n and ����� implies that

Px�n� �
�

T�

��X
p���

x�p� hhT t� pT��� hT t� nT��i�

This orthogonal projector can thus be rewritten as the convolution

Px�n� � x � h��n� with h��n� �
�

T�
hhT t�� hT t� nT��i�

One can verify that h� is an ideal low�pass �lter whose transfer function
has a restriction to ���� �� de�ned by �h� � �����K���K�� In this case
ImU is simply the space of discrete signals whose Fourier transforms
have a restriction to ���� �� which is non�zero only in ���K� �K��

The noise can be further reduced if it is not white but if its energy
is better concentrated in ImU�� This can be done by transforming the
quantization noise into a noise whose energy is mostly concentrated at
high frequencies� Sigma�Delta modulators produce such quantization
noises by integrating the signal before its quantization ����� To com�
pensate for the integration� the quantized signal is di�erentiated� This
di�erentiation increases the energy of the quantized noise at high fre�
quencies and reduces its energy at low frequencies� The low�pass �lter
h� thus further reduces the energy of the quantized noise� Several lev�
els of integration and di�erentiation can be used to better concentrate
the quantization noise in the high frequencies� which further reduces
its energy after the �ltering by h� ������
This oversampling example is analyzed just as well without the

frame formalism because the projector is a simple convolution� How�
ever� the frame approach is more general and applies to noise removal
in more complicated representations such as irregularly oversampled
signals or redundant windowed Fourier and wavelet frames ���	��
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��� Windowed Fourier Frames �

Frame theory gives conditions for discretizing the windowed Fourier
transform while retaining a complete and stable representation� The
windowed Fourier transform of f � L�R� is de�ned in Section ��� by

Sfu� �� � hf� gu��i�
with

gu��t� � gt� u� ei�t�

Setting kgk � � implies that kgu��k � �� A discrete windowed Fourier
transform representation

fSfun� �k� � hf� gun��kig�n�k��Z�
is complete and stable if fgun��kg�n�k��Z� is a frame of L�R��
Intuitively� one can expect that the discrete windowed Fourier trans�

form is complete if the Heisenberg boxes of all atoms fgun��kg�n�k��Z�
fully cover the time�frequency plane� Section ��� shows that the Heisen�
berg box of gun��k is centered in the time�frequency plane at un� �k��
Its size is independent of un and �k� It depends on the time�frequency
spread of the window g� A complete cover of the plane is thus ob�
tained by translating these boxes over a uniform rectangular grid� as
illustrated in Figure ���� The time and frequency parameters u� �� are
discretized over a rectangular grid with time and frequency intervals of
size u� and ��� Let us denote

gn�kt� � gt� nu�� expik��t��

The sampling intervals u�� ��� must be adjusted to the time�frequency
spread of g�

Window Scaling Suppose that fgn�kg�n�k��Z� is a frame of L�R� with
frame bounds A and B� Let us dilate the window gst� � s����gts��
It increases by s the time width of the Heisenberg box of g and reduces
by s its frequency width� We thus obtain the same cover of the time�
frequency plane by increasing u� by s and reducing �� by s� Let

gs�n�kt� � gst� nsu�� exp

�
ik
��
s
t

�
� �����
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We prove that fgs�n�kg�n�k��Z� satis�es the same frame inequalities as
fgn�kg�n�k��Z�� with the same frame bounds A and B� by a change of
variable t� � ts in the inner product integrals�

k

ω

ξ

un

u0

ξ0

gu
n

t0

ξk

Figure ���� A windowed Fourier frame is obtained by covering the
time�frequency plane with a regular grid of windowed Fourier atoms�
translated by un � nu� in time and by �k � k �� in frequency�

Necessary Conditions Daubechies ���� proved several necessary con�
ditions on g� u� and �� to guarantee that fgn�kg�n�k��Z� is a frame of
L�R�� We do not reproduce the proofs� but summarize the main re�
sults�

Theorem ��� �Daubechies The windowed Fourier family fgn�kg�n�k��Z�
is a frame only if

��

u� ��
� �� �����

The frame bounds A and B necessarily satisfy

A � ��

u� ��
� B� �����


t � R � A � ��

��

��X
n���

jgt� nu��j� � B� �����


� � R � A � �

u�

��X
k���

j�g� � k���j� � B� �����
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The ratio ��u���� measures the density of windowed Fourier atoms
in the time�frequency plane� The �rst condition ����� ensures that this
density is greater than � because the covering ability of each atom is
limited� The inequalities ����� and ����� are proved in full generality
by Chui and Shi ������ They show that the uniform time translations of
g must completely cover the time axis� and the frequency translations
of its Fourier transform �g must similarly cover the frequency axis�
Since all windowed Fourier vectors are normalized� the frame is an

orthogonal basis only if A � B � �� The frame bound condition
����� shows that this is possible only at the critical sampling density
u��� � ��� The Balian�Low Theorem ���� proves that g is then either
non�smooth or has a slow time decay�

Theorem ��� �Balian
Low If fgn�kg�n�k��Z� is a windowed Fourier
frame with u��� � ��� thenZ ��

��
t� jgt�j� dt �  � or

Z ��

��
�� j�g��j� d� �  �� ���	�

This theorem proves that we cannot construct an orthogonal win�
dowed Fourier basis with a di�erentiable window g of compact support�
On the other hand� one can verify that the discontinuous rectangular
window

g �
�p
u�
���u����u����

yields an orthogonal windowed Fourier basis for u��� � ��� This basis
is rarely used because of the bad frequency localization of �g�

Su�cient Conditions The following theorem proved by Daubechies
����� gives su�cient conditions on u�� �� and g for constructing a win�
dowed Fourier frame�

Theorem ��� �Daubechies Let us de�ne

�u� � sup
��t�u�

��X
n���

jgt� nu��j jgt� nu�  u�j �����
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and

& �
��X
k���
k ���

�
�

�
��k

��

�
�

����k
��

����
� �����

If u� and �� satisfy

A� �
��

��

	
inf

��t�u�

��X
n���

jgt� nu��j� �&
�
� � �����

and

B� �
��

��

	
sup

��t�u�

��X
n���

jgt� nu��j�  &
�
�  �� �����

then fgn�kg�n�k��Z� is a frame� The constants A� and B� are respectively
lower bounds and upper bounds of the frame bounds A and B�

Observe that the only di�erence between the su�cient conditions
����� ����� and the necessary condition ����� is the addition and sub�
traction of &� If & is small compared to inf��t�u�

P��
n��� jgt� nu��j�

then A� and B� are close to the optimal frame bounds A and B�

Dual Frame Theorem ��� proves that the dual windowed frame vec�
tors are

$gn�k � U
�U���gn�k� �����

The following proposition shows that this dual frame is also a windowed
Fourier frame� which means that its vectors are time and frequency
translations of a new window $g�

Proposition ��� Dual windowed Fourier vectors can be rewritten

$gn�kt� � $gt� nu�� expik��t�

where $g is the dual window

$g � U�U���g� �����
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Proof �� This result is proved by showing �rst that L � U�U commutes
with time and frequency translations proportional to u� and ��� If h �
L
��R� and hm�l�t� � h�t�mu�� exp�il��t� we verify that

Lhm�l�t� � exp�il��t�Lh�t�mu���

Indeed ������ shows that

Lhm�l �
X

�n�k��Z�
hhm�l� gn�ki gn�k

and a change of variable yields

hhm�l� gn�ki � hh� gn�m�k�li�

Consequently

Lhm�l�t� �
X

�n�k��Z�
hh� gn�m�k�li exp�il��t� gn�m�k�l�t�mu��

� exp�il��t�Lh�t�mu���

Since L commutes with these translations and frequency modulations we
verify that L�� necessarily commutes with the same group operations�
Hence

�gn�k�t� � L��gn�k � exp�ik���L
��g����t�nu�� � exp�ik��� �g�t�nu���

������

Gaussian Window The Gaussian window

gt� � ����� exp
��t�
�

�
�����

has a Fourier transform �g that is a Gaussian with the same variance�
The time and frequency spreads of this window are identical� We there�
fore choose equal sampling intervals in time and frequency� u� � ��� For
the same product u��� other choices would degrade the frame bounds�
If g is dilated by s then the time and frequency sampling intervals must
become su� and ��s�
If the time�frequency sampling density is above the critical value�

��u���� � �� then Daubechies ����� proves that fgn�kg�n�k��Z� is a
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u��� A� B� B��A�

��� ��� ��� ����
���� ��� ��� ���
� ��	 ��� ���

���� ���� ��� ��	
���� ���� ��� ��

Table ���
 Frame bounds estimated with Theorem ��� for the Gaussian
window ����	 and u� � ���

frame� When u��� tends to ��� the frame bound A tends to �� For
u��� � ��� the family fgn�kg�n�k��Z� is complete in L��R� which means
that any f � L��R is entirely characterized by the inner products
fhf� gn�kig�n�k��Z�� However� the Balian�Low Theorem ��	 proves that
it cannot be a frame and one can indeed verify that A � � ������
This means that the reconstruction of f from these inner products is
unstable�

Table ��� gives the estimated frame bounds A� and B� calculated
with Theorem ���� for di�erent values of u� � ��� For u��� � ����
which corresponds to time and frequency sampling intervals that are
half the critical sampling rate� the frame is nearly tight� As expected�
A � B � �� which veri�es that the redundancy factor is � �� in time
and � in frequency� Since the frame is almost tight� the dual frame
is approximately equal to the original frame� which means that �g � g�
When u��� increases we see that A decreases to zero and �g deviates
more and more from a Gaussian� In the limit u��� � ��� the dual
window �g is a discontinuous function that does not belong to L��R�
These results can be extended to discrete window Fourier transforms
computed with a discretized Gaussian window ��	���

Tight Frames Tight frames are easier to manipulate numerically
since the dual frame is equal to the original frame� Daubechies� Gross�
mann and Meyer ���	� give two su�cient conditions for building a win�
dow of compact support that generates a tight frame�

Theorem ��� �Daubechies� Grossmann� Meyer� Let g be a win�
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dow whose support is included in ������� ������ If

�t � R �
��

��

��X
n���

jg�t� nu�j� � A �����

then fgn�kg�n�k��Z� is a tight frame with a frame bound equal to A�

The proof is studied in Problem ���� If we impose that

� � ��

u���
� ��

then only consecutive windows g�t � nu� and g�t � �n � �u� have
supports that overlap� The design of such windows is studied in Section
����� for local cosine bases�

��� Wavelet Frames �

Wavelet frames are constructed by sampling the time and scale param�
eters of a continuous wavelet transform� A real continuous wavelet
transform of f � L��R is de�ned in Section ��� by

Wf�u� s � hf� �u�si�

where � is a real wavelet and

�u�s�t �
�p
s
�

�
t� u

s

�
�

Imposing k�k � � implies that k�u�sk � ��
Intuitively� to construct a frame we need to cover the time�frequency

plane with the Heisenberg boxes of the corresponding discrete wavelet
family� A wavelet �u�s has an energy in time that is centered at u
over a domain proportional to s� Over positive frequencies� its Fourier
transform ��u�s has a support centered at a frequency ��s� with a spread
proportional to ��s� To obtain a full cover� we sample s along an
exponential sequence fajgj�Z� with a su�ciently small dilation step a �
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�� The time translation u is sampled uniformly at intervals proportional
to the scale aj� as illustrated in Figure ���� Let us denote

�j�n�t �
�p
aj

�

�
t� nu�a

j

aj

�
�

We give necessary and su�cient conditions on �� a and u� so that
f�j�ng�j�n��Z� is a frame of L��R�

Necessary Conditions We suppose that � is real� normalized� and
satis�es the admissibility condition of Theorem ���


C� �

Z ��

�

j ����j�
�

d� 	 ��� �����

ψ
nj

aj

aj-1

u  a0
j

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

���� �� ���� ���� �� �� ����

��
��
��
��

0

ω

t

η

jnu  a

η

0

Figure ���
 The Heisenberg box of a wavelet �j�n scaled by s � aj has
a time and frequency width proportional respectively to aj and a�j�
The time�frequency plane is covered by these boxes if u� and a are
su�ciently small�

Theorem ��� �Daubechies� If f�j�ng�j�n��Z� is a frame of L��R then
the frame bounds satisfy

A � C�

u� loge a
� B� �����

�� � R � f�g � A � �

u�

��X
j���

j ���aj�j� � B� ���	�
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The condition ���	� imposes that the Fourier axis is covered by
wavelets dilated by fajgj�Z� It is proved in ����� ���� Section ���
explains that this condition is su�cient for constructing a complete
and stable signal representation if the time parameter u is not sampled�
The inequality ������ which relates the sampling density u� loge a to
the frame bounds� is proved in ����� It shows that the frame is an
orthonormal basis if and only if

A � B �
C�

u� loge a
� ��

Chapter � constructs wavelet orthonormal bases of L��R with regular
wavelets of compact support�

Su�cient Conditions The following theorem proved by Daubechies
���� provides a lower and upper bound for the frame bounds A and B�
depending on �� u� and a�

Theorem ��	
 �Daubechies� Let us de�ne


�� � sup
��j�j�a

��X
j���

j ���aj�j j ���aj� � �j ���	�

and

� �
��X
k���
k ���

�



�
��k

u�

�



����k
u�

�����
�

If u� and a are such that

A� �
�

u�

�
inf

��j�j�a

��X
j���

j ���aj�j� ��

�
� �� ���	�

and

B� �
�

u�

�
sup

��j�j�a

��X
j���

j ���aj�j� ��

�
	 ��� ���	�

then f�j�ng�j�n��Z� is a frame of L��R� The constants A� and B� are
respectively lower and upper bounds of the frame bounds A and B�
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The su�cient conditions ���	� and ���	� are similar to the neces�
sary condition ���	�� If � is small relative to inf��j�j�a

P��
j��� j ���aj�j�

then A� and B� are close to the optimal frame bounds A and B� For a
�xed dilation step a� the value of � decreases when the time sampling
interval u� decreases�

Dual Frame Theorem ��� gives a general formula for computing the
dual wavelet frame vectors

��j�n � �U�U���j�n� ���	�

One could reasonably hope that the dual functions ��j�n would be ob�
tained by scaling and translating a dual wavelet ��� The sad reality
is that this is generally not true� In general the operator U�U does
not commute with dilations by aj� so �U�U�� does not commute with
these dilations either� On the other hand� one can prove that �U�U��

commutes with translations by naju�� which means that

��j�n�t � ��j���t� naju�� ���	�

The dual frame f ��j�ng�j�n��Z� is thus obtained by calculating each el�

ementary function ��j�� with ���	�� and translating them with ���	��
The situation is much simpler for tight frames� where the dual frame is
equal to the original wavelet frame�

Mexican Hat Wavelet The normalized second derivative of a Gaus�
sian is

��t �
�p
�
����� �t� � � exp

��t�
�

�
� ���		

Its Fourier transform is

���� � �
p
����� ��

p
�

exp

����

�

�
�

The graph of these functions is shown in Figure ��	�
The dilation step a is generally set to be a � ���v where v is the

number of intermediate scales �voices for each octave� Table ��� gives
the estimated frame bounds A� and B� computed by Daubechies ����



��	 CHAPTER �� FRAMES

a u� A� B� B��A�

� ���� ������ ������ �����
� ��� 	���	 ����� �����
� ��� ����� ����	 ����	
� ��� ����� ����� �����	

�
�
� ���� ������ ������ ������

�
�
� ��� ���	�� ���	�� ������

�
�
� ��� 	��	� 	���� �����

�
�
� ���� ����� ����	 ����	�

�
�
� ���� ������ ������ ������

�
�
� ��� �����	 �����	 ������

�
�
� ��� �����	 ���	�� �����

�
�
� ���� ����� ���	�� �����

Table ���
 Estimated frame bounds for the Mexican hat wavelet com�
puted with Theorem ���� �����

with the formula of Theorem ����� For v � � voices per octave� the
frame is nearly tight when u� � ���� in which case the dual frame can be
approximated by the original wavelet frame� As expected from ������
when A � B

A � B � C�

u� loge a
�

v

u�
C� log� e�

The frame bounds increase proportionally to v�u�� For a � �� we see
that A� decreases brutally from u� � � to u� � ���� For u� � ����
the wavelet family is not a frame anymore� For a � ����� the same
transition appears for a larger u��

��� Translation Invariance 	

In pattern recognition� it is important to construct signal representa�
tions that are translation invariant� When a pattern is translated� its
numerical descriptors should be translated but not modi�ed� Indeed�
a pattern search is particularly di�cult if its representation depends
on its location� Continuous wavelet transforms and windowed Fourier
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transforms provide translation�invariant representations� but uniformly
sampling the translation parameter destroys this translation invariance�

Continuous Transforms Let f� �t � f�t�� be a translation of f�t
by � � The wavelet transform can be written as a convolution product


Wf�u� s �

Z ��

��

f�t
�p
s
�

�
t� u

s

�
dt � f � ��s�u

with ��s�t � s�������t�s� It is therefore translation invariant


Wf� �u� s � f� � ��s�u � Wf�u� �� s�

A windowed Fourier transform can also be written as a linear �ltering

Sf�u� � �

Z ��

��

f�t g�t� u e�it� dt � e�iu� f � �g��u�

with �g��t � g��t eit�� Up to a phase shift� it is also translation invari�
ant


Sf� �u� � � e�iu� f � g��u� � � e�i�� Sf�u� �� ��

Frame Sampling A wavelet frame

�j�n�t �
�p
aj

�

�
t� naju�

aj

�
yields inner products that sample the continuous wavelet transform at
time intervals aju�


hf� �j�ni � f � ��aj �na
ju� � Wf�naju�� a

j�

Translating f by � gives

hf� � �j�ni � f � ��aj �na
ju� � � � Wf�naju� � �� aj�

If the sampling interval aju� is large relative to the rate of variation
of f � ��aj �t� then the coe�cients hf� �j�ni and hf� � �j�ni may take very
di�erent values that are not translated with respect to one another�
This is illustrated in Figure ���� This problem is particularly acute
for wavelet orthogonal bases where u� is maximum� The orthogonal
wavelet coe�cients of f� may be very di�erent from the coe�cients of
f � The same translation distortion phenomena appear in windowed
Fourier frames�
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j
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0

Figure ���
 If f� �t � f�t � � then Wf� �u� a
j � Wf�u � �� aj�

Uniformly sampling Wf� �u� a
j and Wf�u� aj at u � naju� may yield

very di�erent values if � �� ku�a
j�

Translation�Invariant Representations There are several strate�
gies for maintaining the translation invariance of a wavelet transform� If
the sampling interval aju� is small enough then the samples of f � ��aj �t
are approximately translated when f is shifted� The dyadic wavelet
transform presented in Section ��� is a translation�invariant represen�
tation that does not sample the translation factor u� This creates a
highly redundant signal representation�

To reduce the representation size while maintaining translation in�
variance� one can use an adaptive sampling scheme� where the sampling
grid is automatically translated when the signal is translated� For each
scale aj� Wf�u� aj � f � ��aj �u can be sampled at locations u where
jWf�aj� uj is locally maximum� The resulting representation is trans�
lation invariant since the local maxima positions are translated when
f and hence f � ��aj are translated� This adaptive sampling is studied
in Section 	�����

��� Dyadic Wavelet Transform �

To construct a translation�invariant wavelet representation� the scale s
is discretized but not the translation parameter u� The scale is sampled
along a dyadic sequence f�jgj�Z� to simplify the numerical calculations�
Fast computations with �lter banks are presented in the next two sec�
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tions� An application to computer vision and texture discrimination is
described in Section ������

The dyadic wavelet transform of f � L��R is de�ned by

Wf�u� �j �

Z ��

��

f�t
�p
�j
�

�
t� u

�j

�
dt � f � ���j �u� ���	�

with

���j �t � ��j ��t � �p
�j
�

��t
�j

�
�

The following proposition proves that if the frequency axis is completely
covered by dilated dyadic wavelets� as illustrated by Figure ���� then it
de�nes a complete and stable representation�

Theorem ��		 If there exist two constants A � � and B � � such
that

�� � R � f�g � A �
��X

j���

j ����j�j� � B� ���	�

then

A kfk� �
��X

j���

�

�j
kWf�u� �jk� � B kfk�� ���	�

If �� satis�es

�� � R � f�g �
��X

j���

�����j� b����j� � �� �����

then

f�t �
��X

j���

�

�j
Wf��� �j � ���j �t� �����

Proof �� The Fourier transform of fj�u� � Wf�u� �j� with respect to u
is derived from the convolution formula �������

	fj��� �
p

�j 	����j�� 	f���� ������
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The condition ����
� implies that

A j 	f���j� �
��X

j���

�

�j
j 	fj���j� � B j 	f���j��

Integrating each side of this inequality with respect to � and applying
the Parseval equality ������ yields �������

Equation ������ is proved by taking the Fourier transform on both
sides and inserting ����� and �������

−2 0 2
0

0.05

0.1

0.15

0.2

0.25

Figure ���
 Scaled Fourier transforms j ����j�j� computed with ������
for � � j � � and � � ���� ���

The energy equivalence ���	� proves that the normalized dyadic wavelet
transform operator

Uf �j� u� �
�p
�j
Wf�u� �j �

�
f�

�p
�j
��j �t� u

�
satis�es frame inequalities� There exist an in�nite number of recon�
structing wavelets �� that verify ������ They correspond to di�erent
left inverses of U � calculated with ������ If we choose

b���� � ����P��
j��� j ����j�j�

� �����

then one can verify that the left inverse is the pseudo inverse �U���
Figure ��� gives a dyadic wavelet transform computed over � scales
with the quadratic spline wavelet shown in Figure ��	�
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 Signal

 2−7

 2−6

 2−5

 2−4

 2−3

 Approximation

2−3

Figure ���
 Dyadic wavelet transform Wf�u� �j computed at scales
��� � �j � ��	 with the �lter bank algorithm of Section ������ for
signal de�ned over ��� ��� The bottom curve carries the lower frequencies
corresponding to scales larger than ��	�
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����� Wavelet Design

A discrete dyadic wavelet transform can be computed with a fast �lter
bank algorithm if the wavelet is appropriately designed� The synthesis
of these dyadic wavelets is similar to the construction of biorthogonal
wavelet bases� explained in Section ���� All technical issues related to
the convergence of in�nite cascades of �lters are avoided in this section�
Reading Chapter � �rst is necessary for understanding the main results�

Let h and g be a pair of �nite impulse response �lters� Suppose that
h is a low�pass �lter whose transfer function satis�es �h�� �

p
�� As in

the case of orthogonal and biorthogonal wavelet bases� we construct a
scaling function whose Fourier transform is

��� �
��Y
p��

�h���p�p
�

�
�p
�
�h
��
�

	
�
��
�

	
� �����

We suppose here that this Fourier transform is a �nite energy func�
tion so that  � L��R� The corresponding wavelet � has a Fourier
transform de�ned by

���� �
�p
�
�g
��
�

	
�
��
�

	
� �����

Proposition ��� proves that both  and � have a compact support
because h and g have a �nite number of non�zero coe�cients� The
number of vanishing moments of � is equal to the number of zeroes of
���� at � � �� Since ��� � �� ����� implies that it is also equal to
the number of zeros of �g�� at � � ��

ReconstructingWavelets Reconstructing wavelets that satisfy �����
are calculated with a pair of �nite impulse response dual �lters �h and
�g� We suppose that the following Fourier transform has a �nite energy


b��� � ��Y
p��

b�h���p�p
�

�
�p
�

b�h��
�

	 b���
�

	
� ����	

Let us de�ne b���� � �p
�
b�g ��

�

	 b���
�

	
� �����
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The following proposition gives a su�cient condition to guarantee thatb�� is the Fourier transform of a reconstruction wavelet�

Proposition ��� If the �lters satisfy

�� � ���� �� � b�h�� �h��� � b�g�� �g��� � � �����

then

�� � R � f�g �

��X
j���

�����j� b����j� � �� �����

Proof �� The Fourier transform expressions ������ and ������ prove that

b����� 	����� �
�

�
b�g ��

�

�
	g�
��

�

� b����
�

�
	��
��

�

�
�

Equation ����
� implies

b����� 	����� �
�

�

h
�� b�h��

�

�
	h�
��

�

�i b����
�

�
	��
��

�

�
� b����

�

�
	��
��

�

�
� b����� 	������

Hence

kX
j��l

b����j�� 	����j�� � 	�����l��
b�����l��� 	����k��

b����k���

Since 	g�� � � ����
� implies b�h�� 	h��� � �� We also impose that

	h�� �
p

� so one can derive from ����������� that b���� � 	���� � ��

Since � and �� belong to L��R�� 	� and
b�� are continuous� and the Riemann�

Lebesgue lemma �Problem ���� proves that j	����j and jb�����j decrease
to zero when � goes to �� For � �� � letting k and l go to �� yields
�������

Observe that ����� is the same as the unit gain condition ������ for
biorthogonal wavelets� The aliasing cancellation condition ������ of
biorthogonal wavelets is not required because the wavelet transform is
not sampled in time�
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Finite Impulse Response Solution Let us shift h and g to obtain
causal �lters� The resulting transfer functions �h�� and �g�� are poly�
nomials in e�i�� We suppose that these polynomials have no common
zeros� The Bezout Theorem ��	 on polynomials proves that if P �z and
Q�z are two polynomials of degree n and l� with no common zeros�
then there exists a unique pair of polynomials �P �z and �Q�z of degree
l � � and n� � such that

P �z �P �z �Q�z �Q�z � �� �����

This guarantees the existence of b�h�� and b�g�� that are polynomials in
e�i� and satisfy ������ These are the Fourier transforms of the �nite
impulse response �lters �h and �g� One must however be careful because

the resulting scaling function b� in ����	 does not necessarily have a
�nite energy�

Spline Dyadic Wavelets A box spline of degree m is a translation
of m� � convolutions of 	
���� with itself� It is centered at t � ��� if m
is even and at t � � if m is odd� Its Fourier transform is

��� �

�
sin����

���

�m��

exp

��i��
�

�
with � �



� if m is even
� if m is odd

�

�����
so

�h�� �
p
�
����

���
�
p
�
�
cos

�

�

	m��

exp

��i��
�

�
� �����

We construct a wavelet that has one vanishing moment by choosing
�g�� � O�� in the neighborhood of � � �� For example

�g�� � �i
p
� sin

�

�
exp

��i��
�

�
� �����

The Fourier transform of the resulting wavelet is

���� �
�p
�
�g
��
�

	
�
��
�

	
�
�i�
�

�
sin����

���

�m��

exp

��i��� � �

�

�
�

�����
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n h�n��
p
� �h�n��

p
� g�n��

p
� �g�n��

p
�

�� ��������
�� ����� ����� ��������
� ����� ����� ���� ���	���
� ����� ����� ��� ��	���
� ����� ����� �������
� �������

Table ���
 Coe�cients of the �lters computed from their transfer func�
tions ������ ����� ���� for m � �� These �lters generate the quadratic
spline scaling functions and wavelets shown in Figure ��	�

It is the �rst derivative of a box spline of degree m � � centered at
t � �� � ���� For m � �� Figure ��	 shows the resulting quadratic
splines  and �� The dyadic admissibility condition ���	� is veri�ed
numerically for A � ����� and B � ������

��t �t
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0.5
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Figure ��	
 Quadratic spline wavelet and scaling function�

To design dual scaling functions � and wavelets �� which are splines�

we choose b�h � �h� As a consequence�  � � and the reconstruction
condition ����� implies that

b�g�� � �� j�h��j�
�g���

� �i
p
� exp

��i�
�

�
sin

�

�

mX
n��

�
cos

�

�

	�n
�

�����
Table ��� gives the corresponding �lters for m � ��
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����� �Algorithme �a Trous�

Suppose that the scaling functions and wavelets � �� � and �� are de�
signed with the �lters h� g� �h and �g� A fast dyadic wavelet transform is
calculated with a �lter bank algorithm called in French the algorithme
�a trous� introduced by Holschneider� Kronland�Martinet� Morlet and
Tchamitchian ������ It is similar to a fast biorthogonal wavelet trans�
form� without subsampling ����� �	���

Let �f�t be a continuous time signal characterized by N samples
at a distance N�� over ��� ��� Its dyadic wavelet transform can only
be calculated at scales � � �j � N��� To simplify the description
of the �lter bank algorithm� it is easier to consider the signal f�t �
�f�N��t� whose samples have distance equal to �� A change of vari�
able in the dyadic wavelet transform integral shows that W �f�u� �j �
N����Wf�Nu�N�j� We thus concentrate on the dyadic wavelet trans�
form of f � from which the dyadic wavelet transform of �f is easily de�
rived�

Fast Dyadic Transform We suppose that the samples a��n� of the
input discrete signal are not equal to f�n but to a local average of f in
the neighborhood of t � n� Indeed� the detectors of signal acquisition
devices perform such an averaging� The samples a��n� are written as
averages of f�t weighted by the scaling kernels �t� n


a��n� � hf�t� �t� ni �
Z ��

��

f�t�t� n dt�

This is further justi�ed in Section ������ For any j � �� we denote

aj�n� � hf�t� �j�t� ni with �j�t �
�p
�j

� t

�j

	
�

The dyadic wavelet coe�cients are computed for j � � over the integer
grid

dj�n� � Wf�n� �j � hf�t� ��j �t� ni�
For any �lter x�n�� we denote by xj�n� the �lters obtained by insert�

ing �j � � zeros between each sample of x�n�� Its Fourier transform is
�x��j�� Inserting zeros in the �lters creates holes �trous in French� Let
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�xj�n� � xj��n�� The next proposition gives convolution formulas that
are cascaded to compute a dyadic wavelet transform and its inverse�

Proposition ��� For any j � ��

aj���n� � aj � �hj�n� � dj���n� � aj � �gj�n� � ����	

and

aj�n� �
�

�

�
aj�� � �hj�n� � dj�� � �gj�n�

	
� �����

Proof �� Proof of ������� Since

aj���n� � f � ���j���n� and dj���n� � f � ���j���n��

we verify with ����� that their Fourier transforms are respectively

	aj����� �

��X
k���

	f�� � �k�� 	���j���� � �k��

and

	dj����� �

��X
k���

	f�� � �k�� 	���j�� �� � �k���

The properties ������ and ������ imply that

	��j����� �
p

�j�� 	���j���� � 	h��j��
p

�j 	���j���

	��j����� �
p

�j�� 	���j���� � 	g��j��
p

�j 	���j���

Since j � � both 	h��j�� and 	g��j�� are �� periodic� so

	aj����� � 	h���j�� 	aj��� and 	dj����� � 	g���j�� 	aj���� ���

�

These two equations are the Fourier transforms of ���
���

Proof of ������� Equations ���

� imply

	aj����� b�h��j�� � 	dj�����b�g��j�� �

	aj��� 	h���j�� b�h��j�� � 	aj��� 	g���j��b�g��j���

Inserting the reconstruction condition ����
� proves that

	aj�����
b�h��j�� � 	dj�����b�g��j�� � � 	aj����

which is the Fourier transform of ���
���
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The dyadic wavelet representation of a� is de�ned as the set of wavelet
coe�cients up to a scale �J plus the remaining low�frequency informa�
tion aJ 
 h

fdjg��j�J � aJ
i
� �����

It is computed from a� by cascading the convolutions ����	 for � �
j 	 J � as illustrated in Figure ����a� The dyadic wavelet transform
of Figure ��� is calculated with this �lter bank algorithm� The original
signal a� is recovered from its wavelet representation ����� by iterating
����� for J � j � �� as illustrated in Figure ����b�

aja j+2a

dj+2j+1d

j+1
-

-
jg g

j+1
-

hj
- hj+1

�a

a + jaj+1a

j+1d gj

hj

dj+2

1/2 1/2j+2
~

j+1
g

j+1h +

~~

~

�b

Figure ���
 �a
 The dyadic wavelet coe�cients are computed by cas�
cading convolutions with dilated �lters �hj and �gj� �b
 The original
signal is reconstructed through convolutions with �hj and �gj� A multi�
plication by ��� is necessary to recover the next �ner scale signal aj�

If the input signal a��n� has a �nite size of N samples� the convolu�
tions ����	 are replaced by circular convolutions� The maximum scale
�J is then limited to N � and for J � log�N one can verify that aJ �n� is
constant and equal to N����

PN��
n�� a��n�� Suppose that h and g have re�

spectively Kh and Kg non�zero samples� The �dilated� �lters hj and gj
have the same number of non�zero coe�cients� The number of multipli�
cations needed to compute aj�� and dj�� from aj or the reverse is thus
equal to �Kh �KgN � For J � log�N � the dyadic wavelet representa�
tion ����� and its inverse are thus calculated with �Kh �KgN log�N
multiplications and additions�



���� DYADIC WAVELET TRANSFORM ���

����� Oriented Wavelets for a Vision �

Image processing applications of dyadic wavelet transforms are moti�
vated by many physiological and computer vision studies� Textures
can be synthesized and discriminated with oriented two�dimensional
wavelet transforms� Section 	�� relates multiscale edges to the local
maxima of a wavelet transform�

Oriented Wavelets In two dimensions� a dyadic wavelet transform
is computed with several mother wavelets f�kg��k�K which often have
di�erent spatial orientations� For x � �x�� x�� we denote

�k
�j �x�� x� �

�

�j
�k
�x�
�j
�
x�
�j

	
and ��k

�j �x � �k
�j ��x�

The wavelet transform of f � L��R� in the direction k is de�ned at
the position u � �u�� u� and at the scale �j by

W kf�u� �j � hf�x� �k
�j �x� ui � f � ��k

�j �u� �����

As in Theorem ����� one can prove that the two�dimensional wavelet
transform is a complete and stable signal representation if there exist
A � � and B such that

�� � ���� �� � R� �f��� �g � A �
KX
k��

��X
j���

j ��k��j�j� � B� �����

Then there exist reconstruction wavelets f ��kg��k�K whose Fourier trans�
forms satisfy

��X
j���

�

��j

KX
k��

c��k��j� ��k���j� � � � �����

which yields

f�x �
��X

j���

�

��j

KX
k��

W kf��� �j � ��k
�j �x � �����

Wavelets that satisfy ����� are called dyadic wavelets�
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Families of oriented wavelets along any angle � can be designed as
a linear expansion of K mother wavelets ������ For example� a wavelet
in the direction � may be de�ned as the partial derivative of order p of
a window ��x in the direction of the vector �n � �cos�� sin�


���x �
�p��x

��np
�
�
cos�

�

�x�
� sin�

�

�x�

	p
��x�

This partial derivative is a linear expansion of K � p � � mother
wavelets

���x �

pX
k��

�
p
k

�
�cos�k �sin�p�k �k�x � �����

with

�k�x �
�p��x

�xk� �x
p�k
�

for � � k � p�

For appropriate windows �� these p � � partial derivatives de�ne a
family of dyadic wavelets� In the direction �� the wavelet transform
W �f�u� �j � f � ���

�j �u is computed from the p � � components
W kf�u� �j � f � ��k

�j �u with the expansion ������ Section 	�� uses
such oriented wavelets� with p � �� to detect the multiscale edges of an
image�

Gabor Wavelets In the cat�s visual cortex� Hubel and Wiesel �����
discovered a class of cells� called simple cells� whose responses depend
on the frequency and orientation of the visual stimuli� Numerous phys�
iological experiments ����� have shown that these cells can be modeled
as linear �lters� whose impulse responses have been measured at di�er�
ent locations of the visual cortex� Daugmann ����� showed that these
impulse responses can be approximated by Gabor wavelets� obtained
with a Gaussian window g�x�� x� multiplied by a sinusoidal wave


�k�x�� x� � g�x�� x� exp��i��x� cos�k � x� sin�k��

The position� the scale and the orientation �k of this wavelet depend
on the cortical cell� These �ndings suggest the existence of some sort
of wavelet transform in the visual cortex� combined with subsequent



���� DYADIC WAVELET TRANSFORM ���

non�linearities ������ The �physiological� wavelets have a frequency
resolution on the order of ����� octaves� and are thus similar to dyadic
wavelets�

Let �g���� �� be the Fourier transform of g�x�� x�� Then

��k
�j ���� �� �

p
�j �g��j�� � � cos�k� �

j�� � � sin�k�

In the Fourier plane� the energy of this Gabor wavelet is mostly concen�
trated around ���j� cos�k� �

�j� sin�k� in a neighborhood proportional
to ��j� Figure ��� shows a cover of the frequency plane by such dyadic
wavelets� The bandwidth of �g���� �� and � must be adjusted to satisfy
������

ω

ω2

1

Figure ���
 Each circle represents the frequency support of a dyadic
wavelet ��k

�j � This support size is proportional to ��j and its position
rotates when k is modi�ed�

Texture Discrimination Despite many attempts� there are no ap�
propriate mathematical models for �homogeneous image textures�� The
notion of texture homogeneity is still de�ned with respect to our visual
perception� A texture is said to be homogeneous if it is preattentively
perceived as being homogeneous by a human observer�

The texton theory of Julesz ����� was a �rst important step in
understanding the di�erent parameters that in uence the perception
of textures� The orientation of texture elements and their frequency
content seem to be important clues for discrimination� This moti�
vated early researchers to study the repartition of texture energy in
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jW �f�u� ���j� jW �f�u� ���j� jW �f�u� ���j� jW �f�u� ���j�

Figure ���
 Gabor wavelet transform jW kf�u� �jj� of a texture patch�
at the scales ��� and ���� along two orientations �k respectively equal
to � and ��� for k � � and k � �� The darker a pixel� the larger the
wavelet coe�cient amplitude�

the Fourier domain ����� For segmentation purposes� it is however nec�
essary to localize texture measurements over neighborhoods of varying
sizes� The Fourier transform was thus replaced by localized energy
measurements at the output of �lter banks that compute a wavelet
transform ����� ���� ���� ����� Besides the algorithmic e�ciency of
this approach� this model is partly supported by physiological studies
of the visual cortex�

Since W kf�u� �j � hf�x� �k
�j �x� ui� we derive that jW kf�u� �jj�

measures the energy of f in a spatial neighborhood of u of size �j and
in a frequency neighborhood of ���j� cos�k� �

�j� sin�k of size ��j�
Varying the scale �j and the angle �k modi�es the frequency channel
������ The wavelet transform energy jW kf�u� �jj� is large when the
angle �k and scale �j match the orientation and scale of high energy
texture components in the neighborhood of u ����� ���� ���� ����� The
amplitude of jW kf�u� �jj� can thus be used to discriminate textures�
Figure ��� shows the dyadic wavelet transform of two textures� com�
puted along horizontal and vertical orientations� at the scales ��� and
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��� �the image support is normalized to ��� ���� The central texture
has more energy along horizontal high frequencies than the peripheric
texture� These two textures are therefore discriminated by the wavelet
oriented with �k � � whereas the other wavelet corresponding �k � ���
produces similar responses for both textures�

For segmentation� one must design an algorithm that aggregates
the wavelet responses at all scales and orientations in order to �nd the
boundaries of homogeneous textured regions� Both clustering proce�
dures and detection of sharp transitions over wavelet energy measure�
ments have been used to segment the image ����� ���� ����� These
algorithms work well experimentally but rely on ad hoc parameter set�
tings�

A homogeneous texture can be modeled as a realization of a sta�
tionary process� but the main di�culty is to �nd the characteristics of
this process that play a role in texture discrimination� Texture syn�
thesis experiments ����� ���� show that Markov random �eld processes
constructed over grids of wavelet coe�cients o�er a promising mathe�
matical framework for understanding texture discrimination�

��� Problems

���� � Prove that ifK � Z�fg then fek�n� � exp �i��kn��KN��g��k�KN

is a tight frame of C N � Compute the frame bound�

���� � Prove that if K � R�fg then fek�t� � exp �i��knt�K�gk�Z is
a tight frame of L��� ��� Compute the frame bound�

���� � Let 	g � �
�������� Prove that fg�t� nu�� exp �i�k� t�u��g�k�n��Z�
is an orthonormal basis of L��R��

���� � Let gn�k�t� � g�t� nu�� exp�ik��t�� where g is a window whose
support is included in ������� ������
�a� Prove that jg�t� nu��j� f�t� �

P��
k��� hf� gn�ki gn�k�t��

�b� Prove Theorem ��
�

���� � Compute the trigonometric polynomials b�h��� and b�g��� of min�
imum degree that satisfy ����
� for the spline �lters ���
�� ��
��
with m � �� Compute �� with WaveLab� Is it a �nite energy
function�
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���� � Compute a cubic spline dyadic wavelet with � vanishing mo�
ments using the �lter h de�ned by ���
�� for m � �� with a �lter g
having � non�zero coe�cients� Compute in WaveLab the dyadic
wavelet transform of the Lady signal with this new wavelet� Cal�
culate �g�n� if �h�n� � h�n��

���� � Let fg�t�nu�� exp�ik��t�g�n�k��Z� be a windowed Fourier frame

de�ned by g�t� � ����� exp��t���� with u� � �� and u� �� 	 ���
With the conjugate gradient algorithm of Theorem ���� compute
in Matlab the window �g�t� that generates the dual frame� for
the values of u� �� in Table ���� Compare �g with g and explain
your result� Verify numerically that when �� u� � �� then �g is a
discontinuous function that does not belong to L��R��

��
� � Prove that a �nite set of N vectors f�ng��n�N is always a frame
of the space V generated by linear combinations of these vectors�
With an example� show that the frame bounds A and B may go
respectively to  and �� when N goes to ���

���� � Sigma�Delta converter A signal f�t� is sampled and quantized�
We suppose that 	f has a support in ����T� ��T ��

�a� Let x�n� � f�nT�K�� Show that if � � ���� �� then 	x��� �� 
only if � � ����K� ��K��

�b� Let �x�n� � Q�x�n�� be the quantized samples� We now consider
x�n� as a random vector� and we model the error x�n�� �x�n� �
W �n� as a white noise process of variance 
�� Find the �lter
h�n� that minimizes

� � Efk�x � h� xk�g �

and compute this minimum as a function of 
� and K� Com�
pare your result with �������

�c� Let 	hp��� � ��� e�i���p be the transfer function of a discrete
integration of order p� We quantize �x�n� � Q�x � hp�n��� Find
the �lter h�n� that minimizes � � Efk�x � h � xk�g� and com�
pute this minimum as a function of 
�� K and p� For a �xed
oversampling factor K� how can we reduce this error�

���� � Let � be a dyadic wavelet that satis�es ����
�� Let l��L��R��
be the space of sequences fgj�u�gj�Z such that

P��
j��� kgjk� 	

���
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�a� Verify that if f � L��R� then fWf�u� �j�gj�Z � l��L��R���
Let �� be de�ned by

b����� �
	����P��

j��� j 	���j��j� �

and W�� be the operator de�ned by

W��fgj�u�gj�Z �
��X

j���

�

�j
gj � ���j �t��

Prove that W�� is the pseudo inverse of W in l��L��R���
�b� Verify that �� has the same number of vanishing moments as

��
�c� Let V be the subspace of l��L��R�� that regroups all the

dyadic wavelet transforms of functions in L��R�� Compute
the orthogonal projection of fgj�u�gj�Z in V�

����� � Prove that if there exist A �  and B �  such that

A ��� j	h���j�� � j	g���j� � B ��� j	h���j��� ������

and if � de�ned in ������ belongs to L��R�� then the wavelet �
given by ������ is a dyadic wavelet�

����� � Zak transform The Zak transform associates to any f � L��R�

Zf�u� �� �

��X
l���

ei��l� f�u� l� �

�a� Prove that it is a unitary operator from L��R� to L��� ����Z ��

��
f�t� g��t� dt �

Z �

�

Z �

�
Zf�u� ��Zg��u� �� du d� �

by verifying that for g � �
���� it transforms the orthogonal
basis fgn�k�t� � g�t � n� exp�i��kt�g�n�k��Z� of L��R� into an
orthonormal basis of L��� ����

�b� Prove that the inverse Zak transform is de�ned by

�h � L��� ��� � Z��h�u� �

Z �

�
h�u� �� d��
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�c� Prove that if g � L��R� then fg�t � n� exp�i��kt�g�n�k��Z� is
a frame of L��R� if and only if there exist A �  and B such
that

��u� �� � �� ��� � A � jZg�u� ��j� � B � ������

where A and B are the frame bounds�
�d� Prove that if ������ holds then the dual window �g of the dual

frame is de�ned by Z�g�u� �� � ��Zg��u� ���

����� � Suppose that 	f has a support in ����T� ��T �� Let ff�tn�gn�Z
be irregular samples that satisfy ������ With an inverse frame al�
gorithm based on the conjugate gradient Theorem ���� implement
in Matlab a procedure that computes ff�nT �gn�Z �from which
f can be recovered with the sampling Theorem ����� Analyze the
convergence rate of the conjugate gradient algorithm as a function
of � What happens if the condition ����� is not satis�ed�

����� � Develop a texture classi�cation algorithm with a two�dimensional
Gabor wavelet transform using four oriented wavelets� The classi�
�cation procedure can be based on �feature vectors� that provide
local averages of the wavelet transform amplitude at several scales�
along these four orientations ����� ���� �
�� �����



Chapter �

Wavelet Zoom

Awavelet transform can focus on localized signal structures with a
zooming procedure that progressively reduces the scale parameter� Sin�
gularities and irregular structures often carry essential information in
a signal� For example� discontinuities in the intensity of an image in�
dicate the presence of edges in the scene� In electrocardiograms or
radar signals� interesting information also lies in sharp transitions� We
show that the local signal regularity is characterized by the decay of
the wavelet transform amplitude across scales� Singularities and edges
are detected by following the wavelet transform local maxima at �ne
scales�

Non�isolated singularities appear in complex signals such as multi�
fractals� In recent years� Mandelbrot led a broad search for multifrac�
tals� showing that they are hidden in almost every corner of nature and
science� The wavelet transform takes advantage of multifractal self�
similarities� in order to compute the distribution of their singularities�
This singularity spectrum is used to analyze multifractal properties�
Throughout the chapter� the wavelets are real functions�

��� Lipschitz Regularity 	

To characterize singular structures� it is necessary to precisely quan�
tify the local regularity of a signal f�t� Lipschitz exponents provide
uniform regularity measurements over time intervals� but also at any

���
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point v� If f has a singularity at v� which means that it is not di�eren�
tiable at v� then the Lipschitz exponent at v characterizes this singular
behavior�

The next section relates the uniform Lipschitz regularity of f over
R to the asymptotic decay of the amplitude of its Fourier transform�
This global regularity measurement is useless in analyzing the signal
properties at particular locations� Section 	���� studies zooming pro�
cedures that measure local Lipschitz exponents from the decay of the
wavelet transform amplitude at �ne scales�

����� Lipschitz De	nition and Fourier Analysis

The Taylor formula relates the di�erentiability of a signal to local poly�
nomial approximations� Suppose that f is m times di�erentiable in
�v � h� v � h�� Let pv be the Taylor polynomial in the neighborhood of
v


pv�t �
m��X
k��

f �k��v

k!
�t� vk� �	��

The Taylor formula proves that the approximation error

�v�t � f�t� pv�t

satis�es

�t � �v � h� v � h� � j�v�tj � jt� vjm
m!

sup
u�
v�h�v�h�

jfm�uj� �	��

The mth order di�erentiability of f in the neighborhood of v yields
an upper bound on the error �v�t when t tends to v� The Lipschitz
regularity re�nes this upper bound with non�integer exponents� Lips�
chitz exponents are also called H�older exponents in the mathematical
literature�

Denition ��	 �Lipschitz� � A function f is pointwise Lipschitz
� � � at v� if there exist K � �� and a polynomial pv of degree
m � b�c such that

�t � R � jf�t� pv�tj � K jt� vj�� �	��
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� A function f is uniformly Lipschitz � over �a� b� if it satis�es ����	
for all v � �a� b�� with a constant K that is independent of v�

� The Lipschitz regularity of f at v or over �a� b� is the sup of the
� such that f is Lipschitz ��

At each v the polynomial pv�t is uniquely de�ned� If f is m � b�c
times continuously di�erentiable in a neighborhood of v� then pv is the
Taylor expansion of f at v� Pointwise Lipschitz exponents may vary
arbitrarily from abscissa to abscissa� One can construct multifractal
functions with non�isolated singularities� where f has a di�erent Lips�
chitz regularity at each point� In contrast� uniform Lipschitz exponents
provide a more global measurement of regularity� which applies to a
whole interval� If f is uniformly Lipschitz � � m in the neighborhood
of v then one can verify that f is necessarily m times continuously
di�erentiable in this neighborhood�

If � � � 	 � then pv�t � f�v and the Lipschitz condition �	��
becomes

�t � R � jf�t� f�vj � K jt� vj��
A function that is bounded but discontinuous at v is Lipschitz � at v�
If the Lipschitz regularity is � 	 � at v� then f is not di�erentiable at
v and � characterizes the singularity type�

Fourier Condition The uniform Lipschitz regularity of f over R is
related to the asymptotic decay of its Fourier transform� The following
theorem can be interpreted as a generalization of Proposition ����

Theorem ��	 A function f is bounded and uniformly Lipschitz � over
R if Z ��

��

j �f��j �� � j�j� d� 	 ��� �	��

Proof �� To prove that f is bounded� we use the inverse Fourier integral
���
� and ����� which shows that

jf�t�j �
Z ��

��
j 	f���j d� 	 ���
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Let us now verify the Lipschitz condition ����� when  � � � �� In this
case pv�t� � f�v� and the uniform Lipschitz regularity means that there
exists K �  such that for all �t� v� � R�

jf�t�� f�v�j
jt� vj� � K�

Since

f�t� �
�

��

Z ��

��

	f��� exp�i�t� d��

jf�t�� f�v�j
jt� vj� � �

��

Z ��

��
j 	f���j j exp�i�t�� exp�i�v�j

jt� vj� d�� �����

For jt� vj�� � j�j�
j exp�i�t�� exp�i�v�j

jt� vj� � �

jt� vj� � � j�j��

For jt� vj�� � j�j�
j exp�i�t�� exp�i�v�j

jt� vj� � j�j jt� vj
jt� vj� � j�j��

Cutting the integral ����� in two for j�j 	 jt � vj�� and j�j � jt � vj��
yields

jf�t�� f�v�j
jt� vj� � �

��

Z ��

��
� j 	f���j j�j� d� � K�

If ����� is satis�ed� then K 	 �� so f is uniformly Lipschitz ��

Let us extend this result for m � b�c � � We proved in ������
that ����� implies that f is m times continuously di�erentiable� One
can verify that f is uniformly Lipschitz � over R if and only if f �m�

is uniformly Lipschitz � � m over R� The Fourier transform of f �m�

is �i��m 	f���� Since  � � � m 	 �� we can use our previous result
which proves that f �m� is uniformly Lipschitz � �m� and hence that f
is uniformly Lipschitz ��

The Fourier transform is a powerful tool for measuring the minimum
global regularity of functions� However� it is not possible to analyze the
regularity of f at a particular point v from the decay of j �f��j at high
frequencies �� In contrast� since wavelets are well localized in time�
the wavelet transform gives Lipschitz regularity over intervals and at
points�
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����� Wavelet Vanishing Moments

To measure the local regularity of a signal� it is not so important to use
a wavelet with a narrow frequency support� but vanishing moments are
crucial� If the wavelet has n vanishing moments then we show that the
wavelet transform can be interpreted as a multiscale di�erential opera�
tor of order n� This yields a �rst relation between the di�erentiability
of f and its wavelet transform decay at �ne scales�

Polynomial Suppression The Lipschitz property �	�� approximates
f with a polynomial pv in the neighborhood of v


f�t � pv�t � �v�t with j�v�tj � K jt� vj� � �	�	

A wavelet transform estimates the exponent � by ignoring the polyno�
mial pv� For this purpose� we use a wavelet that has n � � vanishing
moments
 Z ��

��

tk ��t dt � � for � � k 	 n �

A wavelet with n vanishing moments is orthogonal to polynomials of
degree n� �� Since � 	 n� the polynomial pv has degree at most n� ��
With the change of variable t� � �t� u�s we verify that

Wpv�u� s �

Z ��

��

pv�t
�p
s
�

�
t� u

s

�
dt � �� �	��

Since f � pv � �v�
Wf�u� s �W�v�u� s� �	��

Section 	���� explains how to measure � from jWf�u� sj when u is in
the neighborhood of v�

Multiscale Di�erential Operator The following proposition proves
that a wavelet with n vanishing moments can be written as the nth order
derivative of a function �" the resulting wavelet transform is a multi�
scale di�erential operator� We suppose that � has a fast decay which
means that for any decay exponent m � N there exists Cm such that

�t � R � j��tj � Cm

� � jtjm � �	��
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Theorem ��� A wavelet � with a fast decay has n vanishing moments
if and only if there exists � with a fast decay such that

��t � ���n d
n��t

dtn
� �	���

As a consequence

Wf�u� s � sn
dn

dun
�f � ��s�u � �	���

with ��s�t � s�������t�s� Moreover� � has no more than n vanishing
moments if and only if

R ��

��
��t dt �� ��

Proof �� The fast decay of � implies that 	� is C�� This is proved by
setting f � 	� in Proposition ���� The integral of a function is equal to
its Fourier transform evaluated at � � � The derivative property ������
implies that for any k 	 nZ ��

��
tk ��t� dt � �i�k 	��k��� � � ������

We can therefore make the factorization

	���� � ��i��n 	����� ������

and 	���� is bounded� The fast decay of � is proved with an induction on
n� For n � ��

��t� �

Z t

��
��u� du �

Z ��

t
��u� du�

and the fast decay of � is derived from ������ We then similarly verify
that increasing by � the order of integration up to n maintains the fast
decay of ��

Conversely� j	����j � R ��
�� j��t�j dt 	 ��� because � has a fast decay�

The Fourier transform of ����� yields ������ which implies that 	��k��� �
 for k 	 n� It follows from ������ that � has n vanishing moments�

To test whether � has more than n vanishing moments� we compute
with ������ Z ��

��
tn ��t� dt � �i�n 	��n��� � ��i�n n� 	����
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Clearly� � has no more than n vanishing moments if and only if 	��� �R ��
�� ��t� dt �� �

The wavelet transform ������ can be written

Wf�u� s� � f � ��s�u� with ��s�t� �
�p
s
�

��t
s

�
� ������

We derive from ����� that ��s�t� � sn dn	s�t�
dtn � Commuting the convolu�

tion and di�erentiation operators yields

Wf�u� s� � sn f �
dn��s
dtn

�u� � sn
dn

dun
�f � ��s��u�� ������

������

If K �
R ��

��
��t dt �� � then the convolution f � ��s�t can be interpreted

as a weighted average of f with a kernel dilated by s� So �	��� proves
that Wf�u� s is an nth order derivative of an averaging of f over a
domain proportional to s� Figure 	�� shows a wavelet transform calcu�
lated with � � ���� where � is a Gaussian� The resulting Wf�u� s is
the derivative of f averaged in the neighborhood of u with a Gaussian
kernel dilated by s�

Since � has a fast decay� one can verify that

lim
s��

�p
s
��s � K � �

in the sense of the weak convergence �A���� This means that for any
 that is continuous at u�

lim
s��

 �
�p
s
��s�u � K �u�

If f is n times continuously di�erentiable in the neighborhood of u then
�	��� implies that

lim
s��

Wf�u� s

sn����
� lim

s��
f �n� �

�p
s
��s�u � K f �n��u � �	��	

In particular� if f is Cn with a bounded nth order derivative then
jWf�u� sj � O�sn����� This is a �rst relation between the decay
of jWf�u� sj when s decreases and the uniform regularity of f � Finer
relations are studied in the next section�
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Figure 	��
 Wavelet transformWf�u� s calculated with � � ��� where
� is a Gaussian� for the signal f shown above� The position parameter u
and the scale s vary respectively along the horizontal and vertical axes�
Black� grey and white points correspond respectively to positive� zero
and negative wavelet coe�cients� Singularities create large amplitude
coe�cients in their cone of in uence�
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����� Regularity Measurements with Wavelets

The decay of the wavelet transform amplitude across scales is related to
the uniform and pointwise Lipschitz regularity of the signal� Measuring
this asymptotic decay is equivalent to zooming into signal structures
with a scale that goes to zero� We suppose that the wavelet � has n
vanishing moments and is Cn with derivatives that have a fast decay�
This means that for any � � k � n and m � N there exists Cm such
that

�t � R � j��k��tj � Cm

� � jtjm � �	���

The following theorem relates the uniform Lipschitz regularity of f on
an interval to the amplitude of its wavelet transform at �ne scales�

Theorem ��� If f � L��R is uniformly Lipschitz � � n over �a� b��
then there exists A � � such that

��u� s � �a� b�	 R� � jWf�u� sj � As������ �	���

Conversely� suppose that f is bounded and thatWf�u� s satis�es ���
�	
for an � 	 n that is not an integer� Then f is uniformly Lipschitz �
on �a � �� b� ��� for any � � ��

Proof �� This theorem is proved with minor modi�cations in the proof
of Theorem ���� Since f is Lipschitz � at any v � �a� b�� Theorem ���
shows in ������ that

��u� s� � R � R� � jWf�u� s�j � As�����

�
� �

����u� v

s

������ �

For u � �a� b�� we can choose v � u� which implies that jWf�u� s�j �
As������ We verify from the proof of ������ that the constant A does
not depend on v because the Lipschitz regularity is uniform over �a� b��

To prove that f is uniformly Lipschitz � over �a � �� b � �� we must
verify that there exists K such that for all v � �a � �� b� �� we can �nd
a polynomial pv of degree b�c such that

�t � R � jf�t�� pv�t�j � K jt� vj� � ������

When t �� �a����� b����� then jt�vj � ��� and since f is bounded� ������
is veri�ed with a constant K that depends on �� For t � �a����� b������
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the proof follows the same derivations as the proof of pointwise Lipschitz
regularity from ������ in Theorem ���� The upper bounds ������ and
����
� are replaced by

�t � �a � ���� b� ���� � j��k�
j �t�j � K ����k�j for  � k � b�c � � �

�����
This inequality is veri�ed by computing an upper bound integral similar
to ������ but which is divided in two� for u � �a� b� and u �� �a� b�� When
u � �a� b�� the condition ������ is replaced by jWf�u� s�j � As����� in
������� When u �� �a� b�� we just use the fact that jWf�u� s�j � kfk k�k
and derive ����� from the fast decay of j��k��t�j� by observing that jt�
uj � ��� for t � �a � ���� b � ����� The constant K depends on A and
� but not on v� The proof then proceeds like the proof of Theorem ����
and since the resulting constant K in ����� does not depend on v� the
Lipschitz regularity is uniform over �a� �� b � ���

The inequality �	��� is really a condition on the asymptotic decay of
jWf�u� sj when s goes to zero� At large scales it does not introduce
any constraint since the Cauchy�Schwarz inequality guarantees that the
wavelet transform is bounded


jWf�u� sj � jhf� �u�sij � kfk k�k�
When the scale s decreases� Wf�u� s measures �ne scale variations in
the neighborhood of u� Theorem 	�� proves that jWf�u� sj decays like
s����� over intervals where f is uniformly Lipschitz ��

Observe that the upper bound �	��� is similar to the su�cient
Fourier condition of Theorem 	��� which supposes that j �f��j decays
faster than ���� The wavelet scale s plays the role of a �localized�
inverse frequency ���� As opposed to the Fourier transform Theorem
	��� the wavelet transform gives a Lipschitz regularity condition that is
localized over any �nite interval and it provides a necessary condition
which is nearly su�cient� When �a� b� � R then �	��� is a necessary
and su�cient condition for f to be uniformly Lipschitz � on R�

If � has exactly n vanishing moments then the wavelet transform
decay gives no information concerning the Lipschitz regularity of f for
� � n� If f is uniformly Lipschitz � � n then it is Cn and �	��	 proves
that lims�� s

�n����Wf�u� s � K f �n��u withK �� �� This proves that
jWf�u� sj 
 sn���� at �ne scales despite the higher regularity of f �
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If the Lipschitz exponent � is an integer then �	��� is not su�cient
in order to prove that f is uniformly Lipschitz �� When �a� b� � R� if
� � � and � has two vanishing moments� then the class of functions
that satisfy �	��� is called the Zygmund class ����� It is slightly larger
than the set of functions that are uniformly Lipschitz �� For example�
f�t � t loge t belongs to the Zygmund class although it is not Lipschitz
� at t � ��

Pointwise Lipschitz Regularity The study of pointwise Lipschitz
exponents with the wavelet transform is a delicate and beautiful topic
which �nds its mathematical roots in the characterization of Sobolev
spaces by Littlewood and Paley in the �����s� Characterizing the reg�
ularity of f at a point v can be di�cult because f may have very
di�erent types of singularities that are aggregated in the neighborhood
of v� In ����� Bony ���� introduced the �two�microlocalization� the�
ory which re�nes the Littlewood�Paley approach to provide pointwise
characterization of singularities� which he used to study the solution
of hyperbolic partial di�erential equations� These technical results be�
came much simpler through the work of Ja�ard ����� who proved that
the two�microlocalization properties are equivalent to speci�c decay
conditions on the wavelet transform amplitude� The following theorem
gives a necessary condition and a su�cient condition on the wavelet
transform for estimating the Lipschitz regularity of f at a point v� Re�
member that the wavelet � has n vanishing moments and n derivatives
having a fast decay�

Theorem ��� �Ja�ard� If f � L��R is Lipschitz � � n at v� then
there exists A such that

��u� s � R 	 R� � jWf�u� sj � As�����

�
� �

����u� v

s

������ � �	���

Conversely� if � 	 n is not an integer and there exist A and �� 	 �
such that

��u� s � R 	 R� � jWf�u� sj � As�����

�
� �

����u� v

s

������
�

�	���

then f is Lipschitz � at v�
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Proof� The necessary condition is relatively simple to prove but the suf�
�cient condition is much more di�cult�

� Proof � of ����	� Since f is Lipschitz � at v� there exists a polynomial
pv of degree b�c 	 n and K such that jf�t��pv�t�j � Kjt�vj�� Since �
has n vanishing moments� we saw in ����� that Wpv�u� s� �  and hence

jWf�u� s�j �

����Z ��

��

�
f�t�� pv�t�

� �p
s
�
� t� u

s

�
dt

����
�

Z ��

��
K jt� vj� �p

s

������ t� u

s

����� dt�
The change of variable x � �t� u��s gives

jWf�u� s�j � p
s

Z ��

��
K jsx � u� vj� j��x�j dx�

Since ja � bj� � �� �jaj� � jbj���

jWf�u� s�j � K ��
p
s

�
s�
Z ��

��
jxj� j��x�j dx � ju� vj�

Z ��

��
j��x�j dx

�
which proves �������

� Proof � of ������ The wavelet reconstruction formula ������ proves that
f can be decomposed in a Littlewood�Paley type sum

f�t� �

��X
j���

�j�t� ������

with

�j�t� �
�

C�

Z ��

��

Z �j��

�j
Wf�u� s�

�p
s
�

�
t� u

s

�
ds

s�
du � ������

Let �
�k�
j be its kth order derivative� To prove that f is Lipschitz � at

v we shall approximate f with a polynomial that generalizes the Taylor
polynomial

pv�t� �

b�cX
k��

�� ��X
j���

�
�k�
j �v�

�A �t� v�k

k�
� ������
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If f is n times di�erentiable at v then pv corresponds to the Taylor
polynomial but this is not necessarily true� We shall �rst prove thatP��

j��� �
�k�
j �v� is �nite by getting upper bounds on j��k�

j �t�j� These
sums may be thought of as a generalization of pointwise derivatives�

To simplify the notation� we denote by K a generic constant which
may change value from one line to the next but that does not depend
on j and t� The hypothesis ������ and the asymptotic decay condition
������ imply that

j�j�t�j �
�

C�

Z ��

��

Z �j��

�j
As�

�
� �

����u� v

s

������
	

Cm

� � j�t� u��sjm
ds

s�
du

� K

Z ��

��
��j

�
� �

����u� v

�j

������
	

�

� � j�t� u���j jm
du

�j
������

Since ju � vj�� � ��
�
�ju � tj�� � jt � vj���� the change of variable u� �

��j�u� t� yields

j�j�t�j � K ��j
Z ��

��

� � ju�j�� �
���v � t���j

����
� � ju�jm du��

Choosing m � �� � � yields

j�j�t�j � K ��j

�
� �

����v � t

�j

������
	
� ������

The same derivations applied to the derivatives of �j�t� yield

�k � b�c� � � j��k�
j �t�j � K ����k�j

�
� �

����v � t

�j

������
	
� ����
�

At t � v it follows that

�k � b�c � j��k�
j �v�j � K ����k�j � ������

This guarantees a fast decay of j��k�
j �v�j when �j goes to zero� because

� is not an integer so � � b�c� At large scales �j � since jWf�u� s�j �
kfk k�k with the change of variable u� � �t� u��s in ������ we have

j��k�
j �v�j � kfk k�k

C�

Z ��

��
j��k��u��j du�

Z �j��

�j

ds

s	���k
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and hence j��k�
j �v�j � K���k�����j � Together with ������ this proves

that the polynomial pv de�ned in ������ has coe�cients that are �nite�

With the Littlewood�Paley decomposition ������ we compute

jf�t�� pv�t�j �

������
��X

j���

���j�t��
b�cX
k��

�
�k�
j �v�

�t� v�k

k�

�A������ �
The sum over scales is divided in two at �J such that �J � jt�vj � �J���
For j � J � we can use the classical Taylor theorem to bound the Taylor
expansion of �j�

I �

��X
j�J

�������j�t��
b�cX
k��

�
�k�
j �v�

�t� v�k

k�

������
�

��X
j�J

�t� v�b�c��

�b�c � ���
sup
h�
t�v�

j�b�c��
j �h�j �

Inserting ����
� yields

I � K jt� vjb�c��
��X
j�J

��j�b�c�����

����v � t

�j

������
and since �J � jt� vj � �J�� we get I � K jv � tj��

Let us now consider the case j 	 J

II �

J��X
j���

�������j�t��
b�cX
k��

�
�k�
j �v�

�t� v�k

k�

������
� K

J��X
j���

����j

�
� �

����v � t

�j

������
	

�

b�cX
k��

�t� v�k

k�
�j���k�

�A
� K

����J � �����
��J jt� vj�� �

b�cX
k��

�t� v�k

k�
�J���k�

�A
and since �J � jt� vj � �J�� we get II � K jv � tj�� As a result

jf�t�� pv�t�j � I � II � K jv � tj� �����

which proves that f is Lipschitz � at v�
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Cone of In�uence To interpret more easily the necessary condition
�	��� and the su�cient condition �	���� we shall suppose that � has
a compact support equal to ��C�C�� The cone of in�uence of v in the
scale�space plane is the set of points �u� s such that v is included in the
support of �u�s�t � s���� ���t�u�s� Since the support of ���t�u�s
is equal to �u� Cs� u� Cs�� the cone of in uence of v is de�ned by

ju� vj � Cs� �	���

It is illustrated in Figure 	��� If u is in the cone of in uence of v then
Wf�u� s � hf� �u�si depends on the value of f in the neighborhood of
v� Since ju� vj�s � C� the conditions �	����	��� can be written

jWf�u� sj � A� s�����

which is identical to the uniform Lipschitz condition �	��� given by
Theorem 	��� In Figure 	��� the high amplitude wavelet coe�cients are
in the cone of in uence of each singularity�

|u-v| > C s

v

s

0 u

|u-v| > C s

|u-v| < C s

Figure 	��
 The cone of in uence of an abscissa v consists of the scale�
space points �u� s for which the support of �u�s intersects t � v�

Oscillating Singularities It may seem surprising that �	����	���
also impose a condition on the wavelet transform outside the cone of
in uence of v� Indeed� this corresponds to wavelets whose support does
not intersect v� For ju� vj � Cs we get

jWf�u� sj � A� s���
����� ju� vj�� �	���
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We shall see that it is indeed necessary to impose this decay when u
tends to v in order to control the oscillations of f that might generate
singularities�

Let us consider the generic example of a highly oscillatory function

f�t � sin
�

t
�

which is discontinuous at v � � because of the acceleration of its os�
cillations� Since � is a smooth Cn function� if it is centered close to
zero then the rapid oscillations of sin t�� produce a correlation inte�
gral h sin t��� �u�si that is very small� With an integration by parts�
one can verify that if �u� s is in the cone of in uence of v � �� then
jWf�u� sj � As������ This looks as if f is Lipschitz � at �� How�
ever� Figure 	�� shows high energy wavelet coe�cients below the cone
of in uence of v � �� which are responsible for the discontinuity� To
guarantee that f is Lipschitz �� the amplitude of such coe�cients is
controlled by the upper bound �	����

−0.5 0 0.5
−1

0

1

 t

f(t)

 u

s

−0.5 0 0.5

0.05

0.1

0.15

0.2

0.25

Figure 	��
 Wavelet transform of f�t � sin�a t�� calculated with � �
��� where � is a Gaussian� High amplitude coe�cients are along a
parabola below the cone of in uence of t � ��

To explain why the high frequency oscillations appear below the
cone of in uence of v� we use the results of Section ����� on the esti�
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mation of instantaneous frequencies with wavelet ridges� The instan�
taneous frequency of sin t�� � sin�t is j��tj � t��� Let �a be the
analytic part of �� de�ned in ������ The corresponding complex an�
alytic wavelet transform is W af�u� s � hf� �a

u�si� It was proved in

������ that for a �xed time u� the maximum of s����jW af�u� sj is
located at the scale

s�u �
�

��u
� � u��

where � is the center frequency of ��a��� When u varies� the set of
points �u� s�u de�ne a ridge that is a parabola located below the cone
of in uence of v � � in the plane �u� s� Since � � Real��a�� the real
wavelet transform is

Wf�u� s � Real�W af�u� s��

The high amplitude values ofWf�u� s are thus located along the same
parabola ridge curve in the scale�space plane� which clearly appears in
Figure 	��� Real wavelet coe�cients Wf�u� s change sign along the
ridge because of the variations of the complex phase of W af�u� s�

The example of f�t � sin t�� can be extended to general oscillatory
singularities ����� A function f has an oscillatory singularity at v if there
exist � � � and 
 � � such that for t in a neighborhood of v

f�t 
 jt� vj� g
�

�

jt� vj

�

�

where g�t is a C� oscillating function whose primitives at any order
are bounded� The function g�t � sin t is a typical example� The oscil�
lations have an instantaneous frequency ��t that increases to in�nity
faster than jtj�� when t goes to v� High energy wavelet coe�cients are
located along the ridge s�u � ����u� and this curve is necessarily
below the cone of in uence ju� vj � Cs�

��� Wavelet TransformModulus Maxima �

Theorems 	�� and 	�� prove that the local Lipschitz regularity of f at v
depends on the decay at �ne scales of jWf�u� sj in the neighborhood
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of v� Measuring this decay directly in the time�scale plane �u� s is not
necessary� The decay of jWf�u� sj can indeed be controlled from its
local maxima values�

We use the term modulus maximum to describe any point �u�� s�
such that jWf�u� s�j is locally maximum at u � u�� This implies that

�Wf�u�� s�

�u
� ��

This local maximum should be a strict local maximum in either the
right or the left neighborhood of u�� to avoid having any local maxima
when jWf�u� s�j is constant� We callmaxima line any connected curve
s�u in the scale�space plane �u� s along which all points are modulus
maxima� Figure 	���b shows the wavelet modulus maxima of a signal�

����� Detection of Singularities

Singularities are detected by �nding the abscissa where the wavelet
modulus maxima converge at �ne scales� To better understand the
properties of these maxima� the wavelet transform is written as a mul�
tiscale di�erential operator� Theorem 	�� proves that if � has exactly
n vanishing moments and a compact support� then there exists � of
compact support such that � � ���n��n� with R ��

��
��t dt �� �� The

wavelet transform is rewritten in �	��� as a multiscale di�erential op�
erator

Wf�u� s � sn
dn

dun
�f � ��s�u� �	���

If the wavelet has only one vanishing moment� wavelet modulus
maxima are the maxima of the �rst order derivative of f smoothed by
��s� as illustrated by Figure 	��� These multiscale modulus maxima are
used to locate discontinuities� and edges in images� If the wavelet has
two vanishing moments� the modulus maxima correspond to high cur�
vatures� The following theorem proves that ifWf�u� s has no modulus
maxima at �ne scales� then f is locally regular�

Theorem ��� �Hwang� Mallat� Suppose that � is Cn with a com�
pact support� and � � ���n ��n� with R ��

��
��tdt �� �� Let f � L��a� b��

If there exists s� � � such that jWf�u� sj has no local maximum for
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u � �a� b� and s 	 s�� then f is uniformly Lipschitz n on �a � �� b � ���
for any � � ��

W  f(u,s)1 

W  f(u,s)2

f(t)

u

u

u

f* θ (u)s

_

Figure 	��
 The convolution f � ��s�u averages f over a domain propor�
tional to s� If � � ��� then W�f�u� s � s d

du
�f � ��s�u has modulus

maxima at sharp variation points of f � ��s�u� If � � ��� then the
modulus maxima of W�f�u� s � s� d�

du�
�f � ��s�u correspond to locally

maximum curvatures�

This theorem is proved in ������ It implies that f can be singular
�not Lipschitz � at a point v only if there is a sequence of wavelet
maxima points �up� spp�N that converges towards v at �ne scales


lim
p���

up � v and lim
p���

sp � � �

These modulus maxima points may or may not be along the same max�
ima line� This result guarantees that all singularities are detected by
following the wavelet transform modulus maxima at �ne scales� Figure
	�� gives an example where all singularities are located by following the
maxima lines�

Maxima Propagation For all � � ���n ��n�� we are not guaranteed
that a modulus maxima located at �u�� s� belongs to a maxima line



��	 CHAPTER �� WAVELET ZOOM

that propagates towards �ner scales� When s decreases� Wf�u� s may
have no more maxima in the neighborhood of u � u�� The following
proposition proves that this is never the case if � is a Gaussian� The
wavelet transform Wf�u� s can then be written as the solution of the
heat di�usion equation� where s is proportional to the di�usion time�
The maximum principle applied to the heat di�usion equation proves
that maxima may not disappear when s decreases� Applications of
the heat di�usion equation to the analysis of multiscale averaging have
been studied by several computer vision researchers ����� ��	� �����

Proposition ��	 �Hummel� Poggio� Yuille� Let � � ���n��n� where
� is a Gaussian� For any f � L��R� the modulus maxima of Wf�u� s
belong to connected curves that are never interrupted when the scale
decreases�

Proof �� To simplify the proof� we suppose that � is a normalized Gaus�
sian ��t� � �������� exp��t���� whose Fourier transform is 	���� �
exp������ Theorem ��� proves that

Wf�u� s� � sn f �n� � �s�u�� ������

where the nth derivative f �n� is de�ned in the sense of distributions� Let
� be the di�usion time� The solution of

�g��� u�

��
� ���g��� u�

�u�
������

with initial condition g�� u� � g��u� is obtained by computing the
Fourier transform with respect to u of �������

�g��� u�

��
� ��� 	g��� ���

It follows that 	g��� �� � 	g���� exp������ and hence

g�u� �� �
�p
�
g� � �� �u��

For � � s� setting g� � f �n� and inserting ������ yields Wf�u� s� �
sn���� g�u� s�� The wavelet transform is thus proportional to a heat dif�
fusion with initial condition f �n��
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Figure 	��
 �a
 Wavelet transform Wf�u� s� The horizontal and ver�
tical axes give respectively u and log� s� �b
 Modulus maxima of
Wf�u� s� �c
 The full line gives the decay of log� jWf�u� sj as a
function of log� s along the maxima line that converges to the abscissa
t � ����� The dashed line gives log� jWf�u� sj along the left maxima
line that converges to t � �����
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The maximum principle for the parabolic heat equation ���� proves
that a global maximum of jg�u� s�j for �u� s� � �a� b���s�� s�� is necessarily
either on the boundary u � a� b or at s � s�� A modulus maxima
of Wf�u� s� at �u�� s�� is a local maxima of jg�u� s�j for a �xed s and
u varying� Suppose that a line of modulus maxima is interrupted at
�u�� s��� with s� � � One can then verify that there exists � �  such
that a global maximum of jg�u� s�j over �u� � �� u� � ��� �s� � �� s�� is at
�u�� s��� This contradicts the maximum principle� and thus proves that
all modulus maxima propagate towards �ner scales�

Derivatives of Gaussians are most often used to guarantee that all max�
ima lines propagate up to the �nest scales� Chaining together maxima
into maxima lines is also a procedure for removing spurious modulus
maxima created by numerical errors in regions where the wavelet trans�
form is close to zero�

Isolated Singularities A wavelet transform may have a sequence of
local maxima that converge to an abscissa v even though f is perfectly
regular at v� This is the case of the maxima line of Figure 	�� that
converges to the abscissa v � ����� To detect singularities it is therefore
not su�cient to follow the wavelet modulus maxima across scales� The
Lipschitz regularity is calculated from the decay of the modulus maxima
amplitude�

Let us suppose that for s 	 s� all modulus maxima that converge
to v are included in a cone

ju� vj � Cs� �	��	

This means that f does not have oscillations that accelerate in the
neighborhood of v� The potential singularity at v is necessarily isolated�
Indeed� we can derive from Theorem 	�� that the absence of maxima
below the cone of in uence implies that f is uniformly Lipschitz n in
the neighborhood of any t �� v with t � �v � Cs�� v �Cs�� The decay
of jWf�u� sj in the neighborhood of v is controlled by the decay of
the modulus maxima included in the cone ju� vj � Cs� Theorem 	��
implies that f is uniformly Lipschitz � in the neighborhood of v if and
only if there exists A � � such that each modulus maximum �u� s in
the cone �	��	 satis�es

jWf�u� sj � As������ �	���
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which is equivalent to

log� jWf�u� sj � log�A �

�
� �

�

�

�
log� s� �	���

The Lipschitz regularity at v is thus the maximum slope of log� jWf�u� sj
as a function of log� s along the maxima lines converging to v�

In numerical calculations� the �nest scale of the wavelet transform
is limited by the resolution of the discrete data� From a sampling at
intervals N��� Section ����� computes the discrete wavelet transform at
scales s � �N��� where � is large enough to avoid sampling coarsely the
wavelets at the �nest scale� The Lipschitz regularity � of a singularity
is then estimated by measuring the decay slope of log� jWf�u� sj as
a function of log� s for �J � s � �N��� The largest scale �J should
be smaller than the distance between two consecutive singularities to
avoid having other singularities in uence the value of Wf�u� s� The
sampling interval N�� must therefore be small enough to measure �
accurately� The signal in Figure 	���a is de�ned by N � ��	 samples�
Figure 	���c shows the decay of log� jWf�u� sj along the maxima line
converging to t � ����� It has slope ����� � ��� for ��� � s � ���� As
expected� � � � because the signal is discontinuous at t � ����� Along
the second maxima line converging to t � ���� the slope is ����� � ��
which indicates that the singularity is Lipschitz ����

When f is a function whose singularities are not isolated� �nite res�
olution measurements are not su�cient to distinguish individual sin�
gularities� Section 	�� describes a global approach that computes the
singularity spectrum of multifractals by taking advantage of their self�
similarity�

Smoothed Singularities The signal may have important variations
that are in�nitely continuously di�erentiable� For example� at the bor�
der of a shadow the grey level of an image varies quickly but is not
discontinuous because of the di�raction e�ect� The smoothness of these
transitions is modeled as a di�usion with a Gaussian kernel whose vari�
ance is measured from the decay of wavelet modulus maxima�

In the neighborhood of a sharp transition at v� we suppose that

f�t � f� � g��t� �	���
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where g� is a Gaussian of variance ��


g��t �
�

�
p
��

exp

��t�
���

�
� �	���

If f� has a Lipschitz � singularity at v that is isolated and non�oscillating�
it is uniformly Lipschitz � in the neighborhood of v� For wavelets that
are derivatives of Gaussians� the following theorem ��	�� relates the
decay of the wavelet transform to � and ��

Theorem ��� Let � � ���n ��n� with ��t � � exp��t����
�� If
f � f� � g� and f� is uniformly Lipschitz � on �v � h� v � h� then there
exists A such that

��u� s � �v�h� v�h�	R� � jWf�u� sj � As�����

�
� �

��


�s�

���n�����
�

�	���

Proof �� The wavelet transform can be written

Wf�u� s� � sn
dn

dun
�f � ��s��u� � sn

dn

dun
�f� � g� � ��s��u�� ������

Since � is a Gaussian� one can verify with a Fourier transform calculation
that

��s � g��t� �

r
s

s�
��s��t� with s� �

s
s� �


�

��
� ������

Inserting this result in ������ yields

Wf�u� s� � sn
r

s

s�

dn

dun
�f� � ��s���u� �

�
s

s�

�n����

Wf��u� s��� ������

Since f� is uniformly Lipschitz � on �v � h� v � h�� Theorem ��� proves
that there exists A �  such that

��u� s� � �v � h� v � h�� R� � jWf��u� s�j � As������ ������

Inserting this in ������ gives

jWf�u� s�j � A

�
s

s�

�n����

s
�����
� � ������

from which we derive ������ by inserting the expression ������ of s��
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This theorem explains how the wavelet transform decay relates to the
amount of di�usion of a singularity� At large scales s � ��
� the
Gaussian averaging is not �felt� by the wavelet transform which decays
like s������ For s � ��
� the variation of f at v is not sharp relative to
s because of the Gaussian averaging� At these �ne scales� the wavelet
transform decays like sn���� because f is C��

The parameters K� �� and � are numerically estimated from the
decay of the modulus maxima along the maxima curves that converge
towards v� The variance 
� depends on the choice of wavelet and is
known in advance� A regression is performed to approximate

log� jWf�u� sj � log��K �
�
��

�

�

	
log� s�

n� �

�
log�

�
� �

��


�s�

	
�

Figure 	�	 gives the wavelet modulus maxima computed with a wavelet
that is a second derivative of a Gaussian� The decay of log� jWf�u� sj
as a function of log� s is given along several maxima lines corresponding
to smoothed and non�smoothed singularities� The wavelet is normalized
so that 
 � � and the di�usion scale is � � ����

����� Reconstruction From Dyadic Maxima �

Wavelet transform maxima carry the properties of sharp signal tran�
sitions and singularities� If one can reconstruct a signal from these
maxima� it is then possible to modify the singularities of a signal by
processing the wavelet transform modulus maxima� The strength of
singularities can be modi�ed by changing the amplitude of the maxima
and we can remove some singularities by suppressing the corresponding
maxima�

For fast numerical computations� the detection of wavelet transform
maxima is limited to dyadic scales f�jgj�Z� Suppose that � is a dyadic
wavelet� which means that there exist A � � and B such that

�� � R � f�g � A �
��X

j���

j ����j�j� � B� �	���

Theorem ���� proves that the dyadic wavelet transform fWf�u� �jgj�Z
is a complete and stable representation� This means that it admits
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Figure 	�	
 �a
 Wavelet transform Wf�u� s� �b
 Modulus maxima
of a wavelet transform computed � � ���� where � is a Gaussian with
variance 
 � �� �c
 Decay of log� jWf�u� sj along maxima curves� In
the left �gure� the solid and dotted lines correspond respectively to the
maxima curves converging to t � ���� and t � ����� In the right �gure�
they correspond respectively to the curves converging to t � ���� and
t � ����� The di�usion at t � ���� and t � ���� modi�es the decay for
s � � � ����
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a bounded left inverse� This dyadic wavelet transform has the same
properties as a continuous wavelet transform Wf�u� s� All theorems
of Sections 	���� and 	�� remain valid if we restrict s to the dyadic
scales f�jgj�Z� Singularities create sequences of maxima that converge
towards the corresponding location at �ne scales� and the Lipschitz
regularity is calculated from the decay of the maxima amplitude�

Translation�Invariant Representation At each scale �j� the max�
ima representation provides the values of Wf�u� �j where jWf�u� �jj
is locally maximum� Figure 	���c gives an example� This adaptive
sampling of u produces a translation�invariant representation� When f
is translated by � each Wf��j� u is translated by � and their maxima
are translated as well� This is not the case when u is uniformly sampled
as in the wavelet frames of Section ���� Section ��� explains that this
translation invariance is of prime importance for pattern recognition
applications�

Reconstruction To study the completeness and stability of wavelet
maxima representations� Mallat and Zhong introduced an alternate pro�
jection algorithm ��	�� that recovers signal approximations from their
wavelet maxima" several other algorithms have been proposed more re�
cently ���	� ���� ����� Numerical experiments show that one can only
recover signal approximations with a relative mean�square error of the
order of ����� For general dyadic wavelets� Meyer ���� and Berman ����
proved that exact reconstruction is not possible� They found families
of continuous or discrete signals whose dyadic wavelet transforms have
the same modulus maxima� However� signals with the same wavelet
maxima di�er from each other only slightly� which explains the suc�
cess of numerical reconstructions ��	��� If the signal has a band�limited
Fourier transform and if �� has a compact support� then Kicey and
Lennard ����� proved that wavelet modulus maxima de�ne a complete
and stable signal representation�

A simple and fast reconstruction algorithm is presented from a frame
perspective� Section ��� is thus a prerequisite� At each scale �j� we
know the positions fuj�pgp of the local maxima of jWf�u� �jj and the
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Figure 	��
 �a
 Intensity variation along one row of the Lena image�
�b
 Dyadic wavelet transform computed at all scales �N�� � �j � ��
with the quadratic spline wavelet � � ��� shown in Figure ��	� �c

Modulus maxima of the dyadic wavelet transform�
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values

Wf�uj�p� �
j � hf� �j�pi

with

�j�p�t �
�p
�j
�

�
t� uj�p
�j

�
�

The reconstruction algorithm should recover a function �f such that

W �f�uj�p� �
j � h �f� �j�pi � hf� �j�pi� �	���

and whose wavelet modulus maxima are all located at uj�p�

Frame Pseudo�Inverse The main di�culty comes from the non�
linearity and non�convexity of the constraint on the position of local
maxima� To reconstruct an approximated signal with a fast algorithm�
this constraint is replaced by a minimization of the signal norm� Instead
of �nding a function whose wavelet modulus maxima are exactly located
at the uj�p� the reconstruction algorithm recovers the function �f of
minimum norm such that h �f� �j�pi � hf� �j�pi� The minimization of
k �fk has a tendency to decrease the wavelet transform energy at each
scale �j

kW �f�u� �jk� �
Z ��

��

jW �f�u� �jj� du

because of the norm equivalence proved in Theorem ����


A k �fk� �
��X

j���

��jkW �f�u� �jk� � B k �fk��

The norm kW �f�u� �jk is reduced by decreasing jW �f�u� �jj� Since
we also impose that W �f�uj�p� �

j � hf� �j�pi� minimizing kfk generally
creates local maxima at u � uj�p�

The signal �f of minimum norm that satis�es �	��� is the orthogonal
projection PVf of f on the space V generated by the wavelets f�j�pgj�p
corresponding to the maxima� In discrete calculations� there is a �nite
number of maxima so f�j�pgj�p is a �nite family and hence a basis or a
redundant frame of V�
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Theorem ��� describes a conjugate gradient algorithm that recovers
�f from the frame coe�cients h �f� �j�pi with a pseudo�inverse� It performs
this calculation by inverting a frame symmetrical operator L introduced
in ����	� which is de�ned by

�r � V � Lr �
X
j�p

hr� �j�pi�j�p � �	���

Clearly �f � L��Lf � L��g with

g � L �f �
X
j�p

h �f� �j�pi�j�p �
X
j�p

hf� �j�pi�j�p � �	���

The conjugate gradient computes L��g with an iterative procedure that
has exponential convergence� The convergence rate depends on the
frame bounds A and B of f�j�pgj�p in V� Approximately �� iterations
are usually su�cient to recover an approximation of f with a relative
mean�square error on the order of ����� More iterations do not decrease
the error much because �f �� f � Each iteration requires O�N log�N
calculations if implemented with a fast �#a trous� algorithm�

Example ��	 Figure 	���b shows the signal �f � PVf recovered with
�� iterations of the conjugate gradient algorithm� from the wavelet tran�
form maxima in Figure 	���c� After �� iterations� the reconstruction
error is kf � �fk�kfk � ��� ����� Figure 	���c shows the signal recon�
structed from the ��$ of wavelet maxima that have the largest ampli�
tude� Sharp signal transitions corresponding to large wavelet maxima
have not been a�ected� but small texture variations disappear because
the corresponding maxima are removed� The resulting signal is piece�
wise regular�

Fast Discrete Calculations To simplify notation� the sampling in�
terval of the input signal is normalized to �� The dyadic wavelet trans�
form of this normalized discrete signal a��n� of size N is calculated at
scales � � �j � N with the �algorithme #a trous� of Section ������ The
cascade of convolutions with the two �lters h�n� and g�n� is computed
with O�N log�N operations�
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Figure 	��
 �a
 Original signal� �b
 Frame reconstruction from the
dyadic wavelet maxima shown in Figure 	���c� �c
 Frame reconstruc�
tion from the maxima whose amplitude is above the threshold T � ���
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Each wavelet coe�cient can be written as an inner product of a�
with a discrete wavelet translated by m


dj�m� � ha��n�� �j�n�m�i �
N��X
n��

a��n��j�n�m� �

The modulus maxima are located at abscissa uj�p where jdj�uj�p�j is
locally maximum� which means that

jdj�uj�p�j � jdj�uj�p � ��j and jdj�uj�p�j � jdj�uj�p � ��j �

so long as one of these two inequalities is strict� We denote �j�p�n� �
�j�n� uj�p��

To reconstruct a signal from its dyadic wavelet transform calculated
up to the coarsest scale �J � it is necessary to provide the remaining
coarse approximation aJ �m�� which is reduced to a constant when �J �
N 


aJ �m� �
�p
N

N��X
n��

a��n� �
p
N C �

Providing the average C is also necessary in order to reconstruct a
signal from its wavelet maxima�

The maxima reconstruction algorithm inverts the symmetrical op�
erator L associated to the frame coe�cients that are kept


Lr �

log� NX
j��

X
p

hr� �j�pi�j�p � C � �	���

The computational complexity of the conjugate gradient algorithm of
Theorem ��� is driven by the calculation of Lpn in ������ This is
optimized with an e�cient �lter bank implementation of L�

To compute Lr we �rst calculate the dyadic wavelet transform of
r�n� with the �algorithme #a trous�� At each scale �j� all coe�cients
that are not located at an abscissa uj�p are set to zero


�dj�m� �


 hr�n�� �j�n� uj�p�i if m � uj�p
� otherwise

� �	���
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Then Lr�n� is obtained by modifying the �lter bank reconstruction
given by Proposition ��	� The decomposition and reconstruction wavelets
are the same in �	��� so we set �h�n� � h�n� and �g�n� � g�n�� The fac�
tor ��� in ����� is also removed because the reconstruction wavelets
in �	��� are not attenuated by ��j as are the wavelets in the non�
sampled reconstruction formula ������ For J � log�N � we initialize
�aJ �n� � C�

p
N and for log�N � j � � we compute

�aj�n� � �aj�� � hj�n� � �dj�� � gj�n�� �	���

One can verify that Lr�n� � �a��n� with the same derivations as in the
proof of Proposition ��	� Let Kh and Kg be the number of non�zero
coe�cients of h�n� and g�n�� The calculation of Lr�n� from r�n� requires
a total of ��Kh �KgN log�N operations� The reconstructions shown
in Figure 	�� are computed with the �lters of Table ����

��� Multiscale Edge Detection �

The edges of structures in images are often the most important features
for pattern recognition� This is well illustrated by our visual ability to
recognize an object from a drawing that gives a rough outline of con�
tours� But� what is an edge% It could be de�ned as points where the
image intensity has sharp transitions� A closer look shows that this
de�nition is often not satisfactory� Image textures do have sharp inten�
sity variations that are often not considered as edges� When looking
at a brick wall� we may decide that the edges are the contours of the
wall whereas the bricks de�ne a texture� Alternatively� we may include
the contours of each brick in the set of edges and consider the irreg�
ular surface of each brick as a texture� The discrimination of edges
versus textures depends on the scale of analysis� This has motivated
computer vision researchers to detect sharp image variations at di�er�
ent scales ���� ����� The next section describes the multiscale Canny
edge detector ������ It is equivalent to detecting modulus maxima in
a two�dimensional dyadic wavelet transform ��	��� The Lipschitz reg�
ularity of edge points is derived from the decay of wavelet modulus
maxima across scales� It is also shown that image approximations may
be reconstructed from these wavelet modulus maxima� with no visual
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degradation� Image processing algorithms can thus be implemented on
multiscale edges�

����� Wavelet Maxima for Images �

Canny Edge Detection The Canny algorithm detects points of
sharp variation in an image f�x�� x� by calculating the modulus of
its gradient vector

�rf �

�
�f

�x�
�
�f

�x�

�
� �	���

The partial derivative of f in the direction of a unit vector �n � �cos�� sin�
in the x � �x�� x� plane is calculated as an inner product with the gra�
dient vector

�f

��n
� �rf � �n �

�f

�x�
cos� �

�f

�x�
sin� �

The absolute value of this partial derivative is maximum if �n is colinear
to �rf � This shows that �rf�x is parallel to the direction of maximum
change of the surface f�x� A point y � R� is de�ned as an edge if

j�rf�xj is locally maximum at x � y when x � y � � �rf�y for j�j
small enough� This means that the partial derivatives of f reach a local
maximum at x � y� when x varies in a one�dimensional neighborhood
of y along the direction of maximum change of f at y� These edge
points are in ection points of f �

Multiscale Edge Detection A multiscale version of this edge detec�
tor is implemented by smoothing the surface with a convolution kernel
��x that is dilated� This is computed with two wavelets that are the
partial derivatives of �


�� � � ��

�x�
and �� � � ��

�x�
� �	���

The scale varies along the dyadic sequence f�jgj�Z to limit computa�
tions and storage� For � � k � �� we denote for x � �x�� x�

�k
�j �x�� x� �

�

�j
�k
�x�
�j
�
x�
�j

	
and ��k

�j �x � �k
�j ��x�
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In the two directions indexed by � � k � �� the dyadic wavelet trans�
form of f � L��R� at u � �u�� u� is

W kf�u� �j � hf�x� �k
�j �x� ui � f � ��k

�j �u � �	��	

Section ����� gives necessary and su�cient conditions for obtaining a
complete and stable representation�

Let us denote ��j �x � ��j ����jx and ���j �x � ��j ��x� The two
scaled wavelets can be rewritten

���
�j � �j

����j

�x�
and ���

�j � �j
����j

�x�
�

We thus derive from �	��	 that the wavelet transform components are
proportional to the coordinates of the gradient vector of f smoothed
by ���j 
�

W �f�u� �j
W �f�u� �j

�
� �j

�
�
�u�

�f � ���j �u
�
�u�

�f � ���j �u

�
� �j �r�f � ���j �u � �	���

The modulus of this gradient vector is proportional to the wavelet trans�
form modulus

Mf�u� �j �
p
jW �f�u� �jj� � jW �f�u� �jj�� �	���

Let Af�u� �j be the angle of the wavelet transform vector �	��� in the
plane �x�� x�

Af�u� �j �



��u if W �f�u� �j � �
� � ��u if W �f�u� �j 	 �

�	���

with

��u � tan��
�
W �f�u� �j

W �f�u� �j

�
�

The unit vector �nj�u � �cosAf�u� �j� sinAf�u� �j is colinear to
�r�f � ���j �u� An edge point at the scale �j is a point v such that
Mf�u� �j is locally maximum at u � v when u � v � ��nj�v for j�j
small enough� These points are also called wavelet transform modulus
maxima� The smoothed image f � ���j has an in ection point at a mod�
ulus maximum location� Figure 	�� gives an example where the wavelet
modulus maxima are located along the contour of a circle�
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Maxima curves Edge points are distributed along curves that often
correspond to the boundary of important structures� Individual wavelet
modulus maxima are chained together to form a maxima curve that
follows an edge� At any location� the tangent of the edge curve is
approximated by computing the tangent of a level set� This tangent
direction is used to chain wavelet maxima that are along the same edge
curve�

The level sets of g�x are the curves x�s in the �x�� x� plane where
g�x�s is constant� The parameter s is the arc�length of the level set�
Let �� � ���� �� be the direction of the tangent of x�s� Since g�x�s is
constant when s varies�

�g�x�s

�s
�

�g

�x�
�� �

�g

�x�
�� � �rg � �� � � �

So �rg�x is perpendicular to the direction �� of the tangent of the level
set that goes through x�

This level set property applied to g � f � ���j proves that at a
maximum point v the vector �nj�v of angle Af�v� �

j is perpendicular
to the level set of f � ���j going through v� If the intensity pro�le remains
constant along an edge� then the in ection points �maxima points
are along a level set� The tangent of the maxima curve is therefore
perpendicular to �nj�v� The intensity pro�le of an edge may not be
constant but its variations are often negligible over a neighborhood of
size �j for a su�ciently small scale �j� unless we are near a corner� The
tangent of the maxima curve is then nearly perpendicular to �nj�v�
In discrete calculations� maxima curves are thus recovered by chaining
together any two wavelet maxima at v and v � �n� which are neighbors
over the image sampling grid and such that �n is nearly perpendicular
to �nj�v�

Example ��� The dyadic wavelet transform of the image in Figure 	��
yields modulus imagesMf��j� v whose maxima are along the boundary
of a disk� This circular edge is also a level set of the image� The vector
�nj�v of angle Af��

j� v is thus perpendicular to the edge at the maxima
locations�

Example ��� In the Lena image shown in Figure 	���� some edges
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disappear when the scale increases� These correspond to �ne scale in�
tensity variations that are removed by the averaging with ���j when �j is
large� This averaging also modi�es the position of the remaining edges�
Figure 	����f displays the wavelet maxima such that Mf�v� �j � T �
for a given threshold T � They indicate the location of edges where the
image has large amplitude variations�

Lipschitz Regularity The decay of the two�dimensional wavelet
transform depends on the regularity of f � We restrict the analysis
to Lipschitz exponents � � � � �� A function f is said to be Lipschitz
� at v � �v�� v� if there exists K � � such that for all �x�� x� � R�

jf�x�� x� � f�v�� v�j � K �jx� � v�j� � jx� � v�j����� �	�	�

If there exists K � � such that �	�	� is satis�ed for any v � & then
f is uniformly Lipschitz � over &� As in one dimension� the Lipschitz
regularity of a function f is related to the asymptotic decay jW �f�u� �jj
and jW �f�u� �jj in the corresponding neighborhood� This decay is
controlled by Mf�u� �j� Like in Theorem 	��� one can prove that f
is uniformly Lipschitz � inside a bounded domain of R� if and only if
there exists A � � such that for all u inside this domain and all scales
�j

jMf�u� �jj � A �j������ �	�	�

Suppose that the image has an isolated edge curve along which f has
Lipschitz regularity �� The value of jMf�u� �jj in a two�dimensional
neighborhood of the edge curve can be bounded by the wavelet modulus
values along the edge curve� The Lipschitz regularity � of the edge is
estimated with �	�	� by measuring the slope of log� jMf�u� �jj as a
function of j� If f is not singular but has a smooth transition along
the edge� the smoothness can be quanti�ed by the variance �� of a two�
dimensional Gaussian blur� The value of �� is estimated by generalizing
Theorem 	�	�

Reconstruction from Edges In his book about vision� Marr ����
conjectured that images can be reconstructed from multiscale edges�
For a Canny edge detector� this is equivalent to recovering images
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�a �b �c �d �e

Figure 	��
 The top image has N� � ���� pixels� �a
 Wavelet trans�
form in the horizontal direction� with a scale �j that increases from
top to bottom
 fW �f�u� �jg���j��� Black� grey and white pixels cor�
respond respectively to negative� zero and positive values� �b
 Ver�
tical direction
 fW �f�u� �jg���j��� �c
 Wavelet transform modulus
fMf�u� �jg���j��� White and black pixels correspond respectively to
zero and large amplitude coe�cients� �d
 Angles fAf�u� �jg���j�� at
points where the modulus is non�zero� �e
 Wavelet modulus maxima
are in black�
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�a �b �c �d �e �f

Figure 	���
 Multiscale edges of the Lena image shown in Figure
	���� �a
 fW �f�u� �jg���j��	� �b
 fW �f�u� �jg���j��	� �c

fMf�u� �jg���j��	 � �d
 fAf�u� �jg���j��	� �e
 Modulus maxima�
�f
 Maxima whose modulus values are above a threshold�
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from wavelet modulus maxima� Despite the non�completeness of dyadic
wavelet maxima ���� ���� the algorithm of Mallat and Zhong ��	�� com�
putes an image approximation that is visually identical to the original
one�

As in Section 	����� we describe a simpler inverse frame algorithm�
At each scale �j� a multiscale edge representation provides the positions
uj�p of the wavelet transform modulus maxima as well as the values of
the modulus Mf�uj�p� �

j and the angle Af�uj�p� �
j� The modulus and

angle specify the two wavelet transform components

W kf�uj�p� �
j � hf� �k

j�pi for � � k � �� �	�	�

with �k
j�p�x � ��j �k���j�x� uj�p� As in one dimension� the recon�

struction algorithm recovers a function of minimum norm �f such that

W k �f�uj�p� �
j � h �f� �k

j�pi � hf� �k
j�pi� �	�	�

It is the orthogonal projection of f in the closed space V generated by
the family of wavelets �

��
j�p � �

�
j�p


j�p
�

If
�
��
j�p � �

�
j�p


j�p

is a frame ofV� which is true in �nite dimensions� then

�f is computed with the conjugate gradient algorithm of Theorem ���
by calculating �f � L��g with

g � L �f �
�X

k��

X
j�p

hf� �k
j�pi �k

j�p � �	�	�

The reconstructed image �f is not equal to the original image f
but their relative mean�square di�erences is below ����� Singularities
and edges are nearly perfectly recovered and no spurious oscillations
are introduced� The images di�er slightly in smooth regions� which
visually is not noticeable�

Example ��� The image reconstructed in Figure 	����b is visually
identical to the original image� It is recovered with �� conjugate gra�
dient iterations� After �� iterations� the relative mean�square recon�
struction error is k �f � fk�kfk � � ���	� The thresholding of edges



���� MULTISCALE EDGE DETECTION �	�

accounts for the disappearance of image structures from the recon�
struction shown in Figure 	����c� Sharp image variations are perfectly
recovered�

Illusory Contours A multiscale wavelet edge detector de�nes edges
as points where the image intensity varies sharply� This de�nition is
however too restrictive when edges are used to �nd the contours of ob�
jects� For image segmentation� edges must de�ne closed curves that
outline the boundaries of each region� Because of noise or light varia�
tions� local edge detectors produce contours with holes� Filling these
holes requires some prior knowledge about the behavior of edges in the
image� The illusion of the Kanizsa triangle ���� shows that such an edge
�lling is performed by the human visual system� In Figure 	���� one
can �see� the edges of a straight and a curved triangle although the im�
age grey level remains uniformly white between the black discs� Closing
edge curves and understanding illusory contours requires computational
models that are not as local as multiscale di�erential operators� Such
contours can be obtained as the solution of a global optimization that
incorporates constraints on the regularity of contours and which takes
into account the existence of occlusions ������

����� Fast Multiscale Edge Computations �

The dyadic wavelet transform of an image of N� pixels is computed
with a separable extension of the �lter bank algorithm described in
Section ������ A fast multiscale edge detection is derived ��	���

Wavelet Design Edge detection wavelets �	��� are designed as sep�
arable products of one�dimensional dyadic wavelets� constructed in Sec�
tion ������ Their Fourier transform is

������� �� � �g
���

�

	
�
���

�

	
�
���

�

	
� �	�	�

and
������� �� � �g

���

�

	
�
���

�

	
�
���

�

	
� �	�		
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�a �b

�c

Figure 	���
 �a
 Original Lena� �b
 Reconstructed from the wavelet
maxima displayed in Figure 	����e and larger scale maxima� �c
 Re�
constructed from the thresholded wavelet maxima displayed in Figure
	����f and larger scale maxima�



���� MULTISCALE EDGE DETECTION �	�

Figure 	���
 The illusory edges of a straight and a curved triangle are
perceived in domains where the images are uniformly white�

where ��� is a scaling function whose energy is concentrated at low
frequencies and

�g�� � �i
p
� sin

��
�

	
exp

��i�
�

�
� �	�	�

This transfer function is the Fourier transform of a �nite di�erence �lter
which is a discrete approximation of a derivative

g�p�p
�
�

������� if p � �
��� if p � �
� otherwise

� �	�	�

The resulting wavelets �� and �� are �nite di�erence approximations
of partial derivatives along x and y of ��x�� x� � ���x��y�

To implement the dyadic wavelet transform with a �lter bank algo�
rithm� the scaling function � is calculated� as in ����	� with an in�nite
product


��� �
��Y
p��

�h���p�p
�

�
�p
�
�h
��
�

	
�
��
�

	
� �	�	�

The �� periodic function �h is the transfer function of a �nite impulse
response low�pass �lter h�p�� We showed in ����� that the Fourier
transform of a box spline of degree m

��� �

�
sin����

���

�m��

exp

��i��
�

�
with � �



� if m is even
� if m is odd
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is obtained with

�h�� �
p
�
����

���
�
p
�
�
cos

�

�

	m��

exp

��i��
�

�
�

Table ��� gives h�p� for m � ��

�Algorithme �a trous� The one�dimensional �algorithme #a trous�
of Section ����� is extended in two dimensions with convolutions along
the rows and columns of the image� The support of an image �f is
normalized to ��� ��� and the N� pixels are obtained with a sampling on
a uniform grid with intervals N��� To simplify the description of the
algorithm� the sampling interval is normalized to � by considering the
dilated image f�x�� x� � �f�N��x�� N

��x�� A change of variable shows
that the wavelet transform of �f is derived from the wavelet transform
of f with a simple renormalization


W k �f�u� �j � N��W kf�Nu�N�j �

Each sample a��n� of the normalized discrete image is considered to
be an average of f calculated with the kernel �x��x� translated at
n � �n�� n�


a��n�� n�� � hf�x�� x� � �x� � n��x� � n�i �

This is further justi�ed in Section ������ For any j � �� we denote

aj�n�� n�� � hf�x�� x� � �j �x� � n��j�x� � n�i�

The discrete wavelet coe�cients at n � �n�� n� are

d�j �n� � W �f�n� �j and d�j �n� � W �f�n� �j �

They are calculated with separable convolutions�
For any j � �� the �lter h�p� �dilated� by �j is de�ned by

�hj�p� �



h��p��j� if p��j � Z
� otherwise

�	���



���� MULTISCALE EDGE DETECTION ���

and for j � �� a centered �nite di�erence �lter is de�ned by

�gj�p�p
�

�

��� ��� if p � ��j��
���� if p � �j��

� otherwise
� �	���

For j � �� we de�ne �g�����
p
� � ����� �g������

p
� � ���� and �g��p� � �

for p �� ����� A separable two�dimensional �lter is written

�
�n�� n�� � ��n�� 
�n�� �

and ��n� is a discrete Dirac� Similarly to Proposition ��	� one can prove
that for any j � � and any n � �n�� n�

aj���n� � aj � �hj�hj�n�� �	���

d�j���n� � aj � �gj��n�� �	���

d�j���n� � aj � ��gj�n�� �	���

Dyadic wavelet coe�cients up to the scale �J are therefore calculated
by cascading the convolutions �	����	��� for � 	 j � J � To take into
account border problems� all convolutions are replaced by circular con�
volutions� which means that the input image a��n� is considered to be
N periodic along its rows and columns� Since J � log�N and all �lters
have a �nite impulse response� this algorithm requires O�N� log�N
operations� If J � log�N then one can verify that the larger scale
approximation is a constant proportional to the grey level average C


aJ �n�� n�� �
�

N

N��X
n��n���

a��n�� n�� � N C �

The wavelet transform modulus is Mf�n� �j � jd�j �n�j� � jd�j �n�j�
whereas Af�n� �j is the angle of the vector �d�j �n�� d

�
j �n�� The wavelet

modulus maxima are located at points uj�p where Mf�uj�p� �
j is larger

than its two neighbors Mf�uj�p���� �j� where �� � ���� �� is the vector
whose coordinates �� and �� are either � or �� and whose angle is the
closest to Af�uj�p� �

j� This veri�es that Mf�n� �j is locally maximum
at n � uj�p in a one�dimensional neighborhood whose direction is along
the angle Af�uj�p� �

j�
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Reconstruction from Maxima The frame algorithm recovers an
image approximation from multiscale edges by inverting the operator
L de�ned in �	�	�� with the conjugate gradient algorithm of Theorem
���� This requires computing Lr e�ciently for any image r�n�� For
this purpose� the wavelet coe�cients of r are �rst calculated with the
�algorithme #a trous�� and at each scale � � �j � N all wavelets coe��
cients not located at a maximum position uj�p are set to zero as in the
one�dimensional implementation �	���


�dkj �n� �



W kr�n� �j if n � uj�p
� otherwise

�

The signal Lr�n� is recovered from these non�zero wavelet coe�cients
with a reconstruction formula similar to �	���� Let hj�n� � �hj��n�
and gj�n� � �gj��n� be the two �lters de�ned with �	��� and �	����
The calculation is initialized for J � log�N by setting �aJ �n� � C N���
where C is the average image intensity� For log�N � j � � we compute

�aj�n� � �aj�� � hjhj�n� � d�j�� � gj��n� � d�j���n� � �gj�n� �

and one can verify that Lr�n� � �a��n�� It is calculated from r�n� with
O�N� log�N operations� The reconstructed images in Figure 	��� are
obtained with �� conjugate gradient iterations implemented with this
�lter bank algorithm�

��� Multifractals �

Signals that are singular at almost every point were originally stud�
ied as pathological objects of pure mathematical interest� Mandelbrot
���� was the �rst to recognize that such phenomena are encountered
everywhere� Among the many examples ���� let us mention economic
records like the Dow Jones industrial average� physiological data in�
cluding heart records� electromagnetic  uctuations in galactic radiation
noise� textures in images of natural terrain� variations of tra�c  ow� � �

The singularities of multifractals often vary from point to point�
and knowing the distribution of these singularities is important in an�
alyzing their properties� Pointwise measurements of Lipschitz expo�
nents are not possible because of the �nite numerical resolution� After
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discretization� each sample corresponds to a time interval where the
signal has an in�nite number of singularities that may all be di�erent�
The singularity distribution must therefore be estimated from global
measurements� which take advantage of multifractal self�similarities�
Section 	���� computes the fractal dimension of sets of points having
the same Lipschitz regularity� with a global partition function calcu�
lated from wavelet transform modulus maxima� Applications to fractal
noises such as fractional Brownian motions and to hydrodynamic tur�
bulence are studied in Section 	�����

��
�� Fractal Sets and Self�Similar Functions

A set S  Rn is said to be self�similar if it is the union of disjoint subsets
S�� � � � �Sk that can be obtained from S with a scaling� translation and
rotation� This self�similarity often implies an in�nite multiplication of
details� which creates irregular structures� The triadic Cantor set and
the Van Koch curve are simple examples�

Example ��� The Von Koch curve is a fractal set obtained by re�
cursively dividing each segment of length l in four segments of length
l��� as illustrated in Figure 	���� Each subdivision increases the length
by ���� The limit of these subdivisions is therefore a curve of in�nite
length�

Example ��� The triadic Cantor set is constructed by recursively
dividing intervals of size l in two sub�intervals of size l�� and a central
hole� illustrated by Figure 	���� The iteration begins from ��� ��� The
Cantor set obtained as a limit of these subdivisions is a dust of points
in ��� ���

Fractal Dimension The Von Koch curve has in�nite length in a
�nite square of R� � The usual length measurement is therefore not
well adapted to characterize the topological properties of such fractal
curves� This motivated Hausdor� in ���� to introduce a new de�nition
of dimension� based on the size variations of sets when measured at
di�erent scales�
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l/3

l

l/3

l/3l/3

Figure 	���
 Three iterations of the Von Koch subdivision� The Von
Koch curve is the fractal obtained as a limit of an in�nite number of
subdivisions�

1/3

1

1/3

1/9 1/91/91/9

Figure 	���
 Three iterations of the Cantor subdivision of ��� ��� The
limit of an in�nite number of subdivisions is a closed set in ��� ���



���� MULTIFRACTALS ���

The capacity dimension is a simpli�cation of the Hausdor� dimen�
sion that is easier to compute numerically� Let S be a bounded set in
Rn � We count the minimum number N�s of balls of radius s needed
to cover S� If S is a set of dimension D with a �nite length �D � ��
surface �D � � or volume �D � � then

N�s 
 s�D�

so

D � � lim
s��

logN�s

log s
� �	���

The capacity dimension D of S generalizes this result and is de�ned by

D � � lim inf
s��

logN�s

log s
� �	��	

The measure of S is then

M � lim sup
s��

N�s sD �

It may be �nite or in�nite�
The Hausdor� dimension is a re�ned fractal measure that considers

all covers of S with balls of radius smaller than s� It is most often
equal to the capacity dimension� but not always� In the following� the
capacity dimension is called fractal dimension�

Example ��� The Von Koch curve has in�nite length because its
fractal dimension is D � �� We need N�s � �n balls of size s � ��n

to cover the whole curve� hence

N���n � ���n� log �� log 	�

One can verify that at any other scale s� the minimum number of balls
N�s to cover this curve satis�es

D � � lim inf
s��

logN�s

log s
�

log �

log �
�

As expected� it has a fractal dimension between � and ��
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Example ��� The triadic Cantor set is covered by N�s � �n intervals
of size s � ��n� so

N���n � ���n� log ��log 	�

One can also verify that

D � � lim inf
s��

logN�s

log s
�

log �

log �
�

Self�Similar Functions Let f be a continuous function with a com�
pact support S� We say that f is self�similar if there exist disjoint
subsets S�� � � � �Sk such that the graph of f restricted to each Si is an
a�ne transformation of f � This means that there exist a scale li � ��
a translation ri� a weight pi and a constant ci such that

�t � Si � f�t � ci � pi f
�
li�t� ri

	
� �	���

Outside these subsets� we suppose that f is constant� Generalizations
of this de�nition can also be used ������

If a function is self similar� its wavelet transform is also� Let g be
an a�ne transformation of f 


g�t � p f
�
l�t� r

	
� c� �	���

Its wavelet transform is

Wg�u� s �

Z ��

��

g�t
�p
s
�

�
t� u

s

�
dt�

With the change of variable t� � l�t � r� since � has a zero average�
the a�ne relation �	��� implies

Wg�u� s �
pp
l
Wf

�
l�u� r� sl

	
�

Suppose that � has a compact support included in ��K�K�� The
a�ne invariance �	��� of f over Si � �ai� bi� produces an a�ne in�
variance for all wavelets whose support is included in Si� For any
s 	 �bi � ai�K and any u � �ai �Ks� bi �Ks��

Wf�u� s �
pip
li
Wf

�
li�u� ri� sli

	
�
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The self�similarity of the wavelet transform implies that the positions
and values of its modulus maxima are also self�similar� This can be used
to recover unknown a�ne invariance properties with a voting procedure
based on wavelet modulus maxima ������

Example ��� A Cantor measure is constructed over a Cantor set�
Let d���x � dx be the uniform Lebesgue measure on ��� ��� As in
the Cantor set construction� this measure is subdivided into three uni�
form measures� whose integrals over ��� ����� ����� ���� and ����� �� are
respectively p�� � and p�� We impose p� � p� � � to obtain a total
measure d�� on ��� �� whose integral is equal to �� This operation is
iteratively repeated by dividing each uniform measure of integral p over
�a� a � l� into three equal parts whose integrals are respectively p�p� �
and p�p over �a� a� l���� �a� l��� a��l��� and �a��l��� a� l�� This is
illustrated by Figure 	���� After each subdivision� the resulting mea�
sure d�n has a unit integral� In the limit� we obtain a Cantor measure
d�� of unit integral� whose support is the triadic Cantor set�

0
d    (x)

d    (x)µ1

d    (x)µ2

µ

2

1

p1 p2

p2p1 p2
2

1p2 p1p

Figure 	���
 Two subdivisions of the uniform measure on ��� �� with
left and right weights p� and p�� The Cantor measure d�� is the limit
of an in�nite number of these subdivisions�

Example ��	
 A devil�s staircase is the integral of a Cantor measure


f�t �

Z t

�

d���x� �	���

It is a continuous function that increases from � to � on ��� ��� The
recursive construction of the Cantor measure implies that f is self�
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0

�a

0 0.2 0.4 0.6 0.8 1

−6
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−2

0

log2(s)

 u

�b

Figure 	��	
 Devil�s staircase calculated from a Cantor measure with
equal weights p� � p� � ���� �a
 Wavelet transform Wf�u� s com�
puted with � � ���� where � is Gaussian� �b
 Wavelet transform
modulus maxima�
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similar


f�t �

�����
p� f��t if t � ��� ����

p� if t � ����� ����

p� � p� f��t� � if t � ����� ��

�

Figure 	��	 displays the devil�s staircase obtained with p� � p� � ����
The wavelet transform below is calculated with a wavelet that is the
�rst derivative of a Gaussian� The self�similarity of f yields a wavelet
transform and modulus maxima that are self�similar� The subdivision
of each interval in three parts appears through the multiplication by
� of the maxima lines� when the scale is multiplied by �� This Can�
tor construction is generalized with di�erent interval subdivisions and
weight allocations� beginning from the same Lebesgue measure d�� on
��� �� ����

��
�� Singularity Spectrum �

Finding the distribution of singularities in a multifractal signal f is
particularly important for analyzing its properties� The spectrum of
singularity measures the global repartition of singularities having dif�
ferent Lipschitz regularity� The pointwise Lipschitz regularity of f is
given by De�nition 	���

Denition ��� �Spectrum� Let S� be the set of all points t � R
where the pointwise Lipschitz regularity of f is equal to �� The spectrum
of singularity D�� of f is the fractal dimension of S�� The support of
D�� is the set of � such that S� is not empty�

This spectrum was originally introduced by Frisch and Parisi ����� to
analyze the homogeneity of multifractal measures that model the energy
dissipation of turbulent  uids� It was then extended by Arneodo� Bacry
and Muzy ����� to multifractal signals� The fractal dimension de�nition
�	��	 shows that if we make a disjoint cover of the support of f with
intervals of size s then the number of intervals that intersect S� is

N��s 
 s�D���� �	���
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The singularity spectrum gives the proportion of Lipschitz � singular�
ities that appear at any scale s� A multifractal f is said to be homo�
geneous if all singularities have the same Lipschitz exponent ��� which
means the support of D�� is restricted to f��g� Fractional Brownian
motions are examples of homogeneous multifractals�

Partition Function One cannot compute the pointwise Lipschitz
regularity of a multifractal because its singularities are not isolated� and
the �nite numerical resolution is not su�cient to discriminate them� It
is however possible to measure the singularity spectrum of multifrac�
tals from the wavelet transform local maxima� using a global partition
function introduced by Arneodo� Bacry and Muzy ������

Let � be a wavelet with n vanishing moments� Theorem 	�� proves
that if f has pointwise Lipschitz regularity �� 	 n at v then the wavelet
transform Wf�u� s has a sequence of modulus maxima that converges
towards v at �ne scales� The set of maxima at the scale s can thus be
interpreted as a covering of the singular support of f with wavelets of
scale s� At these maxima locations

jWf�u� sj 
 s�������

Let fup�sgp�Z be the position of all local maxima of jWg�u� sj at
a �xed scale s� The partition function Z measures the sum at a power
q of all these wavelet modulus maxima


Z�q� s �
X
p

jWf�up� sjq� �	���

At each scale s� any two consecutive maxima up and up�� are supposed
to have a distance jup�� � upj � �s� for some � � �� If not� over
intervals of size �s� the sum �	��� includes only the maxima of largest
amplitude� This protects the partition function from the multiplication
of very close maxima created by fast oscillations�

For each q � R� the scaling exponent ��q measures the asymptotic
decay of Z�q� s at �ne scales s


��q � lim inf
s��

logZ�q� s
log s

�
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This typically means that

Z�q� s 
 s��q��

Legendre Transform The following theorem relates ��q to the Leg�
endre transform of D�� for self�similar signals� This result was estab�
lished in ���� for a particular class of fractal signals and generalized by
Ja�ard ������

Theorem ��� �Arneodo� Bacry� Ja�ard� Muzy� Let ' � ��min� �max�
be the support of D��� Let � be a wavelet with n � �max vanishing
moments� If f is a self�similar signal then

��q � min
���

�
q ��� ����D��

	
� �	���

Proof �� The detailed proof is long� we only give an intuitive justi�cation�
The sum ���
�� over all maxima positions is replaced by an integral over
the Lipschitz parameter� At the scale s� ���
� indicates that the density
of modulus maxima that cover a singularity with Lipschitz exponent �
is proportional to s�D���� At locations where f has Lipschitz regularity
�� the wavelet transform decay is approximated by

jWf�u� s�j 	 s������

It follows that

Z�q� s� 	
Z
�
sq������� s�D��� d��

When s goes to  we derive that Z�q� s� 	 s��q� for ��q� � min����q���
���� �D�����

This theorem proves that the scaling exponent ��q is the Legendre
transform of D��� It is necessary to use a wavelet with enough van�
ishing moments to measure all Lipschitz exponents up to �max� In
numerical calculations ��q is computed by evaluating the sum Z�q� s�
We thus need to invert the Legendre transform �	��� to recover the
spectrum of singularity D���

Proposition ��� � The scaling exponent ��q is a convex and in�
creasing function of q�
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� The Legendre transform ����	 is invertible if and only if D�� is
convex� in which case

D�� � min
q�R

�
q ��� ���� ��q

	
� �	���

� The spectrum D�� of self�similar signals is convex�

Proof �� The proof that D��� is convex for self�similar signals can be
found in ������ We concentrate on the properties of the Legendre trans�
form that are important in numerical calculations� To simplify the proof�
let us suppose that D�q� is twice di�erentiable� The minimum of the Leg�
endre transform ���
�� is reached at a critical point q���� Computing
the derivative of q�� � ���� �D��� with respect to � gives

q��� �
dD

d�
� ���
��

with

��q� � q

�
� �

�

�

�
�D���� ���
��

Since it is a minimum� the second derivative of ��q���� with respect to
� is negative� from which we derive that

d�D���q��

d��
� �

This proves that ��q� depends only on the values where D��� has a
negative second derivative� We can thus recover D��� from ��q� only if
it is convex�

The derivative of ��q� is

d��q�

dq
� � �

�

�
� q

d�

dq
� d�

dq

dD���

d�
� � �

�

�
� � ���
��

It is therefore increasing� Its second derivative is

d���q�

dq�
�

d�

dq
�

Taking the derivative of ���
�� with respect to q proves that

d�

dq

d�D���

d��
� ��
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Since d�D���
d��

�  we derive that d���q�
dq�

� � Hence ��q� is convex� By

using ���
��� ���
�� and the fact that ��q� is convex� we verify that

D��� � min
q�R

�
q �� � ���� � ��q�

�
� ���
��

The spectrum D�� of self�similar signals is convex and can therefore
be calculated from ��q with the inverse Legendre formula �	��� This
formula is also valid for a much larger class of multifractals� For exam�
ple� it is veri�ed for statistical self�similar signals such as realizations
of fractional Brownian motions� Multifractals having some stochastic
self�similarity have a spectrum that can often be calculated as an in�
verse Legendre transform �	���� However� let us emphasize that this
formula is not exact for any function f because its spectrum of singu�
larity D�� is not necessarily convex� In general� Ja�ard proved �����
that the Legendre transform �	��� gives only an upper bound of D���
These singularity spectrum properties are studied in detail in �����

Figure 	��� illustrates the properties of a convex spectrum D���
The Legendre transform �	��� proves that its maximum is reached at

D��� � max
���

D�� � �����

It is the fractal dimension of the Lipschitz exponent �� most frequently
encountered in f � Since all other Lipschitz � singularities appear over
sets of lower dimension� if �� 	 � then D��� is also the fractal di�
mension of the singular support of f � The spectrum D�� for � 	 ��

depends on ��q for q � �� and for � � �� it depends on ��q for q 	 ��

Numerical Calculations To compute D��� we assume that the
Legendre transform formula �	��� is valid� We �rst calculate Z�q� s �P

p jWf�up� sjq� then derive the decay scaling exponent ��q� and ��
nally compute D�� with a Legendre transform� If q 	 � then the value
of Z�q� s depends mostly on the small amplitude maxima jWf�up� sj�
Numerical calculations may then become unstable� To avoid introduc�
ing spurious modulus maxima created by numerical errors in regions
where f is nearly constant� wavelet maxima are chained to produce
maxima curve across scales� If � � ���p ��p� where � is a Gaussian�
Proposition 	�� proves that all maxima lines up�s de�ne curves that
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propagate up to the limit s � �� All maxima lines that do not propa�
gate up to the �nest scale are thus removed in the calculation of Z�q� s�
The calculation of the spectrum D�� proceeds as follows�

min αmax

D(   )α

α0α
∞

q < 0

− ∞q = 

q > 0

q = 0

0 αq = +

Figure 	���
 Convex spectrum D���

�� Maxima Compute Wf�u� s and the modulus maxima at each
scale s� Chain the wavelet maxima across scales�

�� Partition function Compute

Z�q� s �
X
p

jWf�up� sjq �

�� Scaling Compute ��q with a linear regression of log�Z�s� q as
a function of log� s


log�Z�q� s � ��q log� s� C�q �

�� Spectrum Compute

D�� � min
q�R

�
q��� ���� ��q

	
�

Example ��		 The spectrum of singularity D�� of the devil�s stair�
case �	��� is a convex function that can be calculated analytically ������
Suppose that p� 	 p�� The support of D�� is ��min� �max� with

�min �
� log p�

log �
and �max �

� log p�
log �

�
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If p� � p� � ��� then the support of D�� is reduced to a point�
which means that all the singularities of f have the same Lipschitz
log ��log � regularity� The value D�log ��log � is then the fractal di�
mension of the triadic Cantor set and is thus equal to log ��log ��

Figure 	����a shows a devil�s staircase calculated with p� � ��� and
p� � ��	� Its wavelet transform is computed with � � ���� where � is
a Gaussian� The decay of log�Z�q� s as a function of log� s is shown
in Figure 	����b for several values of q� The resulting ��q and D��
are are given by Figures 	����c�d� There is no numerical instability for
q 	 � because there is no modulus maximum whose amplitude is close
to zero� This is not the case if the wavelet transform is calculated with
a wavelet that has more vanishing moments�

Smooth Perturbations Let f be a multifractal whose spectrum of
singularity D�� is calculated from ��q� If a C� signal g is added
to f then the singularities are not modi�ed and the singularity spec�
trum of �f � f � g remains D��� We study the e�ect of this smooth
perturbation on the spectrum calculation�

The wavelet transform of �f is

W �f�u� s �Wf�u� s �Wg�u� s�

Let ��q and �� �q be the scaling exponent of the partition functions
Z�q� s and �Z�q� s calculated from the modulus maxima respectively
of Wf�u� s and W �f�u� s� We denote by D�� and �D�� the Legendre
transforms respectively of ��q and �� �q� The following proposition
relates ��q and ���q�

Proposition ��� �Arneodo� Bacry� Muzy� Let � be a wavelet with
exactly n vanishing moments� Suppose that f is a self�similar function�

� If g is a polynomial of degree p 	 n then ��q � ���q for all q � R�
� If g�n� is almost everywhere non�zero then

���q �



��q if q � qc
�n � ��� q if q � qc

�	���

where qc is de�ned by ��qc � �n� ���qc�
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Figure 	���
 �a
 Devil�s staircase with p� � ��� and p� � ��	� �b

Partition function Z�q� s for several values of q� �c
 Scaling exponent
��q� �d
 The theoretical spectrum D�� is shown with a solid line�
The � are the spectrum values calculated numerically with a Legendre
transform of ��q�
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Proof �� If g is a polynomial of degree p 	 n then Wg�u� s� � � The
addition of g does not modify the calculation of the singularity spectrum
based on wavelet maxima� so ��q� � ���q� for all q � R�

If g is a C� function that is not a polynomial then its wavelet trans�
form is generally non�zero� We justify ���

� with an intuitive argument
that is not a proof� A rigorous proof can be found in �
��� Since � has
exactly n vanishing moments� ������ proves that

jWg�u� s�j 	 K sn���� g�n��u��

We suppose that g�n��u� �� � For ��q� � �n� ����q� since jWg�u� s�jq 	
sq�n����� has a faster asymptotic decay than s��q� when s goes to zero�
one can verify that �Z�q� s� and Z�q� s� have the same scaling exponent�
���q� � ��q�� If ��q� � �n � ����q� which means that q � qc� then
the decay of jW �f�u� s�jq is controlled by the decay of jWg�u� s�jq� so
���q� � �n � ����q�

This proposition proves that the addition of a non�polynomial smooth
function introduces a bias in the calculation of the singularity spectrum�
Let �c be the critical Lipschitz exponent corresponding to qc


D��c � qc ��c � ���� ��qc�

The Legendre transform of ���q in �	��� yields

�D�� �

��� D�� if � � �c
� if � � n

�� if � � �c and � �� n
� �	���

This modi�cation is illustrated by Figure 	����
The bias introduced by the addition of smooth components can

be detected experimentally by modifying the number n of vanishing
moments of �� Indeed the value of qc depends on n� If the singularity
spectrum varies when changing the number of vanishing moments of
the wavelet then it indicates the presence of a bias�

��
�� Fractal Noises �

Fractional Brownian motions are statistically self�similar Gaussian pro�
cesses that give interesting models for a wide class of natural phe�
nomena ��	��� Despite their non�stationarity� one can de�ne a power
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spectrum that has a power decay� Realizations of fractional Brown�
ian motions are almost everywhere singular� with the same Lipschitz
regularity at all points�

maxα0

D(   )α

D(   )α
~

αmin

D(   )α

αc
0 αnα

Figure 	���
 If � has n vanishing moments� in presence of a C� pertur�
bation the computed spectrum �D�� is identical to the true spectrum
D�� for � � �c� Its support is reduced to fng for � � �c�

We often encounter fractal noise processes that are not Gaussian
although their power spectrum has a power decay� Realizations of these
processes may include singularities of various types� The spectrum of
singularity is then important in analyzing their properties� This is
illustrated by an application to hydrodynamic turbulence�

Denition ��� �Fractional Brownian motion� A fractional Brow�
nian motion of Hurst exponent � 	 H 	 � is a zero�mean Gaussian
process BH such that

BH�� � ��

and
EfjBH�t� BH�t��j�g � ��j�j�H � �	���

Property �	��� imposes that the deviation of jBH�t�BH�t��j
be proportional to j�jH � As a consequence� one can prove that any
realization f of BH is almost everywhere singular with a pointwise
Lipschitz regularity � � H� The smaller H� the more singular f �
Figure 	����a shows the graph of one realization for H � ����

Setting � � t in �	��� yields

EfjBH�tj�g � ��jtj�H �
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Developing �	��� for � � t� u also gives

EfBH�tBH�ug � ��

�

�jtj�H � juj�H � jt� uj�H� � �	���

The covariance does not depend only on t � u� which proves that a
fractional Brownian motion is non�stationary�

The statistical self�similarity appears when scaling this process� One
can derive from �	��� that for any s � �

EfBH�stBH�sug � EfsH BH�t s
H BH�ug�

Since BH�st and s
H BH�t are two Gaussian processes with same mean

and same covariance� they have the same probability distribution

BH�st � sH BH�t�

where � denotes an equality of �nite�dimensional distributions�

Power Spectrum Although BH is not stationary� one can de�ne a
generalized power spectrum� This power spectrum is introduced by
proving that the increments of a fractional Brownian motion are sta�
tionary� and by computing their power spectrum �����

Proposition ��� Let g��t � ��t� ��t��� The increment

IH���t � BH � g��t � BH�t� BH�t�� �	���

is a stationary process whose power spectrum is

�RIH��
�� �

��
H

j�j�H��
j�g���j�� �	���

Proof �� The covariance of IH�� is computed with ������

EfIH���t� IH���t���g �

�

�
�j���j�H � j� ��j�H��j� j�H� � RIH��

����

������
The power spectrum 	RIH��

��� is the Fourier transform of RIH��
���� One

can verify that the Fourier transform of the distribution f��� � j� j�H is
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Figure 	���
 �a
 One realization of a fractional Brownian motion for a
Hurst exponent H � ���� �b
 Wavelet transform� �c
 Modulus max�
ima of its wavelet transform� �d
 Scaling exponent ��q� �e
 Resulting
D�� over its support�
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	f��� � ��H j�j���H���� with �H � � We thus derive that the Fourier
transform of ������ can be written

	RIH��
��� � �
� �H j�j���H��� sin�

��

�
�

which proves ������ for 
�H � 
��H���

If X�t is a stationary process then we know that Y �t � X � g�t is
also stationary and the power spectrum of both processes is related by

�RX�� �
�RY ��

j�g��j� � �	���

Although BH�t is not stationary� Proposition 	�� proves that IH���t �
BH � g��t is stationary� As in �	���� it is tempting to de�ne a �gen�
eralized� power spectrum calculated with �	���


�RBH
�� �

�RIH��
��

j�g���j� �
��
H

j�j�H��
� �	���

The non�stationarity of BH�t appears in the energy blow�up at low
frequencies� The increments IH���t are stationary because the mul�
tiplication by j�g���j� � O��� removes the explosion of the low fre�
quency energy� One can generalize this result and verify that if g is an
arbitrary stable �lter whose transfer function satis�es j�g��j � O���
then Y �t � BH � g�t is a stationary Gaussian process whose power
spectrum is

�RY �� �
��
H

j�j�H��
j�g��j�� �	��	

Wavelet Transform The wavelet transform of a fractional Brownian
motion is

WBH�u� s � BH � ��s�u� �	���

Since � has a least one vanishing moment� necessarily j ����j � O��
in the neighborhood of � � �� The wavelet �lter g � ��s has a Fourier
transform �g�� �

p
s ����s� � O�� near � � �� This proves that
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for a �xed s the process Ys�u � WBH�u� s is a Gaussian stationary
process ������ whose power spectrum is calculated with �	��	


�RYs�� � s j ���s�j� ��
H

j�j�H��
� s�H�� �RY��s�� �	���

The self�similarity of the power spectrum and the fact that BH is Gaus�
sian are su�cient to prove that WBH�u� s is self�similar across scales


WBH�u� s � sH����WBH

�u
s
� �
	
�

where the equivalence means that they have same �nite distributions�
Interesting characterizations of fractional Brownian motion properties
are also obtained by decomposing these processes in wavelet bases ����
��� �����

Example ��	� Figure 	����a displays one realization of a fractional
Brownian with H � ���� The wavelet transform and its modulus max�
ima are shown in Figures 	����b and 	����c� The partition function
�	��� is computed from the wavelet modulus maxima� Figure 	����d
gives the scaling exponent ��q� which is nearly a straight line� Frac�
tional Brownian motions are homogeneous fractals with Lipschitz expo�
nents equal to H� In this example� the theoretical spectrum D�� has
therefore a support reduced to f���g with D���� � �� The estimated
spectrum in Figure 	����e is calculated with a Legendre transform of
��q� Its support is ���	�� ������ There is an estimation error because
the calculations are performed on a signal of �nite size�

Fractal Noises Some physical phenomena produce more general frac�
tal noises X�t� which are not Gaussian processes� but which have sta�
tionary increments� As for fractional Brownian motions� one can de�ne
a �generalized� power spectrum that has a power decay

�RX�� �
��
H

j�j�H��
�

These processes are transformed into a wide�sense stationary process by
a convolution with a stable �lter g which removes the lowest frequen�
cies j�g��j � O��� One can thus derive that the wavelet transform
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Ys�u � WX�u� s is a stationary process at any �xed scale s� Its spec�
trum is the same as the spectrum �	��� of fractional Brownian motions�
If H 	 �� the asymptotic decay of �RX�� indicates that realizations of
X�t are singular functions but it gives no information on the distribu�
tion of these singularities� As opposed to fractional Brownian motions�
general fractal noises have realizations that may include singularities of
various types� Such multifractals are di�erentiated from realizations of
fractional Brownian motions by computing their singularity spectrum
D��� For example� the velocity �elds of fully developed turbulent
 ows have been modeled by fractal noises� but the calculation of the
singularity spectrum clearly shows that these  ows di�er in important
ways from fractional Brownian motions�

Hydrodynamic Turbulence Fully developed turbulence appears in
incompressible  ows at high Reynolds numbers� Understanding the
properties of hydrodynamic turbulence is a major problem of mod�
ern physics� which remains mostly open despite an intense research
e�ort since the �rst theory of Kolmogorov in ���� ������ The number
of degrees of liberty of three�dimensional turbulence is considerable�
which produces extremely complex spatio�temporal behavior� No for�
malism is yet able to build a statistical�physics framework based on the
Navier�Stokes equations� that would enable us to understand the global
behavior of turbulent  ows� at it is done in thermodynamics�

In ����� Kolmogorov ����� formulated a statistical theory of turbu�
lence� The velocity �eld is modeled as a process V �x whose increments
have a variance

EfjV �x��� V �xj�g 
 ���	���	�

The constant � is a rate of dissipation of energy per unit of mass and
time� which is supposed to be independent of the location� This indi�
cates that the velocity �eld is statistically homogeneous with Lipschitz
regularity � � H � ���� The theory predicts that a one�dimensional
trace of a three�dimensional velocity �eld is a fractal noise process with
stationary increments� and whose spectrum decays with a power expo�
nent �H � � � ���


�RV �� �
��
H

j�j��	 �
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The success of this theory comes from numerous experimental veri��
cations of this power spectrum decay� However� the theory does not
take into account the existence of coherent structures such as vortices�
These phenomena contradict the hypothesis of homogeneity� which is
at the root of Kolmogorov�s ���� theory�

Kolmogorov ����� modi�ed the homogeneity assumption in ��	�� by
introducing an energy dissipation rate ��x that varies with the spatial
location x� This opens the door to �local stochastic self�similar� mul�
tifractal models� �rst developed by Mandelbrot ��	�� to explain energy
exchanges between �ne�scale structures and large�scale structures� The
spectrum of singularity D�� is playing an important role in testing
these models ������ Calculations with wavelet maxima on turbulent
velocity �elds ��� show that D�� is maximum at ���� as predicted
by the Kolmogorov theory� However� D�� does not have a support
reduced to f���g� which veri�es that a turbulent velocity �eld is not
a homogeneous process� Models based on the wavelet transform were
recently introduced to explain the distribution of vortices in turbulent
 uids ���� ���� �����

��� Problems

���� � Lipschitz regularity

�a� Prove that if f is uniformly Lipschitz � on �a� b� then it is
pointwise Lipschitz � at all t� � �a� b��

�b� Show that f�t� � t sin t�� is Lipschitz � at all t� � ���� ��
and verify that it is uniformly Lipschitz � over ���� �� only for
� � ���� Hint� consider the points tn � �n � ������ ����

���� � Regularity of derivatives

�a� Prove that f is uniformly Lipschitz � � � over �a� b� if and
only if f � is uniformly Lipschitz �� � over �a� b��

�b� Show that f may be pointwise Lipschitz � � � at t� while f � is
not pointwise Lipschitz �� � at t�� Consider f�t� � t� cos t��

at t � �

���� � Find f�t� which is uniformly Lipschitz � but does not satisfy
the su�cient Fourier condition ������

���� � Let f�t� � cos��t and ��t� be a wavelet that is symmetric about
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�

�a� Verify that

Wf�u� s� �
p
s 	��s��� cos��t �

�b� Find the equations of the curves of wavelet modulus maxima
in the time�scale plane �u� s�� Relate the decay of jWf�u� s�j
along these curves to the number n of vanishing moments of
��

���� � Let f�t� � jtj�� Show that Wf�u� s� � s�����Wf�u�s� ���
Prove that it is not su�cient to measure the decay of jWf�u� s�j
when s goes to zero at u �  in order to compute the Lipschitz
regularity of f at t � �

���� � Let f�t� � jtj� sin jtj�
 with � �  and � � � What is the
pointwise Lipschitz regularity of f and f � at t � � Find the
equation of the ridge curve in the �u� s� plane along which the
high amplitude wavelet coe�cients jWf�u� s�j converge to t � 
when s goes to zero� Compute the maximum values of � and ��

such that Wf�u� s� satisfy �������

���� � For a complex wavelet� we call lines of constant phase the curves
in the �u� s� plane along which the complex phase of Wf�u� s�
remains constant when s varies�

�a� If f�t� � jtj�� prove that the lines of constant phase converge
towards the singularity at t �  when s goes to zero� Verify
this numerically in WaveLab�

�b� Let � be a real wavelet and Wf�u� s� be the real wavelet trans�
form of f � Show that the modulus maxima of Wf�u� s� corre�
spond to lines of constant phase of an analytic wavelet trans�
form� which is calculated with a particular analytic wavelet �a

that you will specify�

��
� � Prove that if f � �
����� then the number of modulus maxima
of Wf�u� s� at each scale s is larger than or equal to the number
of vanishing moments of ��

���� � The spectrum of singularity of the Riemann function

f�t� �

��X
n���

�

n�
sinn�t
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is de�ned on its support by D��� � �� � � if � � ����� ���� and
D����� �  ����� ����� Verify this result numerically with Wave�
Lab� by computing this spectrum from the partition function of a
wavelet transform modulus maxima�

���� � Let � � ��� where � is a positive window of compact support�
If f is a Cantor devil s staircase� prove that there exist lines of
modulus maxima that converge towards each singularity�

����� � Implement in WaveLab an algorithm that detects oscillat�
ing singularities by following the ridges of an analytic wavelet
transform when the scale s decreases� Test your algorithm on
f�t� � sin t���

����� � Let ��t� be a Gaussian of variance ��

�a� Prove that the Laplacian of a two�dimensional Gaussian

��x�� x�� �
����x��

�x�
��x�� � ��x��

����x��

�x��

satis�es the dyadic wavelet condition ������ �there is only �
wavelet��

�b� Explain why the zero�crossings of this dyadic wavelet trans�
form provide the locations of multiscale edges in images� Com�
pare the position of these zero�crossings with the wavelet mod�
ulus maxima obtained with ���x�� x�� � ����x�� ��x�� and
���x�� x�� � ���x�� �

��x���

����� � The covariance of a fractional Brownian motion BH�t� is given
by ������ Show that the wavelet transform at a scale s is station�
ary by verifying that

E

n
WBH�u�� s�WBH�u�� s�

o
� �
�

�
s�H��

Z ��

��
jtj�H !

�u� � u�
s

�t
�
dt�

with !�t� � � � ���t� and ���t� � ���t��
����� � Let X�t� be a stationary Gaussian process whose covariance

RX��� � EfX�t�X�t � ��g is twice di�erentiable� One can prove
that the average number of zero�crossings over an interval of size �
is��R��

X��


��RX��

���
����� Let BH�t� be a fractional Brownian

motion and � a wavelet that isC�� Prove that the average numbers
repectively of zero�crossings and of modulus maxima of WBH�u� s�
for u � �� �� are proportional to s� Verify this result numerically
in WaveLab�
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����� � We want to interpolate the samples of a discrete signal f�n�N�
without blurring its singularities� by extending its dyadic wavelet
transform at �ner scales with an interpolation procedure on its
modulus maxima� The modulus maxima are calculated at scales
�j � N��� Implement in WaveLab an algorithm that creates a
new set of modulus maxima at the �ner scale N��� by interpolating
across scales the amplitudes and positions of the modulus maxima
calculated at �j � N��� Reconstruct a signal of size �N by adding
these �ne scale modulus maxima to the maxima representation of
the signal�

����� � Implement an algorithm that estimates the Lipschitz regularity
� and the smoothing scale 
 of sharp variation points in one�
dimensional signals by applying the result of Theorem ��� on the
dyadic wavelet transform maxima� Extend Theorem ��� for two�
dimensional signals and �nd an algorithm that computes the same
parameters for edges in images�

����� � Construct a compact image code from multiscale wavelet max�
ima ������ An e�cient coding algorithm must be introduced to
store the positions of the �important� multiscale edges as well as
the modulus and the angle values of the wavelet transform along
these edges� Do not forget that the wavelet transform angle is
nearly orthogonal to the tangent of the edge curve� Use the image
reconstruction algorithm of Section ����� to recover an image from
this coded representation�

���
� � A generalized Cantor measure is de�ned with a renormaliza�
tion that transforms the uniform measure on �� �� into a measure
equal to p��  and p� respectively on �� l��� �l�� l�� and �l�� ��� with
p� � p� � �� Iterating in�nitely many times this renormalization
operation over each component of the resulting measures yields a
Cantor measure� The integral ������ of this measure is a devil s
staircase� Suppose that l�� l�� p� and p� are unknown� Find an
algorithm that computes these renormalization parameters by an�
alyzing the self�similarity properties of the wavelet transform mod�
ulus maxima across scales� This problem is important in order to
identify renormalization maps in experimental data obtained from
physical experiments�
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Chapter �

Wavelet Bases

One can construct wavelets � such that the dilated and translated
family 


�j�n�t �
�p
�j
�

�
t� �jn

�j

��
�j�n��Z�

is an orthonormal basis of L��R� Behind this simple statement lie
very di�erent point of views which open a fruitful exchange between
harmonic analysis and discrete signal processing�

Orthogonal wavelets dilated by �j carry signal variations at the res�
olution ��j� The construction of these bases can thus be related to
multiresolution signal approximations� Following this link leads us to
an unexpected equivalence between wavelet bases and conjugate mirror
�lters used in discrete multirate �lter banks� These �lter banks imple�
ment a fast orthogonal wavelet transform that requires only O�N op�
erations for signals of size N � The design of conjugate mirror �lters also
gives new classes of wavelet orthogonal bases including regular wavelets
of compact support� In several dimensions� wavelet bases of L��Rd are
constructed with separable products of functions of one variable�

��� Orthogonal Wavelet Bases 	

Our search for orthogonal wavelets begins with multiresolution ap�
proximations� For f � L��R� the partial sum of wavelet coe�cientsP��

n��� hf� �j�ni�j�n can indeed be interpreted as the di�erence between

���
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two approximations of f at the resolutions ��j�� and ��j� Multireso�
lution approximations compute the approximation of signals at various
resolutions with orthogonal projections on di�erent spaces fVjgj�Z�
Section ����� proves that multiresolution approximations are entirely
characterized by a particular discrete �lter that governs the loss of in�
formation across resolutions� These discrete �lters provide a simple
procedure for designing and synthesizing orthogonal wavelet bases�

����� Multiresolution Approximations

Adapting the signal resolution allows one to process only the relevant
details for a particular task� In computer vision� Burt and Adelson
����� introduced a multiresolution pyramid that can be used to process
a low�resolution image �rst and then selectively increase the resolution
when necessary� This section formalizes multiresolution approxima�
tions� which set the ground for the construction of orthogonal wavelets�

The approximation of a function f at a resolution ��j is speci�ed by
a discrete grid of samples that provides local averages of f over neigh�
borhoods of size proportional to �j� A multiresolution approximation
is thus composed of embedded grids of approximation� More formally�
the approximation of a function at a resolution ��j is de�ned as an
orthogonal projection on a space Vj  L��R� The space Vj regroups
all possible approximations at the resolution ��j� The orthogonal pro�
jection of f is the function fj � Vj that minimizes kf � fjk� The
following de�nition introduced by Mallat ����� and Meyer ���� speci�es
the mathematical properties of multiresolution spaces� To avoid con�
fusion� let us emphasize that a scale parameter �j is the inverse of the
resolution ��j�

Denition ��	 �Multiresolutions� A sequence fVjgj�Z of closed sub�
spaces of L��R is a multiresolution approximation if the following �
properties are satis�ed�

��j� k � Z� � f�t � Vj � f�t� �jk � Vj � ����

�j � Z � Vj��  Vj � ����
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�j � Z � f�t � Vj � f

�
t

�

�
� Vj�� � ����

lim
j���

Vj �
���

j���

Vj � f�g � ����

lim
j���

Vj � Closure

�
���

j���

Vj

�
� L��R � ����

There exists � such that f��t� ngn�Z is a Riesz basis of V��

Let us give an intuitive explanation of these mathematical prop�
erties� Property ���� means that Vj is invariant by any translation
proportional to the scale �j� As we shall see later� this space can be
assimilated to a uniform grid with intervals �j� which characterizes the
signal approximation at the resolution ��j� The inclusion ���� is a
causality property which proves that an approximation at a resolution
��j contains all the necessary information to compute an approximation
at a coarser resolution ��j��� Dilating functions in Vj by � enlarges
the details by � and ���� guarantees that it de�nes an approximation
at a coarser resolution ��j��� When the resolution ��j goes to � ����
implies that we lose all the details of f and

lim
j���

kPVj
fk � �� ���	

On the other hand� when the resolution ��j goes ��� property ����
imposes that the signal approximation converges to the original signal


lim
j���

kf � PVj
fk � �� ����

When the resolution ��j increases� the decay rate of the approximation
error kf � PVj

fk depends on the regularity of f � Section ����� relates
this error to the uniform Lipschitz regularity of f �

The existence of a Riesz basis f��t � ngn�Z of V� provides a dis�
cretization theorem� The function � can be interpreted as a unit res�
olution cell" Appendix A�� gives the de�nition of a Riesz basis� There
exist A � � and B such that any f � V� can be uniquely decomposed
into

f�t �
��X

n���

a�n� ��t� n ����
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with

A kfk� �
��X

n���

ja�n�j� � B kfk�� ����

This energy equivalence guarantees that signal expansions over f��t�
ngn�Z are numerically stable� With the dilation property ���� and the
expansion ����� one can verify that the family f��j������jt�ngn�Z is
a Riesz basis of Vj with the same Riesz bounds A and B at all scales
�j� The following proposition gives a necessary and su�cient condition
for f��t� ngn�Z to be a Riesz basis�

Proposition ��	 A family f��t� ngn�Z is a Riesz basis of the space
V� it generates if and only if there exist A � � and B � � such that

�� � ���� �� �
�

B
�

��X
k���

j���� � �k�j� � �

A
� �����

Proof �� Any f � V� can be decomposed as

f�t� �

��X
n���

a�n� ��t� n�� ������

The Fourier transform of this equation yields

	f��� � 	a��� 	���� ������

where 	a��� is the Fourier series 	a��� �
P��

n��� a�n� exp��in��� The
norm of f can thus be written

kfk� �
�

��

Z ��

��
j 	f���j� d� �

�

��

Z ��

�

��X
k���

j	a�� � �k��j� j	��� � �k��j� d�

�
�

��

Z ��

�
j	a���j�

��X
k���

j	��� � �k��j� d� � ������

because a��� is �� periodic� The family f��t� n�gn�Z is a Riesz basis if
and only if

A kfk� � �

��

Z ��

�
j	a���j� d� �

��X
n���

ja�n�j� � B kfk�� ������
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If 	� satis�es ����� then ������ is derived from ������� The linear inde�
pendence of f��t�n�gn�Z is a consequence of the fact that ������ is valid
for any a�n� satisfying ������� If f �  then necessarily a�n� �  for all
n � Z� The family f��t� n�gn�Z is therefore a Riesz basis of V��

Conversely� if f��t � n�gn�Z is a Riesz basis then ������ is valid for
any a�n� � l��Z�� If either the lower bound or the upper bound of �����
is not satis�ed for almost all � � ���� �� then one can construct a non�
zero �� periodic function 	a��� whose support corresponds to frequencies
where ����� is not veri�ed� We then derive from ������ that ������ is
not valid for a�n�� which contradicts the Riesz basis hypothesis�

Example ��	 Piecewise constant approximations A simple mul�
tiresolution approximation is composed of piecewise constant functions�
The space Vj is the set of all g � L��R such that g�t is constant for
t � �n�j� �n � ��j and n � Z� The approximation at a resolution
��j of f is the closest piecewise constant function on intervals of size
�j� The resolution cell can be chosen to be the box window � � 	
�����
Clearly Vj  Vj�� since functions constant on intervals of size �j are
also constant on intervals of size �j��� The veri�cation of the other
multiresolution properties is left to the reader� It is often desirable
to construct approximations that are smooth functions� in which case
piecewise constant functions are not appropriate�

Example ��� Shannon approximations Frequency band�limited func�
tions also yield multiresolution approximations� The space Vj is de�
�ned as the set of functions whose Fourier transform has a support
included in ����j�� ��j��� Proposition ��� provides an orthonormal
basis f��t� ngn�Z of V� de�ned by

��t �
sin �t

�t
� �����

All other properties of multiresolution approximation are easily veri�ed�

The approximation at the resolution ��j of f � L��R is the function
PVj

f � Vj that minimizes kPVj
f � fk� It is proved in ����� that its

Fourier transform is obtained with a frequency �ltering


�PVj
f�� � �f�� 	
���j����j�����
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This Fourier transform is generally discontinuous at ���j�� in which
case jPVj

f�tj decays like jtj��� for large jtj� even though f might have
a compact support�

Example ��� Spline approximations Polynomial spline approxi�
mations construct smooth approximations with fast asymptotic decay�
The space Vj of splines of degree m � � is the set of functions that
are m � � times continuously di�erentiable and equal to a polynomial
of degree m on any interval �n�j� �n���j�� for n � Z� When m � �� it
is a piecewise constant multiresolution approximation� When m � ��
functions in Vj are piecewise linear and continuous�

A Riesz basis of polynomial splines is constructed with box splines�
A box spline � of degree m is computed by convolving the box window
	
���� with itself m � � times and centering at � or ���� Its Fourier
transform is

���� �

�
sin����

���

�m��

exp

��i��
�

�
� ����	

If m is even then � � � and � has a support centered at t � ���� If m is
odd then � � � and ��t is symmetric about t � �� Figure ��� displays
a cubic box spline m � � and its Fourier transform� For all m � ��
one can prove that f��t � ngn�Z is a Riesz basis of V� by verifying
the condition ������ This is done with a closed form expression for the
series ������

��t ����
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Figure ���
 Cubic box spline � and its Fourier transform ���
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����� Scaling Function

The approximation of f at the resolution ��j is de�ned as the orthog�
onal projection PVj

f on Vj� To compute this projection� we must �nd
an orthonormal basis of Vj� The following theorem orthogonalizes the
Riesz basis f��t � ngn�Z and constructs an orthogonal basis of each
space Vj by dilating and translating a single function  called a scaling
function� To avoid confusing the resolution ��j and the scale �j� in
the rest of the chapter the notion of resolution is dropped and PVj

f is
called an approximation at the scale �j�

Theorem ��	 Let fVjgj�Z be a multiresolution approximation and 
be the scaling function whose Fourier transform is

��� �
�����P��

k��� j���� � �k�j�
	��� � �����

Let us denote

j�n�t �
�p
�j


�
t� n

�j

�
�

The family fj�ngn�Z is an orthonormal basis of Vj for all j � Z�

Proof �� To construct an orthonormal basis� we look for a function � �
V�� It can thus be expanded in the basis f��t� n�gn�Z�

��t� �

��X
n���

a�n� ��t� n��

which implies that
	���� � 	a��� 	�����

where 	a is a �� periodic Fourier series of �nite energy� To compute 	a we
express the orthogonality of f��t � n�gn�Z in the Fourier domain� Let
���t� � ����t�� For any �n� p� � Z��

h��t� n�� ��t� p�i �

Z ��

��
��t� n����t� p� dt

� � � ���p� n� � ����
�
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Hence f��t�n�gn�Z is orthonormal if and only if � � ���n� � �n�� Com�
puting the Fourier transform of this equality yields

��X
k���

j	��� � �k��j� � �� ������

Indeed� the Fourier transform of � � ���t� is j	����j�� and we we proved
in ����� that sampling a function periodizes its Fourier transform� The
property ������ is veri�ed if we choose

	a��� �

�
��X

k���

j	��� � �k��j�
	����

�

Proposition ��� proves that the denominator has a strictly positive lower
bound� so 	a is a �� periodic function of �nite energy�

Approximation The orthogonal projection of f over Vj is obtained
with an expansion in the scaling orthogonal basis

PVj
f �

��X
n���

hf� j�nij�n� �����

The inner products

aj�n� � hf� j�ni �����

provide a discrete approximation at the scale �j� We can rewrite them
as a convolution product


aj�n� �

Z ��

��

f�t
�p
�j


�
t� �jn

�j

�
dt � f � �j��

jn� �����

with �j�t �
p
��j���jt� The energy of the Fourier transform �

is typically concentrated in ���� ��� as illustrated by Figure ���� As
a consequence� the Fourier transform

p
�j ����j� of �j�t is mostly

non�negligible in ����j�� ��j��� The discrete approximation aj�n� is
therefore a low�pass �ltering of f sampled at intervals �j� Figure ���
gives a discrete multiresolution approximation at scales ��� � �j � ����
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�t ���
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Figure ���
 Cubic spline scaling function  and its Fourier transform �
computed with ������
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Example ��� For piecewise constant approximations and Shannon
multiresolution approximations we have constructed Riesz bases f��t�
ngn�Z which are orthonormal bases� hence  � ��

Example ��� Spline multiresolution approximations admit a Riesz
basis constructed with a box spline � of degree m� whose Fourier trans�
form is given by ����	� Inserting this expression in ����� yields

��� �
exp ��i����

�m��
p
S�m����

� �����

with

Sn�� �
��X

k���

�

�� � �k�n
� �����

and � � � if m is even or � � � if m is odd� A closed form expression
of S�m���� is obtained by computing the derivative of order �m of the
identity

S���� �
��X

k���

�

��� � �k��
�

�

� sin� �
�

For linear splines m � � and

S���� �
� � � cos� �

�� sin� �
� �����

which yields

��� �
�
p
� sin�����

��
p
� � � cos�����

� ����	

The cubic spline scaling function corresponds to m � � and ��� is
calculated with ����� by inserting

S���� �
� � �� cos� � � �� sin� � cos� �

��� �� sin� �
�����

�
�� cos� � � � sin� � cos� � � ��� sin� �

��� �� sin� �
�

This cubic spline scaling function  and its Fourier transform are dis�
played in Figure ���� It has an in�nite support but decays exponentially�
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����� Conjugate Mirror Filters

A multiresolution approximation is entirely characterized by the scaling
function  that generates an orthogonal basis of each space Vj� We
study the properties of  which guarantee that the spaces Vj satisfy
all conditions of a multiresolution approximation� It is proved that any
scaling function is speci�ed by a discrete �lter called a conjugate mirror
�lter�

Scaling Equation The multiresolution causality property ���� im�
poses that Vj  Vj��� In particular ������t�� � V�  V�� Since
f�t� ngn�Z is an orthonormal basis of V�� we can decompose

�p
�
�
t

�
 �

��X
n���

h�n��t� n� �����

with

h�n� �

�
�p
�


�
t

�

�
� �t� n

�
� �����

This scaling equation relates a dilation of  by � to its integer transla�
tions� The sequence h�n� will be interpreted as a discrete �lter�

The Fourier transform of both sides of ����� yields

���� �
�p
�
�h�� ��� �����

for �h�� �
P��

n��� h�n� e�in�� It is thus tempting to express ���

directly as a product of dilations of �h��� For any p � �� ����� implies

����p��� �
�p
�
�h���p� ����p�� �����

By substitution� we obtain

��� �

�
PY
p��

�h���p�p
�

�
����P�� �����
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If ��� is continuous at � � � then lim
P���

����P� � ��� so

��� �
��Y
p��

�h���p�p
�

���� �����

The following theorem ����� ��� gives necessary and then su�cient con�
ditions on �h�� to guarantee that this in�nite product is the Fourier
transform of a scaling function�

Theorem ��� �Mallat� Meyer� Let  � L��R be an integrable scal�
ing function� The Fourier series of h�n� � h������t��� �t� ni sat�
is�es

�� � R � j�h��j� � j�h�� � �j� � �� �����

and
�h�� �

p
�� �����

Conversely� if �h�� is �� periodic and continuously di�erentiable in a
neighborhood of � � �� if it satis�es �����	 and �����	 and if

inf
��
���������

j�h��j � � ����	

then

��� �
��Y
p��

�h���p�p
�

�����

is the Fourier transform of a scaling function  � L��R�

Proof� This theorem is a central result whose proof is long and technical�
It is divided in several parts�

� Proof � of the necessary condition ���
�� The necessary condition is
proved to be a consequence of the fact that f��t�n�gn�Z is orthonormal�
In the Fourier domain� ������ gives an equivalent condition�

�� � R �

��X
k���

j	��� � �k��j� � �� ����
�
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Inserting 	���� � �����	h����� 	������ yields

��X
k���

j	h�
�

�
� k��j� j	��

�

�
� k��j� � ��

Since 	h��� is �� periodic� separating the even and odd integer terms
gives

j	h�
�

�
�j�

��X
p���

���	���
�

� �p�
���������	h��

�
� �

����� ��X
p���

���	���
�

� � � �p�
����� � ��

Inserting ����
� for �� � ��� and �� � ��� � � proves that

j	h����j� � j	h��� � ��j� � ��

� Proof � of the necessary condition ���
�� We prove that 	h�� �
p

�
by showing that 	��� �� � Indeed we know that 	��� � ����� 	h�� 	����
More precisely�we verify that j	���j � � is a consequence of the com�
pleteness property ����� of multiresolution approximations�

The orthogonal projection of f � L��R� on Vj is

PVj
f �

��X
n���

hf� �j�ni�j�n� ������

Property ����� expressed in the time and Fourier domains with the
Plancherel formula implies that

lim
j���

kf � PVj
fk� � lim

j���
�� k 	f � �PVj

fk� � � �����

To compute the Fourier transform �PVj
f���� we denote �j�t� �

p
��j����jt��

Inserting the convolution expression ������ in ������ yields

PVj
f�t� �

��X
n���

f � ��j��
jn��j�t��jn� � �j �

��X
n���

f � ��j��
jn� �t��jn��

The Fourier transform of f � ��j�t� is
p

�j 	f���	����j��� A uniform sam�
pling has a periodized Fourier transform calculated in ������ and hence

�PVj
f��� � 	���j��

��X
k���

	f

�
� � �k�

�j

�
	��
�

�j
�
� � �k�

�j

�
� ������
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Let us choose 	f � �
������ For j 	  and � � ���� ��� ������ gives

�PVj
f��� � j	���j��j�� The mean�square convergence ����� implies that

lim
j���

Z �

��

����� j	���j��j�
���� d� �  �

Since � is integrable� 	���� is continuous and hence limj��� j	���j��j �

j	���j � ��

We now prove that the function � whose Fourier transform is given by
������ is a scaling function� This is divided in two intermediate results�

� Proof � that f��t � n�gn�Z is orthonormal� Observe �rst that the
in�nite product ������ converges and that j	����j � � because ������
implies that j	h���j � p

�� The Parseval formula gives

h��t�� ��t � n�i �

Z ��

��
��t����t� n� dt �

�

��

Z ��

��
j	����j� ein� d��

Verifying that f��t�n�gn�Z is orthonormal is thus equivalent to showing
that Z ��

��
j	����j� ein� d� � �� �n��

This result is obtained by considering the functions

	�k��� �

kY
p��

	h���p��p
�

�
��k���k������

and computing the limit� as k increases to ��� of the integrals

Ik�n� �

Z ��

��
j	�k���j� ein� d� �

Z �k�

��k�

kY
p��

j	h���p��j�
�

ein� d��

First� let us show that Ik�n� � ���n� for all k � �� To do this� we
divide Ik�n� into two integrals�

Ik�n� �

Z �

��k�

kY
p��

j	h���p��j�
�

ein� d� �

Z �k�

�

kY
p��

j	h���p��j�
�

ein� d��
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Let us make the change of variable �� � ���k� in the �rst integral� Since
	h��� is �� periodic� when p 	 k then j	h���p��� � �k���j� � j	h���p���j��
When k � p the hypothesis ������ implies that

j	h���k��� � �k���j� � j	h���k���j� � ��

For k � �� the two integrals of Ik�n� become

Ik�n� �

Z �k�

�

k��Y
p��

j	h���p��j�
�

ein� d� � ������

Since
Qk��

p�� j	h���p��j� ein� is �k� periodic we obtain Ik�n� � Ik���n�� and
by induction Ik�n� � I��n�� Writing ������ for k � � gives

I��n� �

Z ��

�
ein� d� � �� �n��

which veri�es that Ik�n� � ���n�� for all k � ��

We shall now prove that 	� � L��R�� For all � � R

lim
k��

j	�k���j� �
�Y
p��

j	h���p��j�
�

� j	����j��

The Fatou Lemma A�� on positive functions proves thatZ ��

��
j	����j� d� � lim

k��

Z ��

��
j	�k���j� d� � ��� ������

because Ik�� � �� for all k � �� Since

j	����j� ein� � lim
k��

j	�k���j� ein� �

we �nally verify thatZ ��

��
j	����j� ein� d� � lim

k��

Z ��

��
j	�k���j� ein� d� � �� �n� ������

by applying the dominated convergence Theorem A��� This requires
verifying the upper�bound condition �A���� This is done in our case by
proving the existence of a constant C such that���j	�k���j� ein�

��� � j	�k���j� � C j	����j�� ������



��� CHAPTER �� WAVELET BASES

Indeed� we showed in ������ that j	����j� is an integrable function�

The existence of C �  satisfying ������ is trivial for j�j � �k� since
	�k��� � � For j�j � �k� since 	���� � ����� 	h����� 	������� it follows
that

j	����j� � j	�k���j� j	����k��j��
To prove ������ for j�j � �k�� it is therefore su�cient to show that
j	����j� � ��C for � � ���� ���

Let us �rst study the neighborhood of � � � Since 	h��� is continu�
ously di�erentiable in this neighborhood and since j	h���j� � � � j	h��j��
the functions j	h���j� and loge j	h���j� have derivatives that vanish at
� � � It follows that there exists � �  such that

�j�j � � �  � loge

�
j	h���j�

�

	
� �j�j�

Hence� for j�j � �

j	����j� � exp

����X
p��

loge

�
j	h���p��j�

�

	�� � e�j�j � e�� ������

Now let us analyze the domain j�j � �� To do this we take an integer l
such that ��l� 	 �� Condition ������ proves that K � inf��
��������� j	h���j �
 so if j�j � �

j	����j� �

lY
p��

j	h���p��j�
�

���	����l�
����� � K�l

�l
e� �

�

C
�

This last result �nishes the proof of inequality ������� Applying the
dominated convergence Theorem A�� proves ������ and hence that f��t�
n�gn�Z is orthonormal� A simple change of variable shows that f�j�ngj�Z
is orthonormal for all j � Z�

� Proof � that fVjgj�Z is a multiresolution� To verify that � is a scal�
ing function� we must show that the spaces Vj generated by f�j�ngj�Z
de�ne a multiresolution approximation� The multiresolution properties
����� and ����� are clearly true� The causality Vj�� 
 Vj is veri�ed by
showing that for any p � Z�

�j���p �

��X
n���

h�n� �p��j�n�
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This equality is proved later in �������� Since all vectors of a basis of
Vj�� can decomposed in a basis of Vj it follows that Vj�� 
 Vj �

To prove the multiresolution property ����� we must show that any
f � L��R� satis�es

lim
j���

kPVj
fk � � ������

Since f�j�ngn�Z is an orthonormal basis of Vj

kPVj
fk� �

��X
n���

jhf� �j�nij��

Suppose �rst that f is bounded by A and has a compact support included
in ��J � �J �� The constants A and J may be arbitrarily large� It follows
that

��X
n���

jhf� �j�nij� � ��j

�
��X

n���

Z �J

��J
jf�t�j j����j t� n�j dt

��

� ��jA�

�
��X

n���

Z �J

��J
j����jt� n�j dt

��

Applying the Cauchy�Schwarz inequality to �� j����jt� n�j yields

��X
n���

jhf� �j�nij� � A� �J��
��X

n���

Z �J

��J
j����jt� n�j� ��j dt

� A��J��

Z
Sj

j��t�j� dt � A� �J��

Z ��

��
j��t�j� �Sj �t� dt�

with Sj � �n�Z�n � �J�j� n � �J�j� for j � J � For t �� Z we obviously
have �Sj �t� �  for j � ��� The dominated convergence Theorem A��
applied to j��t�j� �Sj �t� proves that the integral converges to  and hence

lim
j���

��X
n���

jhf� �j�nij� � �

Property ������ is extended to any f � L��R� by using the density in
L��R� of bounded function with a compact support� and Proposition
A���
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To prove the last multiresolution property ����� we must show that
for any f � L��R��

lim
j���

kf � PVj
fk� � lim

j���

�
kfk� � kPVj

fk�
�

� � ����
�

We consider functions f whose Fourier transform 	f has a compact sup�
port included in ���J�� �J�� for J large enough� We proved in ������
that the Fourier transform of PVj

f is

�PVj
f��� � 	���j��

��X
k���

	f


� � ��j�k�

�
	��


�j
�
� � ��j�k�

��
�

If j 	 �J � then the supports of 	f�� � ��j�k�� are disjoint for di�erent
k so

kPVj
fk� �

�

��

Z ��

��
j 	f���j� j	���j��j� d� ������

�
�

��

Z ��

��

��X
k���
k ���

j 	f 
� � ��j�k�
� j� j	���j��j� j	� 
�j �� � ��j�k�

�� j� d��
We have already observed that j����j � � and ������ proves that for �
su�ciently small j����j � e�j�j so

lim
���

j	����j � ��

Since j 	f���j�j	���j��j� � j 	f���j� and limj��� j	���j��j�j 	f���j� � j 	f���j�
one can apply the dominated convergence Theorem A��� to prove that

lim
j���

Z ��

��
j 	f���j� j	���j��j� d� �

Z ��

��
j 	f���j� d� � kfk�� �����

The operator PVj
is an orthogonal projector� so kPVj

fk � kfk� With
������ and ������ this implies that limj����kfk� � kPVj

fk�� � � and
hence veri�es ����
�� This property is extended to any f � L��R� by
using the density in L��R� of functions whose Fourier transforms have a
compact support and the result of Proposition A���

Discrete �lters whose transfer functions satisfy ����� are called con�
jugate mirror �lters� As we shall see in Section ���� they play an im�
portant role in discrete signal processing" they make it possible to de�
compose discrete signals in separate frequency bands with �lter banks�
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One di�culty of the proof is showing that the in�nite cascade of convo�
lutions that is represented in the Fourier domain by the product �����
does converge to a decent function in L��R� The su�cient condition
����	 is not necessary to construct a scaling function� but it is always
satis�ed in practical designs of conjugate mirror �lters� It cannot just
be removed as shown by the example �h�� � cos������ which satis�
�es all other conditions� In this case� a simple calculation shows that
 � �

	
	
�	���	���� Clearly f�t � ngn�Z is not orthogonal so  is not a

scaling function� The condition ����	 may however be replaced by a
weaker but more technical necessary and su�cient condition proved by
Cohen ���� �����

Example ��� For a Shannon multiresolution approximation� � �
	
������ We thus derive from ����� that

�� � ���� �� � �h�� �
p
�	
������������

Example ��� For piecewise constant approximations�  � 	
����� Since

h�n� � h������ t
�
� �t� ni it follows that

h�n� �



����� if n � �� �
� otherwise

�����

Example ��� Polynomial splines of degree m correspond to a conju�

gate mirror �lter �h�� that is calculated from ��� with �����


�h�� �
p
�
����

���
� �����

Inserting ����� yields

�h�� � exp

��i��
�

�s
S�m����

��m�� S�m�����
� �����
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where � � � if m is odd and � � � if m is even� For linear splines m � �
so ����� implies that

�h�� �
p
�

�
� � � cos�����

� � � cos� �

����
cos�

��
�

	
� �����

For cubic splines� the conjugate mirror �lter is calculated by inserting
����� in ������ Figure ��� gives the graph of j�h��j�� The impulse re�
sponses h�n� of these �lters have an in�nite support but an exponential
decay� For m odd� h�n� is symmetric about n � �� Table ��� gives the
coe�cients h�n� above ���� for m � �� ��

−2 0 2
0

1

2

Figure ���
 The solid line gives j�h��j� on ���� ��� for a cubic spline
multiresolution� The dotted line corresponds to j�g��j��

����
 In Which Orthogonal Wavelets Finally Ar�

rive

Orthonormal wavelets carry the details necessary to increase the resolu�
tion of a signal approximation� The approximations of f at the scales
�j and �j�� are respectively equal to their orthogonal projections on
Vj and Vj��� We know that Vj is included in Vj��� Let Wj be the
orthogonal complement of Vj in Vj��


Vj�� � Vj �Wj� �����

The orthogonal projection of f on Vj�� can be decomposed as the sum
of orthogonal projections on Vj and Wj


PVj��
f � PVj

f � PWj
f� ����	
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n h�n�

m � �  �
��������
���� ���������
���� �������
���� ����������
���� ������
�
���� �������
���� ���

����
���� ��������

��
 �������
���� �������

���� ��������
������ ������
�

m � �  ��������

���� ����������
���� ��������
���� �������
�
���� ���

��

n h�n�

m � � ���� ����
��

���� ����������
���� �����
����

��
 �
�
����
���� �
�����

���� ������
�
������ ���

����
������ ���
����
������ ��

���
������ �������

������ ������
�
������ �������
������ ������
�
���
 ���
����
������ �������
���� �����


Table ���
 Conjugate mirror �lters h�n� corresponding to linear splines
m � � and cubic splines m � �� The coe�cients below ���� are not
given�
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The complement PWj
f provides the �details� of f that appear at the

scale �j�� but which disappear at the coarser scale �j� The following
theorem ���� ���� proves that one can construct an orthonormal basis
of Wj by scaling and translating a wavelet ��

Theorem ��� �Mallat� Meyer� Let  be a scaling function and h
the corresponding conjugate mirror �lter� Let � be the function whose
Fourier transform is

���� �
�p
�
�g
��
�

	
�
��
�

	
� �����

with

�g�� � e�i� �h��� � �� �����

Let us denote

�j�n�t �
�p
�j
�

�
t� �jn

�j

�
�

For any scale �j� f�j�ngn�Z is an orthonormal basis of Wj� For all
scales� f�j�ng�j�n��Z� is an orthonormal basis of L��R�

Proof �� Let us prove �rst that 	� can be written as the product �������
Necessarily ��t��� � W� 
 V�� It can thus be decomposed in f��t �
n�gn�Z which is an orthogonal basis of V��

�p
�
�

�
t

�

�
�

��X
n���

g�n���t � n�� ������

with

g�n� �
�p
�

�
�

�
t

�

�
� ��t� n�

�
� �����

The Fourier transform of ������ yields

	����� �
�p
�

	g��� 	����� ������

The following lemma gives necessary and su�cient conditions on 	g for
designing an orthogonal wavelet�
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Lemma ��� The family f�j�ngn�Z is an orthonormal basis of Wj if and

only if

j	g���j� � j	g�� � ��j� � � ������

and

	g��� 	h���� � 	g�� � �� 	h��� � �� � � ������

The lemma is proved for j �  from which it is easily extended to
j ��  with an appropriate scaling� As in ������ one can verify that
f��t � n�gn�Z is orthonormal if and only if

�� � R � I��� �
��X

k���

j 	��� � �k��j� � �� ������

Since 	���� � ����� 	g����� 	������ and 	g��� is �� periodic�

I��� �
��X

k���

j	g
��

�
� k�

�
j� j	�

��
�

� k�
�
j�

� j	g
��

�

�
j�

��X
p���

j	�
��

�
� �p�

�
j� � j	g

��
�

� �
�
j�

��X
p���

j	�
��

�
� � � �p�

�
j��

We know that
P��

p��� j	�����p��j� � � so ������ is equivalent to �������

The space W� is orthogonal to V� if and only if f��t � n�gn�Z and
f��t � n�gn�Z are orthogonal families of vectors� This means that for
any n � Z

h��t�� ��t � n�i � � � ���n� � �

The Fourier transform of � � ���t� is 	����	������ The sampled sequence
� � ���n� is zero if its Fourier series computed with ����� satis�es

�� � R �
��X

k���

	��� � �k�� 	���� � �k�� � � ������

By inserting 	���� � ����� 	g����� 	������ and 	���� � ����� 	h����� 	������
in this equation� since

P��
k��� j	�����k��j� � � we prove as before that

������ is equivalent to �������
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We must �nally verify that V�� � V�W�� Knowing that fp����t�
n�gn�Z is an orthogonal basis of V��� it is equivalent to show that for
any a�n� � l��Z� there exist b�n� � l��Z� and c�n� � l��Z� such that

��X
n���

a�n�
p

�����t� ���n�� �
��X

n���

b�n���t� n� �
��X

n���

c�n���t � n��

������
This is done by relating 	b��� and 	c��� to 	a���� The Fourier transform
of ������ yields

�p
�

	a
��

�

�
	�
��

�

�
� 	b��� 	���� � 	c��� 	�����

Inserting 	���� � ����� 	g����� 	������ and 	���� � ����� 	h����� 	������
in this equation shows that it is necessarily satis�ed if

	a
��

�

�
� 	b��� 	h

��
�

�
� 	c��� 	g

��
�

�
� ������

Let us de�ne

	b���� �
�

�
�	a��� 	h���� � 	a�� � �� 	h��� � ���

and

	c���� �
�

�
�	a��� 	g���� � 	a�� � �� 	g��� � ����

When calculating the right�hand side of ������ we verify that it is equal
to the left�hand side by inserting ������� ������ and using

j	h���j� � j	h�� � ��j� � �� ����
�

Since 	b��� and 	c��� are �� periodic they are the Fourier series of two
sequences b�n� and c�n� that satisfy ������� This �nishes the proof of the
lemma�

The formula ����
�

	g��� � e�i� 	h��� � ��

satis�es ������ and ������ because of ����
�� We thus derive from Lemma
��� that f�j�ng�j�n��Z� is an orthogonal basis of Wj �

We complete the proof of the theorem by verifying that f�j�ng�j�n��Z�
is an orthogonal basis of L��R�� Observe �rst that the detail spaces
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fWjgj�Z are orthogonal� Indeed Wj is orthogonal to Vj and Wl 

Vl�� 
 Vj for j 	 l� Hence Wj and Wl are orthogonal� We can also
decompose

L��R� � ��
j���Wj � ������

Indeed Vj�� � Wj  Vj and we verify by substitution that for any
L � J

VL � J
j�L��Wj  VJ � �����

Since fVjgj�Z is a multiresolution approximation� VL and VJ tend re�
spectively to L��R� and fg when L and J go respectively to �� and
��� which implies ������� A union of orthonormal bases of all Wj is
therefore an orthonormal basis of L��R��

The proof of the theorem shows that �g is the Fourier series of

g�n� �

�
�p
�
�

�
t

�

�
� �t� n

�
� �����

which are the decomposition coe�cients of

�p
�
�

�
t

�

�
�

��X
n���

g�n��t� n� �����

Calculating the inverse Fourier transform of ����� yields

g�n� � �����n h��� n�� �����

This mirror �lter plays an important role in the fast wavelet transform
algorithm�

Example ��� Figure ��� displays the cubic spline wavelet � and its

Fourier transform �� calculated by inserting in ����� the expressions
����� and ����� of ��� and �h��� The properties of this Battle�
Lemari(e spline wavelet are further studied in Section ������ Like most
orthogonal wavelets� the energy of �� is essentially concentrated in
�������� � ��� ���� For any � that generates an orthogonal basis of
L��R� one can verify that

�� � R � f�g �
��X

j���

j ����j�j� � ��

This is illustrated in Figure ��	�
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��t j ����j
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Figure ���
 Battle�Lemari(e cubic spline wavelet � and its Fourier trans�
form modulus�
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Figure ��	
 Graphs of j ����j�j� for the cubic spline Battle�Lemari(e
wavelet� with � � j � � and � � ���� ���
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The orthogonal projection of a signal f in a �detail� space Wj is
obtained with a partial expansion in its wavelet basis

PWj
f �

��X
n���

hf� �j�ni�j�n�

A signal expansion in a wavelet orthogonal basis can thus be viewed as
an aggregation of details at all scales �j that go from � to ��

f �
��X

j���

PWj
f �

��X
j���

��X
n���

hf� �j�ni�j�n�

Figure ��� gives the coe�cients of a signal decomposed in the cubic
spline wavelet orthogonal basis� The calculations are performed with
the fast wavelet transform algorithm of Section ����

 2−9
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 2−7
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 2−5

Approximation

0 0.2 0.4 0.6 0.8 1
−20

0
20
40

t
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Figure ���
 Wavelet coe�cients dj�n� � hf� �j�ni calculated at scales �j

with the cubic spline wavelet� At the top is the remaining coarse signal
approximation aJ �n� � hf� J�ni for J � ���
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Wavelet Design Theorem ��� constructs a wavelet orthonormal ba�
sis from any conjugate mirror �lter �h��� This gives a simple procedure
for designing and building wavelet orthogonal bases� Conversely� we
may wonder whether all wavelet orthonormal bases are associated to
a multiresolution approximation and a conjugate mirror �lter� If we
impose that � has a compact support then Lemari(e ���� proved that �
necessarily corresponds to a multiresolution approximation� It is how�
ever possible to construct pathological wavelets that decay like jtj��
at in�nity� and which cannot be derived from any multiresolution ap�
proximation� Section ��� describes important classes of wavelet bases
and explains how to design �h to specify the support� the number of
vanishing moments and the regularity of ��

��� Classes of Wavelet Bases 	

����� Choosing a Wavelet

Most applications of wavelet bases exploit their ability to e�ciently
approximate particular classes of functions with few non�zero wavelet
coe�cients� This is true not only for data compression but also for
noise removal and fast calculations� The design of � must therefore
be optimized to produce a maximum number of wavelet coe�cients
hf� �j�ni that are close to zero� A function f has few non�negligible
wavelet coe�cients if most of the �ne�scale �high�resolution wavelet
coe�cients are small� This depends mostly on the regularity of f � the
number of vanishing moments of � and the size of its support� To
construct an appropriate wavelet from a conjugate mirror �lter h�n��
we relate these properties to conditions on �h���

Vanishing Moments Let us recall that � has p vanishing moments
if Z ��

��

tk ��t dt � � for � � k 	 p� �����

This mean that � is orthogonal to any polynomial of degree p � ��
Section 	���� proves that if f is regular and � has enough vanishing
moments then the wavelet coe�cients jhf� �j�nij are small at �ne scales
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�j� Indeed� if f is locally Ck� then over a small interval it is well ap�
proximated by a Taylor polynomial of degree k� If k 	 p� then wavelets
are orthogonal to this Taylor polynomial and thus produce small am�
plitude coe�cients at �ne scales� The following theorem relates the
number of vanishing moments of � to the vanishing derivatives of ����
at � � � and to the number of zeroes of �h�� at � � �� It also proves
that polynomials of degree p � � are then reproduced by the scaling
functions�

Theorem ��� �Vanishing moments� Let � and  be a wavelet and
a scaling function that generate an orthogonal basis� Suppose that
j��tj � O��� � t��p���� and j�tj � O��� � t��p����� The four
following statements are equivalent�

�i	 The wavelet � has p vanishing moments�
�ii	 ���� and its �rst p� � derivatives are zero at � � ��
�iii	 �h�� and its �rst p� � derivatives are zero at � � ��
�iv	 For any � � k 	 p�

qk�t �
��X

n���

nk �t� n is a polynomial of degree k� �����

Proof �� The decay of j��t�j and j��t�j implies that 	���� and 	���� are
p times continuously di�erentiable� The kth order derivative 	��k���� is
the Fourier transform of ��it�k��t�� Hence

	��k��� �

Z ��

��
��it�k ��t� dt�

We derive that �i� is equivalent to �ii��

Theorem ��� proves that

p
� 	����� � e�i� 	h��� � �� 	�����

Since 	��� �� � by di�erentiating this expression we prove that �ii� is
equivalent to �iii��

Let us now prove that �iv� implies �i�� Since � is orthogonal to
f��t � n�gn�Z� it is thus also orthogonal to the polynomials qk for  �
k 	 p� This family of polynomials is a basis of the space of polynomials
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of degree at most p � �� Hence � is orthogonal to any polynomial of
degree p � � and in particular to tk for  � k 	 p� This means that �
has p vanishing moments�

To verify that �i� implies �iv� we suppose that � has p vanishing
moments� and for k 	 p we evaluate qk�t� de�ned in ������� This is done
by computing its Fourier transform�

	qk��� � 	����
��X

n���

nk exp��in�� � �i�k 	����
dk

d�k

��X
n���

exp��in�� �

Let �k� be the distribution that is the kth order derivative of a Dirac�
de�ned in Appendix A��� The Poisson formula ����� proves that

	qk��� � �i�k
�

��
	����

��X
l���

�k��� � �l��� ������

With several integrations by parts� we verify the distribution equality

	���� �k�����l�� � 	���l�� �k�����l���

k��X
m��

akm�l 
�m�����l��� ������

where akm�l is a linear combination of the derivatives f	��m���l��g��m�k �

For l �� � let us prove that akm�l �  by showing that 	��m���l�� � 
if  � m 	 p� For any P � � ������ implies

	���� � 	����P��

PY
p��

	h���p��p
�

� ����
�

Since � has p vanishing moments� we showed in �iii� that 	h��� has a zero
of order p at � � ��� But 	h��� is also �� periodic� so ����
� implies
that 	���� � O�j���l�jp� in the neighborhood of � � �l�� for any l �� �
Hence 	��m���l�� �  if m 	 p�

Since akm�l �  and ���l�� �  when l �� � it follows from ������ that

	���� �k��� � �l�� �  for l �� �

The only term that remains in the summation ������ is l �  and insert�
ing ������ yields

	qk��� � �i�k
�

��

�
	��� �k���� �

k��X
m��

akm�� 
�m����

	
�
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The inverse Fourier transform of �m���� is ��������it�m and Theorem
��� proves that 	��� �� � Hence the inverse Fourier transform qk of 	qk is
a polynomial of degree k�

The hypothesis �iv is called the Fix�Strang condition ������ The poly�
nomials fqkg��k�p de�ne a basis of the space of polynomials of degree
p � �� The Fix�Strang condition thus proves that � has p vanishing
moments if and only if any polynomial of degree p� � can be written
as a linear expansion of f�t� ngn�Z� The decomposition coe�cients
of the polynomials qk do not have a �nite energy because polynomials
do not have a �nite energy�

Size of Support If f has an isolated singularity at t� and if t� is
inside the support of �j�n�t � ��j�� ����jt � n� then hf� �j�ni may
have a large amplitude� If � has a compact support of size K� at
each scale �j there are K wavelets �j�n whose support includes t�� To
minimize the number of high amplitude coe�cients we must reduce the
support size of �� The following proposition relates the support size of
h to the support of  and ��

Proposition ��� �Compact support� The scaling function  has a
compact support if and only if h has a compact support and their support
are equal� If the support of h and  is �N�� N�� then the support of � is
��N� �N� � ��� � �N� �N� � �����

Proof �� If � has a compact support� since

h�n� �
�p
�

�
�

�
t

�

�
� ��t� n�

�
�

we derive that h also has a compact support� Conversely� the scaling
function satis�es

�p
�
�

�
t

�

�
�

��X
n���

h�n���t� n�� ������

If h has a compact support then one can prove ����� that � has a compact
support� The proof is not reproduced here�

To relate the support of � and h� we suppose that h�n� is non�zero for
N� � n � N� and that � has a compact support �K��K��� The support
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of ��t��� is ��K�� �K��� The sum at the right of ������ is a function whose
support is �N� � K�� N� � K��� The equality proves that the support of
� is �K��K�� � �N�� N���

Let us recall from ������ and ������ that

�p
�
�

�
t

�

�
�

��X
n���

g�n���t� n� �

��X
n���

����n�� h��n� ����t� n��

If the supports of � and h are equal to �N�� N��� the sum in the right�
hand side has a support equal to �N� �N� � �� N� �N� � ��� Hence �
has a support equal to ��N� �N� � ����� �N� �N� � ������

If h has a �nite impulse response in �N�� N��� Proposition ��� proves
that � has a support of size N��N� centered at ���� To minimize the
size of the support� we must synthesize conjugate mirror �lters with as
few non�zero coe�cients as possible�

Support Versus Moments The support size of a function and the
number of vanishing moments are a priori independent� However� we
shall see in Theorem ��� that the constraints imposed on orthogonal
wavelets imply that if � has p vanishing moments then its support is
at least of size �p � �� Daubechies wavelets are optimal in the sense
that they have a minimum size support for a given number of vanishing
moments� When choosing a particular wavelet� we thus face a trade�o�
between the number of vanishing moments and the support size� If f
has few isolated singularities and is very regular between singularities�
we must choose a wavelet with many vanishing moments to produce
a large number of small wavelet coe�cients hf� �j�ni� If the density
of singularities increases� it might be better to decrease the size of
its support at the cost of reducing the number of vanishing moments�
Indeed� wavelets that overlap the singularities create high amplitude
coe�cients�

The multiwavelet construction of Geronimo� Hardin and Massupust
����� o�ers more design  exibility by introducing several scaling func�
tions and wavelets� Problem ���	 gives an example� Better trade�o�
can be obtained between the multiwavelets supports and their vanish�
ing moments ������ However� multiwavelet decompositions are imple�
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mented with a slightly more complicated �lter bank algorithm than a
standard orthogonal wavelet transform�

Regularity The regularity of � has mostly a cosmetic in uence on
the error introduced by thresholding or quantizing the wavelet coe��
cients� When reconstructing a signal from its wavelet coe�cients

f �
��X

j���

��X
n���

hf� �j�ni�j�n�

an error � added to a coe�cient hf� �j�ni will add the wavelet com�
ponent � �j�n to the reconstructed signal� If � is smooth� then � �j�n
is a smooth error� For image coding applications� a smooth error is
often less visible than an irregular error� even though they have the
same energy� Better quality images are obtained with wavelets that are
continuously di�erentiable than with the discontinuous Haar wavelet�
The following proposition due to Tchamitchian ����� relates the uni�
form Lipschitz regularity of  and � to the number of zeroes of �h��
at � � ��

Proposition ��� �Tchamitchian� Let �h�� be a conjugate mirror �l�
ter with p zeroes at � and which satis�es the su�cient conditions of
Theorem ��� Let us perform the factorization

�h�� �
p
�

�
� � ei�

�

�p

�l���

If sup��R j�l��j � B then � and  are uniformly Lipschitz � for

� 	 �� � p� log�B � �� �����

Proof �� This result is proved by showing that there exist C� �  and
C� �  such that for all � � R

j	����j � C� �� � j�j��p�log� B ���
��

j 	����j � C� �� � j�j��p�log� B � ���
��

The Lipschitz regularity of � and � is then derived from Theorem ����
which shows that if

R ��
�� �� � j�j�� j 	f���j d� 	 ��� then f is uniformly

Lipschitz ��
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We proved in ������ that 	���� �
Q��

j�� ����� 	h���j��� One can verify
that

��Y
j��

� � exp�i��j��

�
�

�� exp�i��

i �
�

hence

j	����j �
j�� exp�i��jp

j�jp
��Y
j��

j	l���j��j� ���
��

Let us now compute an upper bound for
Q��

j�� j	l���j��j� At � � 

we have 	h�� �
p

� so 	l�� � �� Since 	h��� is continuously di�erentiable
at � � � 	l��� is also continuously di�erentiable at � � � We thus
derive that there exists � �  such that if j�j 	 � then j	l���j � � �Kj�j�
Consequently

sup
j�j�

��Y
j��

j	l���j��j � sup
j�j�

��Y
j��

�� � Kj��j�j� � eK� ���
��

If j�j � �� there exists J � � such that �J��� � j�j � �J� and we
decompose

��Y
j��

	l���j�� �

JY
j��

j	l���j��j
��Y
j��

j	l���j�J��j� ���
��

Since sup��R j	l���j � B� inserting ���
�� yields for j�j � �

��Y
j��

	l���j�� � BJ eK � eK �J log� B � ���
��

Since �J � ����j�j� this proves that

�� � R �

��Y
j��

	l���j�� � eK
�

� �
j��jlog� B
�log� B

�
�

Equation ���
�� is derived from ���
�� and this last inequality� Since
j 	�����j � ����� j	h�� � ��j j	����j� ���
�� is obtained from ���
���
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This proposition proves that if B 	 �p�� then �� � �� It means that 
and � are uniformly continuous� For any m � �� if B 	 �p���m then
�� � m so � and  are m times continuously di�erentiable� Theorem
��� shows that the number p of zeros of �h�� at � is equal to the
number of vanishing moments of �� A priori� we are not guaranteed
that increasing p will improve the wavelet regularity� since B might
increase as well� However� for important families of conjugate mirror
�lters such as splines or Daubechies �lters� B increases more slowly than
p� which implies that wavelet regularity increases with the number of
vanishing moments� Let us emphasize that the number of vanishing
moments and the regularity of orthogonal wavelets are related but it is
the number of vanishing moments and not the regularity that a�ects
the amplitude of the wavelet coe�cients at �ne scales�

����� Shannon Meyer and Battle�Lemari�e Wavelets

We study important classes of wavelets whose Fourier transforms are
derived from the general formula proved in Theorem ����

���� �
�p
�
�g
��
�

	
�
��
�

	
�

�p
�
exp

��i�
�

�
�h�
��
�
� �

	
�
��
�

	
�

�����

Shannon Wavelet The Shannon wavelet is constructed from the
Shannon multiresolution approximation� which approximates functions
by their restriction to low frequency intervals� It corresponds to � �
	
����� and �h�� �

p
� 	
����������� for � � ���� ��� We derive from

����� that

���� �



exp ��i��� if � � �������� � ��� ���
� otherwise

�����

and hence

��t �
sin ���t� ���

���t� ���
� sin ��t� ���

��t� ���
�

This wavelet is C� but has a slow asymptotic time decay� Since ���� is
zero in the neighborhood of � � �� all its derivatives are zero at � � ��
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Theorem ��� thus implies that � has an in�nite number of vanishing
moments�

Since ���� has a compact support we know that ��t is C�� How�
ever j��tj decays only like jtj�� at in�nity because ���� is discontinu�
ous at �� and ����

Meyer Wavelets A Meyer wavelet ����� is a frequency band�limited
function whose Fourier transform is smooth� unlike the Fourier trans�
form of the Shannon wavelet� This smoothness provides a much faster
asymptotic decay in time� These wavelets are constructed with conju�
gate mirror �lters �h�� that are Cn and satisfy

�h�� �


 p
� if � � ������ ����

� if � � ���������� � ������ ��
� �����

The only degree of freedom is the behavior of �h�� in the transition
bands ������������� ����� ������ It must satisfy the quadrature con�
dition

j�h��j� � j�h�� � �j� � �� �����

and to obtain Cn junctions at j�j � ��� and j�j � ����� the n �rst
derivatives must vanish at these abscissa� One can construct such func�
tions that are C��

The scaling function ��� �
Q��

p�� �
���� �h���p� has a compact sup�

port and one can verify that

��� �

�
����� �h���� if j�j � ����

� if j�j � ����
� �����

The resulting wavelet ����� is

���� �

���������
� if j�j � ����

����� �g���� if ���� � j�j � ����

����� exp��i��� �h���� if ���� � j�j � ����

� if j�j � ����

� �����

The functions  and � are C� because their Fourier transforms have
a compact support� Since ���� � � in the neighborhood of � � �� all
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its derivatives are zero at � � �� which proves that � has an in�nite
number of vanishing moments�

If �h is Cn then �� and � are also Cn� The discontinuities of the
�n � �th derivative of �h are generally at the junction of the transition
band j�j � ��� � ����� in which case one can show that there exists A
such that

j�tj � A �� � jtj�n�� and j��tj � A �� � jtj�n�� �
Although the asymptotic decay of � is fast when n is large� its e�ective
numerical decay may be relatively slow� which is re ected by the fact
that A is quite large� As a consequence� a Meyer wavelet transform is
generally implemented in the Fourier domain� Section ����� relates
these wavelet bases to lapped orthogonal transforms applied in the
Fourier domain� One can prove ���� that there exists no orthogonal
wavelet that is C� and has an exponential decay�

��t j ����j
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Figure ���
 Meyer wavelet � and its Fourier transform modulus com�
puted with ������

Example ��	
 To satisfy the quadrature condition ������ one can

verify that �h in ����� may be de�ned on the transition bands by

�h�� �
p
� cos

�
�

�



�
�j�j
�

� �

��
for j�j � ����� ����� �

where 
�x is a function that goes from � to � on the interval ��� �� and
satis�es

�x � ��� �� � 
�x � 
��� x � �� �����
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An example due to Daubechies ���� is


�x � x� ���� �� x� �� x� � �� x	� �����

The resulting �h�� has n � � vanishing derivatives at j�j � ��� � �����
Figure ��� displays the corresponding wavelet ��

Haar Wavelet The Haar basis is obtained with a multiresolution of
piecewise constant functions� The scaling function is  � 	
����� The
�lter h�n� given in ����� has two non�zero coe�cients equal to ����� at
n � � and n � �� Hence

�p
�
�

�
t

�

�
�

��X
n���

�����n h��� n��t� n �
�p
�

�
�t� �� �t

	
�

so

��t �

��� �� if � � t 	 ���
� if ��� � t 	 �
� otherwise

�����

The Haar wavelet has the shortest support among all orthogonal wavelets�
It is not well adapted to approximating smooth functions because it has
only one vanishing moment�

�t ��t
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Figure ���
 Linear spline Battle�Lemari(e scaling function  and wavelet
��
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Battle�Lemari�e Wavelets Polynomial spline wavelets introduced
by Battle ���� and Lemari(e ����� are computed from spline multires�
olution approximations� The expressions of ��� and �h�� are given
respectively by ����� and ������ For splines of degree m� �h�� and its
�rst m derivatives are zero at � � �� Theorem ��� derives that � has
m� � vanishing moments� It follows from ����� that

���� �
exp��i���

�m��

s
S�m������ � �

S�m����S�m������
�

This wavelet � has an exponential decay� Since it is a polynomial spline
of degree m� it is m � � times continuously di�erentiable� Polynomial
spline wavelets are less regular than Meyer wavelets but have faster
time asymptotic decay� For m odd� � is symmetric about ���� For m
even it is antisymmetric about ���� Figure ��� gives the graph of the
cubic spline wavelet � corresponding to m � �� For m � �� Figure ���
displays linear splines  and �� The properties of these wavelets are
further studied in ���� ��� �����

����� Daubechies Compactly Supported Wavelets

Daubechies wavelets have a support of minimum size for any given
number p of vanishing moments� Proposition ��� proves that wavelets of
compact support are computed with �nite impulse response conjugate
mirror �lters h� We consider real causal �lters h�n�� which implies that
�h is a trigonometric polynomial


�h�� �
N��X
n��

h�n� e�in��

To ensure that � has p vanishing moments� Theorem ��� shows that �h
must have a zero of order p at � � �� To construct a trigonometric
polynomial of minimal size� we factor �� � e�i�p� which is a minimum
size polynomial having p zeros at � � �


�h�� �
p
�

�
� � e�i�

�

�p

R�e�i�� ����	
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The di�culty is to design a polynomial R�e�i� of minimum degree m
such that �h satis�es

j�h��j� � j�h�� � �j� � �� �����

As a result� h has N � m � p � � non�zero coe�cients� The following
theorem by Daubechies ����� proves that the minimum degree of R is
m � p� ��

Theorem ��� �Daubechies� A real conjugate mirror �lter h� such
that �h�� has p zeroes at � � �� has at least �p non�zero coe�cients�
Daubechies �lters have �p non�zero coe�cients�

Proof �� The proof is constructive and computes the Daubechies �lters�
Since h�n� is real� j	h���j� is an even function and can thus be written as
a polynomial in cos�� Hence jR�e�i��j� de�ned in ������ is a polynomial
in cos� that we can also write as a polynomial P �sin� �

� �

j	h���j� � �
�

cos
�

�

��p
P
�

sin�
�

�

�
� ����
�

The quadrature condition ������ is equivalent to

��� y�p P �y� � yp P ��� y� � �� ������

for any y � sin������ � �� ��� To minimize the number of non�zero
terms of the �nite Fourier series 	h���� we must �nd the solution P �y� �
 of minimum degree� which is obtained with the Bezout theorem on
polynomials�

Theorem ��� �Bezout� Let Q��y� and Q��y� be two polynomials of

degrees n� and n� with no common zeroes� There exist two unique poly�

nomials P��y� and P��y� of degrees n� � � and n� � � such that

P��y�Q��y� � P��y�Q��y� � �� �����

The proof of this classical result is in ����� Since Q��y� � ���y�p and
Q��y� � yp are two polynomials of degree p with no common zeros� the
Bezout theorem proves that there exist two unique polynomials P��y�
and P��y� such that

��� y�p P��y� � yp P��y� � ��
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The reader can verify that P��y� � P���� y� � P ��� y� with

P �y� �

p��X
k��

�
p� � � k

k

�
yk� ������

Clearly P �y� �  for y � �� ��� Hence P �y� is the polynomial of minimum
degree satisfying ������ with P �y� � �

Minimum Phase Factorization Now we need to construct a min�
imum degree polynomial

R�e�i�� �
mX
k��

rk e�ik� � r�

mY
k��

��� ak e�i��

such that jR�e�i��j� � P �sin�������� Since its coe�cients are real�
R��e�i�� � R�ei�� and hence

jR�e�i��j� � R�e�i��R�ei�� � P

�
�� ei� � e�i�

�

�
� Q�e�i��� ������

This factorization is solved by extending it to the whole complex plane
with the variable z � e�i��

R�z�R�z��� � r��

mY
k��

���ak z� ���ak z
��� � Q�z� � P

�
�� z � z��

�

�
�

������
Let us compute the roots of Q�z�� Since Q�z� has real coe�cients if ck
is a root� then c�k is also a root and since it is a function of z � z�� if ck
is a root then ��ck and hence ��c�k are also roots� To design R�z� that
satis�es ������� we choose each root ak of R�z� among a pair �ck� ��ck�
and include a�k as a root to obtain real coe�cients� This procedure yields
a polynomial of minimum degree m � p��� with r�� � Q�� � P ����� �
�p��� The resulting �lter h of minimum size has N � p � m � � � �p
non�zero coe�cients�

Among all possible factorizations� the minimum phase solutionR�ei��
is obtained by choosing ak among �ck� ��ck� to be inside the unit circle
jakj � � ����� The resulting causal �lter h has an energy maximally con�
centrated at small abscissa n � � It is a Daubechies �lter of order p�



��� CHAPTER �� WAVELET BASES

n hp
n�

p � � � ���������	���
� ��	����	�	�	�
� ������	������
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�� ���������	����
�� ��		���������
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�� ��������������
�� ������	������
�� �������	�����	

Table ���
 Daubechies �lters for wavelets with p vanishing moments�



���� CLASSES OF WAVELET BASES ���

The constructive proof of this theorem synthesizes causal conjugate
mirror �lters of size �p� Table ��� gives the coe�cients of these Daubechies
�lters for � � p � ��� The following proposition derives that Daubechies
wavelets calculated with these conjugate mirror �lters have a support
of minimum size�

Proposition ��� �Daubechies� If � is a wavelet with p vanishing
moments that generates an orthonormal basis of L��R� then it has a
support of size larger than or equal to �p � �� A Daubechies wavelet
has a minimum size support equal to ��p � �� p�� The support of the
corresponding scaling function  is ��� �p� ���

This proposition is a direct consequence of Theorem ���� The sup�
port of the wavelet� and that of the scaling function� are calculated
with Proposition ���� When p � � we get the Haar wavelet� Figure
���� displays the graphs of  and � for p � �� �� ��
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Figure ����
 Daubechies scaling function  and wavelet � with p van�
ishing moments�

The regularity of  and � is the same since ��t is a �nite lin�
ear combination of the ��t � n� This regularity is however di�cult
to estimate precisely� Let B � sup��R jR�e�i�j where R�e�i� is the
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trigonometric polynomial de�ned in ����	� Proposition ��� proves that
� is at least uniformly Lipschitz � for � 	 p�log�B��� For Daubechies
wavelets� B increases more slowly than p and Figure ���� shows indeed
that the regularity of these wavelets increases with p� Daubechies and
Lagarias ����� have established a more precise technique that computes
the exact Lipschitz regularity of �� For p � � the wavelet � is only
Lipschitz ���� but for p � � it is Lipschitz ���� which means that it is
already continuously di�erentiable� For p large�  and � are uniformly
Lipschitz � for � 
 ��� p ������

Symmlets Daubechies wavelets are very asymmetric because they
are constructed by selecting the minimum phase square root of Q�e�i�
in ������� One can show ���� that �lters corresponding to a minimum
phase square root have their energy optimally concentrated near the
starting point of their support� They are thus highly non�symmetric�
which yields very asymmetric wavelets�

To obtain a symmetric or antisymmetric wavelet� the �lter h must
be symmetric or antisymmetric with respect to the center of its sup�
port� which means that �h�� has a linear complex phase� Daubechies
proved ����� that the Haar �lter is the only real compactly supported
conjugate mirror �lter that has a linear phase� The Symmlet �lters of
Daubechies are obtained by optimizing the choice of the square root
R�e�i� of Q�e�i� to obtain an almost linear phase� The resulting
wavelets still have a minimum support ��p��� p� with p vanishing mo�
ments but they are more symmetric� as illustrated by Figure ���� for
p � �� The coe�cients of the Symmlet �lters are in WaveLab� Com�
plex conjugate mirror �lters with a compact support and a linear phase
can be constructed ������ but they produce complex wavelet coe�cients
whose real and imaginary parts are redundant when the signal is real�

Coi�ets For an application in numerical analysis� Coifman asked
Daubechies ����� to construct a family of wavelets � that have p vanish�
ing moments and a minimum size support� but whose scaling functions
also satisfyZ ��

��

�t dt � � and

Z ��

��

tk �t dt � � for � � k 	 p� ������
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Figure ����
 Daubechies ��rst two and Symmlets �last two scaling
functions and wavelets with p � � vanishing moments�

Such scaling functions are useful in establishing precise quadrature for�
mulas� If f is Ck in the neighborhood of �Jn with k 	 p� then a Taylor
expansion of f up to order k shows that

��J�� hf� J�ni � f��Jn �O���k���J � ������

At a �ne scale �J � the scaling coe�cients are thus closely approximated
by the signal samples� The order of approximation increases with p�
The supplementary condition ������ requires increasing the support of
�" the resulting Coi et has a support of size �p � � instead of �p � �
for a Daubechies wavelet� The corresponding conjugate mirror �lters
are tabulated in WaveLab�

Audio Filters The �rst conjugate mirror �lters with �nite impulse
response were constructed in ���	 by Smith and Barnwell ����� in the
context of perfect �lter bank reconstruction� explained in Section ������
These �lters satisfy the quadrature condition j�h��j�� j�h����j� � ��
which is necessary and su�cient for �lter bank reconstruction� How�
ever� �h�� �� p

� so the in�nite product of such �lters does not yield a
wavelet basis of L��R� Instead of imposing any vanishing moments�
Smith and Barnwell ������ and later Vaidyanathan and Hoang ������
designed their �lters to reduce the size of the transition band� where
j�h��j decays from nearly

p
� to nearly � in the neighborhood of �����

This constraint is important in optimizing the transform code of au�
dio signals� explained in Section ������� However� many cascades of
these �lters exhibit wild behavior� The Vaidyanathan�Hoang �lters are
tabulated inWaveLab� Many other classes of conjugate mirror �lters
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with �nite impulse response have been constructed ���� ���� Recursive
conjugate mirror �lters may also be designed ����� to minimize the size
of the transition band for a given number of zeroes at � � �� These
�lters have a fast but non�causal recursive implementation for signals
of �nite size�

��� Wavelets and Filter Banks 	

Decomposition coe�cients in a wavelet orthogonal basis are computed
with a fast algorithm that cascades discrete convolutions with h and g�
and subsamples the output� Section ����� derives this result from the
embedded structure of multiresolution approximations� A direct �lter
bank analysis is performed in Section ������ which gives more general
perfect reconstruction conditions on the �lters� Section ����� shows
that perfect reconstruction �lter banks decompose signals in a basis of
l��Z� This basis is orthogonal for conjugate mirror �lters�

����� Fast Orthogonal Wavelet Transform

We describe a fast �lter bank algorithm that computes the orthogonal
wavelet coe�cients of a signal measured at a �nite resolution� A fast
wavelet transform decomposes successively each approximation PVj

f
into a coarser approximation PVj��

f plus the wavelet coe�cients carried
by PWj��f � In the other direction� the reconstruction from wavelet
coe�cients recovers each PVj

f from PVj��
f and PWj��f �

Since fj�ngn�Z and f�j�ngn�Z are orthonormal bases of Vj and Wj

the projection in these spaces is characterized by

aj�n� � hf� j�ni and dj�n� � hf� �j�ni �

The following theorem ����� ���� shows that these coe�cients are cal�
culated with a cascade of discrete convolutions and subsamplings� We
denote �x�n� � x��n� and

)x�n� �



x�p� if n � �p
� if n � �p� �

� �����	
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Theorem ��� �Mallat� At the decomposition

aj���p� �
��X

n���

h�n� �p� aj�n� � aj � �h��p�� ������

dj���p� �
��X

n���

g�n� �p� aj�n� � aj � �g��p�� ������

At the reconstruction�

aj�p� �
��X

n���

h�p� �n� aj���n� �
��X

n���

g�p� �n� dj���n�

� )aj�� � h�p� � )dj�� � g�p�� ������

Proof �� Proof of ���	��� Any �j���p � Vj�� 
 Vj can be decomposed
in the orthonormal basis f�j�ngn�Z of Vj �

�j���p �

��X
n���

h�j���p� �j�ni�j�n� ������

With the change of variable t� � ��jt� �p we obtain

h�j���p� �j�ni �

Z ��

��

�p
�j��

�
� t� �j��p

�j��

� �p
�j

��
� t� �jn

�j

�
dt

�

Z ��

��

�p
�
�
� t

�

�
���t� n � �p� dt

�

�
�p
�
�
� t

�

�
� ��t� n � �p�

�
� h�n� �p�� �������

Hence ������ implies that

�j���p �
��X

n���

h�n� �p��j�n� �������

Computing the inner product of f with the vectors on each side of this
equality yields �������
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Proof of ���	��� Since �j���p �Wj�� 
 Vj � it can be decomposed as

�j���p �

��X
n���

h�j���p� �j�ni�j�n�

As in �������� the change of variable t� � ��jt� �p proves that

h�j���p� �j�ni �

�
�p
�
�

�
t

�

�
� ��t� n � �p�

�
� g�n� �p� �������

and hence

�j���p �

��X
n���

g�n� �p��j�n� �������

Taking the inner product with f on each side gives ����
��

Proof of ���	�� Since Wj�� is the orthogonal complement of Vj�� in
Vj the union of the two bases f�j���ngn�Z and f�j���ngn�Z is an or�
thonormal basis of Vj� Hence any �j�p can be decomposed in this basis�

�j�p �

��X
n���

h�j�p� �j���ni�j���n

�
��X

n���

h�j�p� �j���ni�j���n�

Inserting ������� and ������� yields

�j�p �

��X
n���

h�p� �n��j���n �

��X
n���

g�p� �n��j���n�

Taking the inner product with f on both sides of this equality gives
�������

Theorem ��� proves that aj�� and dj�� are computed by taking every
other sample of the convolution of aj with �h and �g respectively� as
illustrated by Figure ����� The �lter �h removes the higher frequencies
of the inner product sequence aj whereas �g is a high�pass �lter which
collects the remaining highest frequencies� The reconstruction ������
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 �a
 A fast wavelet transform is computed with a cascade
of �lterings with �h and �g followed by a factor � subsampling� �b

A fast inverse wavelet transform reconstructs progressively each aj by
inserting zeroes between samples of aj�� and dj��� �ltering and adding
the output�

is an interpolation that inserts zeroes to expand aj�� and dj�� and
�lters these signals� as shown in Figure �����

An orthogonal wavelet representation of aL � hf� L�ni is composed
of wavelet coe�cients of f at scales �L 	 �j � �J plus the remaining
approximation at the largest scale �J 


�fdjgL�j�J � aJ � � ������

It is computed from aL by iterating ������ and ������ for L � j 	 J �
Figure ��� gives a numerical example computed with the cubic spline
�lter of Table ���� The original signal aL is recovered from this wavelet
representation by iterating the reconstruction ������ for J � j � L�

Initialization Most often the discrete input signal b�n� is obtained
by a �nite resolution device that averages and samples an analog input
signal� For example� a CCD camera �lters the light intensity by the
optics and each photo�receptor averages the input light over its support�
A pixel value thus measures average light intensity� If the sampling
distance is N��� to de�ne and compute the wavelet coe�cients� we
need to associate to b�n� a function f�t � VL approximated at the
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scale �L � N��� and compute aL�n� � hf� L�ni� Problem ��	 explains
how to compute aL�n� � hf� L�ni so that b�n� � f�N��n�

A simpler and faster approach considers

f�t �
��X

n���

b�n�

�
t� �Ln

�L

�
� VL�

Since fL�n�t � ��L�� ���Lt� ngn�Z is orthonormal and �L � N���

b�n� � N��� hf� L�ni � N��� aL�n� �

But ��� �
R�
��

�t dt � �� so

N��� aL�n� �

Z ��

��

f�t
�

N��


�
t�N��n

N��

�
dt

is a weighted average of f in the neighborhood of N��n over a domain
proportional to N��� Hence if f is regular�

b�n� � N��� aL�n� � f�N��n � �����	

If � is a Coi et and f�t is regular in the neighborhood of N��n�
then ������ shows that N���� aL�n� is a high order approximation of
f�N��n�

Finite Signals Let us consider a signal f whose support is in ��� ��
and which is approximated with a uniform sampling at intervals N���
The resulting approximation aL has N � ��L samples� This is the case
in Figure ��� with N � ���� Computing the convolutions with �h and
�g at abscissa close to � or close to N requires knowing the values of
aL�n� beyond the boundaries n � � and n � N � �� These boundary
problems may be solved with one of the three approaches described in
Section ����

Section ����� explains the simplest algorithm� which periodizes aL�
The convolutions in Theorem ��� are replaced by circular convolutions�
This is equivalent to decomposing f in a periodic wavelet basis of
L���� ��� This algorithm has the disadvantage of creating large wavelet
coe�cients at the borders�



���� WAVELETS AND FILTER BANKS ���

If � is symmetric or antisymmetric� we can use a folding procedure
described in Section ������ which creates smaller wavelet coe�cients
at the border� It decomposes f in a folded wavelet basis of L���� ���
However� we mentioned in Section ����� that Haar is the only symmetric
wavelet with a compact support� Higher order spline wavelets have a
symmetry but h must be truncated in numerical calculations�

The most performant boundary treatment is described in Section
������ but the implementation is more complicated� Boundary wavelets
which keep their vanishing moments are designed to avoid creating large
amplitude coe�cients when f is regular� The fast algorithm is imple�
mented with special boundary �lters� and requires the same number of
calculations as the two other methods�

Complexity Suppose that h and g have K non�zero coe�cients� Let
aL be a signal of size N � ��L� With appropriate boundary calcula�
tions� each aj and dj has �

�j samples� Equations ������ and ������
compute aj�� and dj�� from aj with ��jK additions and multiplica�
tions� The wavelet representation ������ is therefore calculated with
at most �KN additions and multiplications� The reconstruction ������
of aj from aj�� and dj�� is also obtained with �

�jK additions and multi�
plications� The original signal aL is thus also recovered from the wavelet
representation with at most �KN additions and multiplications�

Wavelet Graphs The graphs of  and � are computed numerically
with the inverse wavelet transform� If f �  then a��n� � ��n� and
dj�n� � � for all L 	 j � �� The inverse wavelet transform computes
aL and �����	 shows that

N��� aL�n� � �N��n �

If  is regular andN is large enough� we recover a precise approximation
of the graph of  from aL�

Similarly� if f � � then a��n� � �� d��n� � ��n� and dj�n� � �
for L 	 j 	 �� Then aL�n� is calculated with the inverse wavelet
transform and N��� aL�n� � ��N��n� The Daubechies wavelets and
scaling functions in Figure ���� are calculated with this procedure�
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����� Perfect Reconstruction Filter Banks

The fast discrete wavelet transform decomposes signals into low�pass
and high�pass components subsampled by �" the inverse transform per�
forms the reconstruction� The study of such classical multirate �lter
banks became a major signal processing topic in ���	� when Croisier�
Esteban and Galand ����� discovered that it is possible to perform
such decompositions and reconstructions with quadrature mirror �lters
�Problem ���� However� besides the simple Haar �lter� a quadrature
mirror �lter can not have a �nite impulse response� In ����� Smith and
Barnwell ���	� and Mintzer ����� found necessary and su�cient condi�
tions for obtaining perfect reconstruction orthogonal �lters with a �nite
impulse response� that they called conjugate mirror �lters� The theory
was completed by the biorthogonal equations of Vetterli ����� ���� and
the general paraunitary matrix theory of Vaidyanathan ���	�� We follow
this digital signal processing approach which gives a simple understand�
ing of conjugate mirror �lter conditions� More complete presentations
of �lter banks properties can be found in ��� �� 	�� ��� ����

Filter Bank A two�channel multirate �lter bank convolves a signal
a� with a low�pass �lter �h�n� � h��n� and a high�pass �lter �g�n� � g��n�
and subsamples by � the output


a��n� � a� � �h��n� and d��n� � a� � �g��n�� ������

A reconstructed signal �a� is obtained by �ltering the zero expanded
signals with a dual low�pass �lter �h and a dual high�pass �lter �g� as
shown in Figure ����� With the zero insertion notation �����	 it yields

�a��n� � )a� � �h�n� � )d� � �g�n�� ������

We study necessary and su�cient conditions on h� g� �h and �g to guar�
antee a perfect reconstruction �a� � a��

Subsampling and Zero Interpolation Subsamplings and expan�
sions with zero insertions have simple expressions in the Fourier domain�
Since �x�� �

P��
n��� x�n� e�in� the Fourier series of the subsampled
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Figure ����
 The input signal is �ltered by a low�pass and a high�pass
�lter and subsampled� The reconstruction is performed by inserting
zeroes and �ltering with dual �lters �h and �g�

signal y�n� � x��n� can be written

�y��� �

��X
n���

x��n� e�i�n� �
�

�

�
�x�� � �x�� � �

	
� ������

The component �x�� � � creates a frequency folding� This aliasing
must be canceled at the reconstruction�

The insertion of zeros de�nes

y�n� � )x�n� �



x�p� if n � �p
� if n � �p� �

�

whose Fourier transform is

�y�� �
��X

n���

x�n� e�i�n� � �x���� ������

The following theorem gives Vetterli�s ����� biorthogonal conditions�
which guarantee that �a� � a��

Theorem ��� �Vetterli� The �lter bank performs an exact reconstruc�
tion for any input signal if and only if

�h��� � � b�h�� � �g��� � �b�g�� � �� ������

and
�h���b�h�� � �g���b�g�� � �� ������
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Proof �� We �rst relate the Fourier transform of a� and d� to the Fourier
transform of a�� Since h and g are real� the transfer functions of �h and
�g are respectively 	h���� � 	h���� and 	g���� � 	g����� By using ��������
we derive from the de�nition ������� of a� and d� that

	a����� �
�

�

�
	a���� 	h���� � 	a��� � �� 	h��� � ��

�
� �������

	d����� �
�

�
�	a���� 	g���� � 	a��� � �� 	g��� � ��� � �������

The expression �����
� of �a� and the zero insertion property ������ also
imply b�a���� � 	a����� b�h��� � 	d�����b�g���� �������

Henceb�a���� �
�

�

�
	h����

b�h��� � 	g����b�g���
�

	a���� �

�

�

�
	h��� � �� b�h��� � 	g��� � ��b�g���

�
	a��� � ���

To obtain a� � �a� for all a�� the �lters must cancel the aliasing term
	a��� � �� and guarantee a unit gain for 	a����� which proves equations
������� and ��������

Theorem ��� proves that the reconstruction �lters �h and �g are entirely
speci�ed by the decomposition �lters h and g� In matrix form� it can
be rewritten�

�h�� �g��
�h�� � � �g�� � �

�
	
� b�h���b�g���

�
�

�
�
�

�
� �����	

The inversion of this �	 � matrix yields� b�h���b�g���
�
�

�

���

�
�g�� � �

��h�� � �

�
������

where ��� is the determinant

��� � �h�� �g�� � �� �h�� � � �g��� ������

The reconstruction �lters are stable only if the determinant does not
vanish for all � � ���� ��� Vaidyanathan ���	� has extended this result
to multirate �lter banks with an arbitrary number M of channels by
showing that the resulting matrices of �lters satisfy paraunitary prop�
erties �����
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Finite Impulse Response When all �lters have a �nite impulse
response� the determinant ��� can be evaluated� This yields simpler
relations between the decomposition and reconstruction �lters�

Theorem ��� Perfect reconstruction �lters satisfy

�h���b�h�� � �h��� � � b�h�� � � � �� ������

For �nite impulse response �lters� there exist a � R and l � Z such
that

�g�� � a e�i��l���� b�h��� � � and b�g�� � a�� e�i��l���� �h��� � ��
������

Proof �� Equation ������� proves thatb�h���� �
�

����
	g�� � �� and b�g���� �

��

����
	h�� � ��� �������

Hence

	g���b�g���� � ���� � ��

����
b�h��� � �� 	h�� � ��� �������

The de�nition �����
� implies that ������ � ������ Inserting �������
in ������� yields ��������

The Fourier transform of �nite impulse response �lters is a �nite se�
ries in exp��in��� The determinant ���� de�ned by �����
� is therefore
a �nite series� Moreover ������� proves that ������ must also be a �nite
series� A �nite series in exp��in�� whose inverse is also a �nite series
must have a single term� Since ���� � ������� the exponent n must
be odd� This proves that there exist l � Z and a � R such that

���� � �� a exp�i��l � ����� �������

Inserting this expression in ������� yields �������

The factor a is a gain which is inverse for the decomposition and re�
construction �lters and l is a reverse shift� We generally set a � � and
l � �� In the time domain ������ can then be rewritten

g�n� � �����n �h��� n� and �g�n� � �����n h��� n�� ������

The two pairs of �lters �h� g and ��h� �g play a symmetric role and can
be inverted�
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Conjugate Mirror Filters If we impose that the decomposition �l�
ter h is equal to the reconstruction �lter �h� then ������ is the condition
of Smith and Barnwell ���	� and Mintzer ����� that de�nes conjugate
mirror �lters


j�h��j� � j�h�� � �j� � �� ������

It is identical to the �lter condition ����� that is required in order to
synthesize orthogonal wavelets� The next section proves that it is also
equivalent to discrete orthogonality properties�

����� Biorthogonal Bases of l��Z� �

The decomposition of a discrete signal in a multirate �lter bank is
interpreted as an expansion in a basis of l��Z� Observe �rst that the
low�pass and high�pass signals of a �lter bank computed with ������
can be rewritten as inner products in l��Z


a��l� �
��X

k���

a��n� h�n� �l� � ha��k�� h�k � �n�i� �����	

d��l� �
��X

k���

a��n� g�n� �l� � ha��n�� g�n� �l�i� ������

The signal recovered by the reconstructing �lters is

a��n� �
��X
l���

a��l� �h�n� �l� �
��X
l���

d��l� �g�n� �l�� ������

Inserting �����	 and ������ yields

a��n� �
��X
l���

hf �k�� h�k � �l�i �h�n� �l� �
��X
l���

hf �k�� g�k � �l�i �g�n� �l��

������
We recognize the decomposition of a� over dual families of vectors
f�h�n � �l�� �g�n � �l�gl�Z and fh�n � �l�� g�n � �l�gl�Z� The following
theorem proves that these two families are biorthogonal�
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Theorem ��	
 If h� g� �h and �g are perfect reconstruction �lters whose
Fourier transform is bounded then f�h�n� �l�� �g�n� �l�gl�Z and fh�n�
�l�� g�n� �l�gl�Z are biorthogonal Riesz bases of l��Z�

Proof �� To prove that these families are biorthogonal we must show
that for all n � Z

h�h�n�� h�n� �l�i � �l� ������

h�g�n�� g�n � �l�i � �l� �������

and

h�h�n�� g�n� �l�i � h�g�n�� h�n� �l�i � � �������

For perfect reconstruction �lters� ������� proves that

�

�

�
	h����

b�h��� � 	h��� � ��
b�h�� � ��

�
� ��

In the time domain� this equation becomes

�h � �h��l� �

��X
k���

�h�n� �h�n� �l� � �l�� �������

which veri�es ������� The same proof as for ������� shows that

�

�

�
	g����b�g��� � 	g��� � ��b�g�� � ��

�
� ��

In the time domain� this equation yields �������� It also follows from
������� that

�

�

�
	g����

b�h��� � 	g��� � ��
b�h�� � ��

�
� �

and
�

�

�
	h����b�g��� � 	h��� � ��b�g�� � ��

�
� �

The inverse Fourier transforms of these two equations yield ��������

To �nish the proof� one must show the existence of Riesz bounds
de�ned in �A����� The reader can verify that this is a consequence of the
fact that the Fourier transform of each �lter is bounded�
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Orthogonal Bases A Riesz basis is orthonormal if the dual basis is
the same as the original basis� For �lter banks� this means that h � �h
and g � �g� The �lter h is then a conjugate mirror �lter

j�h��j� � j�h�� � �j� � �� ������

The resulting family fh�n � �l�� g�n � �l�gl�Z is an orthogonal basis of
l��Z�

Discrete Wavelet Bases The construction of conjugate mirror �l�
ters is simpler than the construction of orthogonal wavelet bases of
L��R� Why then should we bother with continuous time models of
wavelets� since in any case all computations are discrete and rely on
conjugate mirror �lters% The reason is that conjugate mirror �lters are
most often used in �lter banks that cascade several levels of �lterings
and subsamplings� It is thus necessary to understand the behavior of
such a cascade ������ In a wavelet �lter bank tree� the output of the
low�pass �lter �h is sub�decomposed whereas the output of the high�pass
�lter �g is not" this is illustrated in Figure ����� Suppose that the sam�
pling distance of the original discrete signal is N��� We denote aL�n�
this discrete signal� with �L � N��� At the depth j � L � � of this
�lter bank tree� the low�pass signal aj and high�pass signal dj can be
written

aj�l� � aL � �j��
j�Ll� � haL�n�� j�n� �j�Ll�i

and
dj�l� � aL � ��j��

j�Ll� � haL�n�� �j�n� �j�Ll�i�
The Fourier transforms of these equivalent �lters are

�j�� �

j�L��Y
p��

�h��p� and ��j�� � �g��j�L���

j�L��Y
p��

�h��p�� ������

A �lter bank tree of depth J�L � �� decomposes aL over the family
of vectors�n

J �n� �J�Ll�
o
l�Z

�
n
�j�n� �j�Ll�

o
L�j�J � l�Z

�
� �����	
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For conjugate mirror �lters� one can verify that this family is an or�
thonormal basis of l��Z� These discrete vectors are close to a uniform
sampling of the continuous time scaling functions j�t � ��j�����jt
and wavelets �j�t � ��j�����jt� When the number L � j of succes�
sive convolutions increases� one can verify that j�n� and �j�n� converge
respectively to N���� j�N

��n and N���� �j�N
��n� The factor N����

normalizes the l��Z norm of these sampled functions� If L�j � � then
j�n� and �j�n� are already very close to these limit values� The im�
pulse responses j�n� and �j�n� of the �lter bank are thus much closer
to continuous time scaling functions and wavelets than they are to the
original conjugate mirror �lters h and g� This explains why wavelets
provide appropriate models for understanding the applications of these
�lter banks� Chapter � relates more general �lter banks to wavelet
packet bases�

If the decomposition and reconstruction �lters of the �lter bank are
di�erent� the resulting basis �����	 is non�orthogonal� The stability of
this discrete wavelet basis does not degrade when the depth J�L of the
�lter bank increases� The next section shows that the corresponding
continuous time wavelet ��t generates a Riesz basis of L��R�

��� Biorthogonal Wavelet Bases �

The stability and completeness properties of biorthogonal wavelet bases
are described for perfect reconstruction �lters h and �h having a �nite
impulse response� The design of linear phase wavelets with compact
support is explained in Section ������

��
�� Construction of Biorthogonal Wavelet Bases

An in�nite cascade of perfect reconstruction �lters �h� g and ��h� �g
yields two scaling functions and wavelets whose Fourier transforms sat�
isfy

���� �
�p
�
�h�� ��� � b���� � �p

�

b�h�� b��� � ������

����� �
�p
�
�g�� ��� � b����� � �p

�
b�g�� b��� � ������



��� CHAPTER �� WAVELET BASES

In the time domain� these relations become

�t �
p
�

��X
n���

h�n���t� n � ��t �
p
�

��X
n���

�h�n� ���t� n������

��t �
p
�

��X
n���

g�n���t� n � ���t �
p
�

��X
n���

�g�n� ���t� n �������

The perfect reconstruction conditions are given by Theorem ���� If
we normalize the gain and shift to a � � and l � �� the �lters must
satisfy

�h���b�h�� � �h��� � � b�h�� � � � �� ������

and

�g�� � e�i� b�h��� � � � b�g�� � e�i� �h��� � �� ������

Wavelets should have a zero average� which means that ���� �b���� � �� This is obtained by setting �g�� � b�g�� � � and hence

�h�� � b�h�� � �� The perfect reconstruction condition ������ implies

that �h���b�h�� � �� Since both �lters are de�ned up to multiplicative
constants respectively equal to � and ���� we adjust � so that �h�� �b�h�� � p

��

In the following� we also suppose that h and �h are �nite impulse
response �lters� One can then prove ���� that

��� �
��Y
p��

�h���p�p
�

and b��� � ��Y
p��

b�h���p�p
�

������

are the Fourier transforms of distributions of compact support� How�
ever� these distributions may exhibit wild behavior and have in�nite
energy� Some further conditions must be imposed to guarantee that �

and b� are the Fourier transforms of �nite energy functions� The fol�
lowing theorem gives su�cient conditions on the perfect reconstruction
�lters for synthesizing biorthogonal wavelet bases of L��R�
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Theorem ��		 �Cohen� Daubechies� Feauveau� Suppose that there
exist strictly positive trigonometric polynomials P �ei� and �P �ei� such
that ����h��

�

	���� P �ei��� � ����h��
�
� �

	���� P �ei������� � �P �ei�����������b�h��
�

	���� �P �ei��� �
���b�h��

�
� �

	���� �P �ei������� � � �P �ei�������

and that P and �P are unique �up to normalization	� Suppose that

inf
��
���������

j�h��j � � � inf
��
���������

jb�h��j � �� �����	

� Then the functions � and b� de�ned in ���
��	 belong to L��R�
and � � satisfy biorthogonal relations

h�t� ��t� ni � ��n�� ������

� The two wavelet families f�j�ng�j�n��Z� and f ��j�ng�j�n��Z� are biorthog�
onal Riesz bases of L��R�

The proof of this theorem is in ����� and ����� The hypothesis �����	
is also imposed by Theorem ���� which constructs orthogonal bases of
scaling functions� The conditions ������ and ������ do not appear in
the construction of wavelet orthogonal bases because they are always
satis�ed with P �ei� � �P �ei� � � and one can prove that constants
are the only invariant trigonometric polynomials ������

Biorthogonality means that for any �j� j �� n� n� � Z��

h�j�n� ��j��n�i � ��n� n�� ��j � j ��� ������

Any f � L��R has two possible decompositions in these bases


f �
��X

n�j���

hf� �j�ni ��j�n �
��X

n�j���

hf� ��j�ni�j�n � ������
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The Riesz stability implies that there exist A � � and B � � such that

A kfk� �
��X

n�j���

jhf� �j�nij� � B kfk�� ����	�

�

B
kfk� �

��X
n�j���

jhf� ��j�nij� � �

A
kfk�� ����	�

Multiresolutions Biorthogonal wavelet bases are related to mul�
tiresolution approximations� The family f�t� ngn�Z is a Riesz basis
of the space V� it generates� whereas f��t� ngn�Z is a Riesz basis of
another space �V�� Let Vj and �Vj be the spaces de�ned by

f�t � Vj � f��jt � V��

f�t � �Vj � f��jt � �V��

One can verify that fVjgj�Z and f �Vjgj�Z are two multiresolution ap�
proximations of L��R� For any j � Z� fj�ngn�Z and f�j�ngn�Z are
Riesz bases ofVj and �Vj� The dilated wavelets f�j�ngn�Z and f ��j�ngn�Z
are bases of two detail spaces Wj and �Wj such that

Vj �Wj � Vj�� and �Vj � �Wj � �Vj�� �

The biorthogonality of the decomposition and reconstruction wavelets
implies that Wj is not orthogonal to Vj but is to �Vj whereas �Wj is
not orthogonal to �Vj but is to Vj�

Fast Biorthogonal Wavelet Transform The perfect reconstruc�
tion �lter bank studied in Section ����� implements a fast biorthogonal
wavelet transform� For any discrete signal input b�n� sampled at in�
tervals N�� � �L� there exists f � VL such that aL�n� � hf� L�ni �
N���� b�n�� The wavelet coe�cients are computed by successive convo�
lutions with �h and �g� Let aj�n� � hf� j�ni and dj�n� � hf� �j�ni� As in
Theorem ���� one can prove that

aj���n� � aj � �h��n� � dj���n� � aj � �g��n� � ����	�
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The reconstruction is performed with the dual �lters �h and �g


aj�n� � )aj�� � �h�n� � )dj�� � �g�n�� ����	�

If aL includes N non�zero samples� the biorthogonal wavelet represen�
tation �fdjgL�j�J � aJ � is calculated with O�N operations� by iterating
����	� for L � j 	 J � The reconstruction of aL by applying ����	�
for J � j � L requires the same number of operations�

��
�� Biorthogonal Wavelet Design �

The support size� the number of vanishing moments� the regularity and
the symmetry of biorthogonal wavelets is controlled with an appropriate
design of h and �h�

Support If the perfect reconstruction �lters h and �h have a �nite
impulse response then the corresponding scaling functions and wavelets
also have a compact support� As in Section ������ one can show that
if h�n� and �h�n� are non�zero respectively for N� � n � N� and �N� �
n � �N�� then  and � have a support respectively equal to �N�� N�� and
� �N�� �N��� Since

g�n� � �����n h��� n� and �g�n� � �����n �h��� n��

the supports of � and �� de�ned in ������ are respectively�
N� � �N� � �

�
�
N� � �N� � �

�

�
and

�
�N� �N� � �

�
�
�N� �N� � �

�

�
�

����	�
Both wavelets thus have a support of the same size and equal to

l �
N� �N� � �N� � �N�

�
� ����	�

Vanishing Moments The number of vanishing moments of � and ��

depends on the number of zeroes at � � � of �h�� and b�h��� Theorem
��� proves that � has �p vanishing moments if the derivatives of its
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Fourier transform satisfy ���k��� � � for k � �p� Since ��� � �� ������
implies that it is equivalent to impose that �g�� has a zero of order �p

at � � �� Since �g�� � e�i� b�h��� � �� this means that b�h�� has a zero
of order �p at � � �� Similarly the number of vanishing moments of ��
is equal to the number p of zeroes of �h�� at ��

Regularity Although the regularity of a function is a priori indepen�
dent of the number of vanishing moments� the smoothness of biorthog�
onal wavelets is related to their vanishing moments� The regularity of 
and � is the same because ������ shows that � is a �nite linear expan�
sion of  translated� Tchamitchian�s Proposition ��� gives a su�cient
condition for estimating this regularity� If �h�� has a zero of order p at
�� we can perform the factorization

�h�� �

�
� � e�i�

�

�p

�l�� � ����		

Let B � sup��
����� j�l��j� Proposition ��� proves that  is uniformly
Lipschitz � for

� 	 �� � p� log�B � ��

Generally� log�B increases more slowly than p� This implies that the
regularity of  and � increases with p� which is equal to the number of
vanishing moments of ��� Similarly� one can show that the regularity of
�� and � increases with �p� which is the number of vanishing moments
of �� If �h and �h have di�erent numbers of zeroes at �� the properties
of � and �� can therefore be very di�erent�

Ordering of Wavelets Since � and �� might not have the same
regularity and number of vanishing moments� the two reconstruction
formulas

f �
��X

n�j���

hf� �j�ni ��j�n� ����	�

f �
��X

n�j���

hf� ��j�ni�j�n ����	�
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are not equivalent� The decomposition ����	� is obtained with the
�lters �h� g at the decomposition and ��h� �g at the reconstruction� The
inverse formula ����	� corresponds to ��h� �g at the decomposition and
�h� g at the reconstruction�

To produce small wavelet coe�cients in regular regions we must
compute the inner products using the wavelet with the maximum num�
ber of vanishing moments� The reconstruction is then performed with
the other wavelet� which is generally the smoothest one� If errors are
added to the wavelet coe�cients� for example with a quantization� a
smooth wavelet at the reconstruction introduces a smooth error� The
number of vanishing moments of � is equal to the number �p of zeroes

at � of b�h� Increasing �p also increases the regularity of ��� It is thus
better to use h at the decomposition and �h at the reconstruction if �h

has fewer zeroes at � than b�h�
Symmetry It is possible to construct smooth biorthogonal wavelets
of compact support which are either symmetric or antisymmetric� This
is impossible for orthogonal wavelets� besides the particular case of the
Haar basis� Symmetric or antisymmetric wavelets are synthesized with
perfect reconstruction �lters having a linear phase� If h and �h have an
odd number of non�zero samples and are symmetric about n � �� the
reader can verify that  and � are symmetric about t � � while � and
�� are symmetric with respect to a shifted center� If h and �h have an
even number of non�zero samples and are symmetric about n � ����
then �t and ��t are symmetric about t � ���� while � and �� are
antisymmetric with respect to a shifted center� When the wavelets
are symmetric or antisymmetric� wavelet bases over �nite intervals are
constructed with the folding procedure of Section ������

��
�� Compactly Supported Biorthogonal Wavelets �

We study the design of biorthogonal wavelets with a minimum size
support for a speci�ed number of vanishing moments� Symmetric or
antisymmetric compactly supported spline biorthogonal wavelet bases
are constructed with a technique introduced in ������

Theorem ��	� �Cohen� Daubechies� Feauveau� Biorthogonal wavelets
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� and �� with respectively �p and p vanishing moments have a support
of size at least p� �p� �� CDF biorthogonal wavelets have a minimum
support of size p� �p� ��

Proof �� The proof follows the same approach as the proof of Daubechies s
Theorem ���� One can verify that p and �p must necessarily have the same
parity� We concentrate on �lters h�n� and �h�n� that have a symmetry with
respect to n �  or n � ���� The general case proceeds similarly� We
can then factor

	h��� �
p

� exp

��i��
�

� �
cos

�

�

�p
L�cos�� � �������

b�h��� �
p

� exp

��i��
�

� �
cos

�

�

��p
�L�cos�� � ������

with � �  for p and �p even and � � � for odd values� Let q � �p � �p����
The perfect reconstruction condition

	h����
b�h��� � 	h��� � ��

b�h�� � �� � �

is imposed by writing

L�cos�� �L�cos�� � P
�

sin�
�

�

�
� �������

where the polynomial P �y� must satisfy for all y � �� ��

��� y�q P �y� � yq P ��� y� � �� �������

We saw in ������ that the polynomial of minimum degree satisfying this
equation is

P �y� �

q��X
k��

�
q � � � k

k

�
yk� �������

The spectral factorization ������� is solved with a root attribution similar
to ������� The resulting minimum support of � and �� speci�ed by
������� is then p � �p� ��

Spline Biorthogonal Wavelets Let us choose

�h�� �
p
� exp

��i��
�

� �
cos

�

�

	p
������
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Figure ����
 Spline biorthogonal wavelets and scaling functions of com�
pact support corresponding to the �lters of Table ����

with � � � for p even and � � � for p odd� The scaling function
computed with ������ is then a box spline of degree p� �

��� � exp

��i��
�

� �
sin����

���

�p

�

Since � is a linear combination of box splines ��t�n� it is a compactly
supported polynomial spline of same degree�

The number of vanishing moments �p of � is a free parameter� which
must have the same parity as p� Let q � �p � �p��� The biorthogonal
�lter �h of minimum length is obtained by observing that L�cos� � �
in ����	�� The factorization ������ and ������ thus imply that

b�h�� � p
� exp

��i��
�

� �
cos

�

�

	�p
q��X
k��

�
q � � � k

k

� �
sin

�

�

	�k
�

������
These �lters satisfy the conditions of Theorem ���� and thus generate
biorthogonal wavelet bases� Table ��� gives the �lter coe�cients for
�p � �� �p � � and �p � �� �p � �� The resulting dual wavelet and
scaling functions are shown in Figure �����
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Table ���
 Perfect reconstruction �lters h and �h for compactly sup�

ported spline wavelets� with �h and b�h having respectively �p and p zeros
at � � ��

Closer Filter Length Biorthogonal �lters h and �h of more similar
length are obtained by factoring the polynomial P �sin� �

�
 in ������

with two polynomial L�cos� and �L�cos� of similar degree� There is
a limited number of possible factorizations� For q � �p � �p�� 	 ��
the only solution is L�cos� � �� For q � � there is one non�trivial
factorization and for q � � there are two� Table ��� gives the resulting
coe�cients of the �lters h and �h of most similar length� computed by
Cohen� Daubechies and Feauveau ������ These �lters also satisfy the
conditions of Theorem ���� and therefore de�ne biorthogonal wavelet
bases� Figure ���� gives the scaling functions and wavelets correspond�
ing to p � �p � �� These dual functions are similar� which indicates
that this basis is nearly orthogonal� This particular set of �lters is of�
ten used in image compression� The quasi�orthogonality guarantees a
good numerical stability and the symmetry allows one to use the fold�
ing procedure of Section ����� at the boundaries� There are also enough
vanishing moments to create small wavelet coe�cients in regular image
domains� How to design other compactly supported biorthogonal �lters
is discussed extensively in ����� �����
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Table ���
 Perfect reconstruction �lters of most similar length�
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Figure ����
 Biorthogonal wavelets and scaling functions calculated
with the �lters of Table ���� with p � � and �p � ��
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��
�
 Lifting Wavelets �

A lifting is an elementary modi�cation of perfect reconstruction �lters�
which is used to improve the wavelet properties� It also leads to fast
polyphase implementations of �lter bank decompositions� The lifting
scheme of Sweldens ����� ���� does not rely on the Fourier transform
and can therefore construct wavelet bases over non�translation invari�
ant domains such as bounded regions of Rp or surfaces� This section
concentrates on the main ideas� avoiding technical details� The proofs
are left to the reader�

Theorem ���� constructs compactly supported biorthogonal wavelet
bases from �nite impulse response biorthogonal �lters �h� g� �h� �g which
satisfy

�h���b�h�� � �h��� � � b�h�� � � � � �����	

and

�g�� � e�i� b�h��� � � � b�g�� � e�i� �h��� � �� ������

The �lters �h and h are said to be dual� The following proposition �����
characterizes all �lters of compact support that are dual to �h�

Proposition ��� �Herley�Vetterli� Let h and �h be dual �lters with
a �nite support� A �lter hl with �nite support is dual to �h if and only
if there exists a �nite �lter l such that

�hl�� � �h�� � e�i� b�h��� � � �l����� ������

This proposition proves that if �h� g� �h� �g are biorthogonal then we
can construct a new set of biorthogonal �lters �hl� g� �h� �gl with

�hl�� � �h�� � �g�� �l���� ������

b�gl�� � e�i� �hl��� � � � b�g��� b�h�� �l���� ������

This is veri�ed by inserting ������ in ������� The new �lters are said
to be lifted because the use of l can improve their properties�
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The inverse Fourier transform of ������ and ������ gives

hl�n� � h�n� �
��X

k���

g�n� �k� l��k�� ������

�gl�n� � �g�n��
��X

k���

�h�n� �k� l�k�� ������

Theorem ���� proves that the conditions �����	 and ������ are equiva�
lent to the fact that fh�n��k�� g�n��k�gk�Zand f�h�n��k�� �g�n��k�gk�Z
are biorthogonal Riesz bases of l��Z� The lifting scheme thus creates
new families fhl�n � �k�� g�n � �k�gk�Z and f�h�n � �k�� �gl�n � �k�gk�Z
that are also biorthogonal Riesz bases of l��Z� The following theorem
derives new biorthogonal wavelet bases by inserting ������ and ������
in the scaling equations ������ and �������

Theorem ��	� �Sweldens� Let �� �� �� �� be a family of compactly
supported biorthogonal scaling functions and wavelets associated to the
�lters �h� g� �h� �g� Let l�k� be a �nite sequence� A new family of formally
biorthogonal scaling functions and wavelets �l� �l� �� ��l is de�ned by

l�t �
p
�

��X
k���

h�k�l��t� k �
��X

k���

l��k��l�t� k������
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�l�t �
p
�

��X
k���

g�k�l��t� k ������

��l�t � ���t�
��X

k���

l�k� ��t� k� ������

Theorem ���� imposes that the new �lter hl should satisfy ������
and �����	 to generate functions l and �l of �nite energy� This is not
necessarily the case for all l� which is why the biorthogonality should
be understood in a formal sense� If these functions have a �nite energy
then f�l

j�ng�j�n��Z� and f ��l
j�ng�j�n��Z� are biorthogonal wavelet bases of

L��R�
The lifting increases the support size of � and �� typically by the

length of the support of l� Design procedures compute minimum size
�lters l to achieve speci�c properties� Section ����� explains that the
regularity of  and � and the number of vanishing moments of �� de�
pend on the number of zeros of �h�� at � � �� which is also equal to
the number of zeros of b�g�� at � � �� The coe�cients l�n� are often
calculated to produce a lifted transfer function b�g l�� with more zeros
at � � ��

To increase the number of vanishing moment of � and the regularity
of � and �� we use a dual lifting which modi�es �h and hence g instead
of h and �g� The corresponding lifting formula with a �lter L�k� are
obtained by inverting h with g and g with �g in ������ and ������


gL�n� � g�n� �
��X

k���

h�n� �k�L��k�� �����	

�hL�n� � �h�n��
��X

k���

�g�n� �k�L�k�� ������

The resulting family of biorthogonal scaling functions and wavelets
�� �L� �L� ��L are obtained by inserting these equations in the scal�
ing equations ������ and ������


�L�t �
p
�

��X
k���

�h�k� �L��t� k�
��X

k���

L�k� ��L�t� k������
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��L�t �
p
�

��X
k���

�g�k� �L��t� k ������

�L�t � ��t �
��X

k���

L��k��t� k� ������

Successive iterations of liftings and dual liftings can improve the regu�
larity and vanishing moments of both � and �� by increasing the number
of zeros of �g�� and b�g�� at � � ��

Lazy Wavelets Lazy �lters �h�n� � h�n� � ��n� and �g�n� � g�n� �
��n��� satisfy the biorthogonality conditions �����	 and ������� Their
Fourier transform isb�h�� � �h�� � � and b�g�� � �g�� � e�i�� ������

The resulting �lter bank just separates the even and odd samples of a
signal without �ltering� This is also called a polyphase decomposition
����� The lazy scaling functions and wavelets associated to these �lters
are Diracs ��t � �t � ��t and ���t � ��t � ��t����� They do not
belong to L��R because b�g�� and �g�� do not vanish at � � �� These
wavelet can be transformed into �nite energy functions by appropriate
liftings�

Example ��		 A lifting of a lazy �lter b�g�� � e�i� yields

b�gl�� � e�i� � �l����

To produce a symmetric wavelet ei� �l��� must be even� For example�
to create � vanishing moments a simple calculation shows that the
shortest �lter l has a Fourier transform

�l��� � e�i�
�
�

�
cos� � �

�
cos ��

�
�

Inserting this in ������ gives

�hl�� � � �

�	
e�	i� �

�

�	
e�i� � � �

�

�	
ei� � �

�	
e	i�� ������
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The resulting l is the Deslauriers�Dubuc interpolating scaling function
of order � shown in Figure �����b� and �l�t �

p
�l��t � �� These

interpolating scaling functions and wavelets are further studied in Sec�
tion ��	��� Both l and �l are continuously di�erentiable but � and
��l are sums of Diracs� A dual lifting can transform these into �nite
energy functions by creating a lifted �lter �gl�� with one or more zero
at � � ��

The following theorem proves that lifting lazy wavelets is a general
�lter design procedure� A constructive proof is based on the Euclidean
algorithm ������

Theorem ��	� �Daubechies� Sweldens� Any biorthogonal �lters �h� g� �h� �g
can be synthesized with a succession of liftings and dual liftings applied
to the lazy �lters ���
�
	� up to shifting and multiplicative constants�

Fast Polyphase Transform After lifting� the biorthogonal wavelet
transform is calculated with a simple modi�cation of the original wavelet
transform� This implementation requires less calculation than a direct
�lter bank implementation of the lifted wavelet transform� We denote
alj�k� � hf� lj�ki and dlj�k� � hf� �l

j�ki�
The standard �lter bank decomposition with �hl� �h� g� �gl computes

alj���k� �
��X

n���

hl�n� �k� alj�n� � alj �
�hl��k�� ������

dlj���k� �
��X

n���

g�n� �k� alj�n� � alj � �g��k�� ������

The reconstruction is obtained with

alj�n� �
��X

n���

�h�n� �k� alj���k� �
��X

n���

�gl�n� �k� dlj���k�� ������

Inserting the lifting formulas ������ and ������ in ������ gives an
expression that depends only on the original �lter h


a�j���k� �
��X

n���

h�n� �k� alj�n� � alj �
�h��k�



���� BIORTHOGONAL WAVELET BASES ���

plus a lifting component that is a convolution with l

alj���k� � a�j���k� �
��X

n���

l�k � n� dlj���n� � a�j���k� � dlj�� � l�k��

This operation is simply inverted by calculating

a�j���k� � alj���k�� dlj�� � l�k�

and performing a reconstruction with the original �lters ��h� �g

alj�n� �
X
n

�h�n� �k� a�j �k� �
X
n

�g�n� �k� dlj�k��

Figure ���	 illustrates this decomposition and reconstruction� It also
includes the implementation of a dual lifting with L� which is calculated
with �����	


dLj���k� � dlj���k� � alj�� � L�k� �

Theorem ���� proves that any biorthogonal family of �lters can be
calculated with a succession of liftings and dual liftings applied to lazy
�lters� In this case� the �lters �h�n� � �h�n� � ��n� can be removed
whereas �g�n� � ��n � �� and �g�n� � ��n � �� shift signals by � sample
in opposite directions� The �lter bank convolution and subsampling is
thus directly calculated with a succession of liftings and dual liftings
on the polyphase components of the signal �odd and even samples
����� One can verify that this implementation divides the number of
operations by up to a factor � ������ compared to direct convolutions
and subsamplings calculated in ������ and �������

Lifted Wavelets on Arbitrary Domains The lifting procedure is
extended to signal spaces which are not translation invariant� Wavelet
bases and �lter banks are designed for signals de�ned on arbitrary do�
mains D of Rp or on surfaces such as a spheres�

Wavelet bases of L��D are derived from a family of embedded vec�
tor spaces fVjgj�Z that satisfy similar multiresolution properties as in
De�nition ���� These spaces are constructed from embedded sampling
grids fGjgj�Z included in D� For each index j� Gj has nodes whose
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Figure ���	
 �a
 A lifting and a dual lifting are implemented by modi�
fying the original �lter bank with two lifting convolutions� where l and
L are respectively the lifting and dual lifting sequences� �b
 The in�
verse lifted transform removes the lifting components before calculating
the �lter bank reconstruction�
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distance to all its neighbors is of the order of �j� Since Gj�� is included
in Gj we can de�ne a complementary grid Cj�� that regroups all nodes
of Gj that are not in Gj��� For example� if D � ��� N � then Gj is the
uniform grid f�jng��n���jN � The complementary grid Cj�� corresponds
to f�j��n��g��n���j��N � In two dimensions� the sampling grid Gj can
be de�ned as the nodes of a regular triangulation of D� This triangula�
tion is progressively re�ned with a midpoint subdivision illustrated in
Figure ����� Such embedded grids can also be constructed on surfaces
������

Suppose that fhj�kgk�Gj��
�fgj�mgm�Cj��

is a basis of the space l��Gj
of �nite energy signals de�ned over Gj� Any aj � l��Gj is decomposed
into two signals de�ned respectively over Gj�� and Cj�� by

�k � Gj�� � aj���k� � haj� hj�ki �
X
n�Gj

aj�n� hj�k�n�� �����	

�m � Cj�� � dj���m� � haj� gj�mi �
X
n�Gj

dj�n� gj�m�n�� ������

This decomposition is implemented by linear operators on subsampled
grids as in the �lter banks previously studied� However� these opera�
tors are not convolutions because the basis fhj�kgk�Gj��

� fgj�mgm�Cj��

is not translation invariant� The reconstruction is performed with a
biorthogonal basis f�hj�kgk�Gj��

� f�gj�mgm�Cj��



aj�n� �
X

k�Gj��

aj���k� �hj�k�n� �
X

m�Cj��

dj���m� �gj�m�n��

Scaling functions and wavelets are obtained by cascading �lter bank
reconstructions over progressively �ner scales� As a result� they satisfy
scaling equations similar to ������ and ������

j���k �
X
n�Gj

hj�k�n�j�n � �j���m �
X
n�Gj

gj�m�n�j�n � ������

�j���k �
X
n�Gj

�hj�k�n�j�n � ��j���m �
X
n�Gj

�gj�m�n�j�n �������

These wavelets and scaling functions have a support included in D� If
they have a �nite energy with respect to an appropriate measure d�
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Figure ����
 Black dots are the nodes of a triangulation grid Gj�� of a
polygon domain D� This grid is re�ned with a subdivision� which adds
a complementary grid Cj�� composed of all midpoints indicated with
white circles� The �ner grid is Gj � Gj�� � Cj���

de�ned over D then one can verify that for any J � log�N�fJ�kgk�GJ � f�j�mgm�Cj �j�J� and
h
f�J�kgk�GJ � f ��j�mgm�Cj �j�J

i
are biorthogonal bases of L��D� d��

The discrete lazy basis of l��Gj is composed of Diracs hj�k�n� �
��n�k� for �k� n � Gj��	Gj and gj�m�n� � ��n�k� for �k� n � Cj��	Gj �
This basis is clearly orthonormal so the dual basis is also the lazy basis�
The resulting �lter bank just separates samples of Gj into two sets of
samples that belong respectively to Gj�� and Cj��� The corresponding
scaling functions and wavelets are Diracs located over these sampling
grids� Finite energy wavelets and scaling functions are constructed by
lifting the discrete lazy basis�

Theorem ��	� �Sweldens� Suppose that fhj�kgk�Gj��
� fgj�mgm�Cj��

and f�hj�kgk�Gj��
� f�gj�mgm�Cj��

are biorthogonal Riesz bases of l��Gj�
Let lj�k�m� be a matrix with a �nite number of non�zero values� If

�k � Gj�� � hlj�k � hj�k �
X

m�Cj��

lj�k�m� gm�j ������

�m � Cj�� � �glj�m � �gj�m �
X

k�Gj��

lj�k�m� �hk�j ������

then fhlj�kgk�Gj��
�fgj�mgm�Cj��

and f�hj�kgk�Gj��
�f�glj�mgm�Cj��

are biorthog�
onal Riesz bases of l��Gj�
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These formulas generalize the translation invariant lifting ������
and ������� which corresponds to lj�k�m� � l�k � m�� In the general
case� at each scale �j� the lifting matrix lj�k�m� can be chosen arbi�
trarily� The lifted bases generate new scaling functions and wavelets
that are related to the original scaling functions and wavelets by in�
serting ������ and ������ in the scaling equations ������ and ������
calculated with lifted �lters


lj���k �
X
n�Gj

hj�k�n�j�n �
X

m�Cj��

lj�k�m��j���m

�l
j���m �

X
n�Gj

gj�m�n�
l
j�n

��l
j���m � ��j���m �

X
k�Gj��

lj�k�m� �j���k�

The dual scaling functions �j�k are not modi�ed since �hj�k is not changed
by the lifting�

The fast decomposition algorithm in this lifted wavelet basis is cal�
culated with the same approach as in the translation invariant case
previously studied� However� the lifting blocks illustrated in Figure
���	 are not convolutions anymore� They are linear operators com�
puted with the matrices lj�k�m�� which depend upon the scale �j�

To create wavelets ��j�m with vanishing moments� we ensure that
they are orthogonal to a basis of polynomials fpigi of degree smaller
than q� The coe�cients l�k�m� are calculated by solving the linear
system for all i and m � Cj��

h ��l
j���m� pii � h�l

j���m� pii �
X

k�Gj��

lj�k�m� h�lj���k� pii � ��

A dual lifting is calculated by modifying �hj�k and gj�m instead of hj�k
and �gj�m� It allows one to change �j�k�

Applications Lifting lazy wavelets is a simple way to construct biorthog�
onal wavelet bases of L���� ��� One may use a translation invariant
lifting� which is modi�ed near the left and right borders to construct
�lters whose supports remains inside D � ��� ��� The lifting coe�cients
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are calculated to design regular wavelets with vanishing moments ������
Section ��� studies other ways to construct orthogonal wavelet bases of
L���� ���

Biorthogonal wavelet bases on manifolds or bounded domains of Rp

are calculated by lifting lazy wavelets constructed on embedded sam�
pling grids� Lifted wavelets on the sphere have applications in computer
graphics ���	�� In �nite two�dimensional domains� lifted wavelet bases
are used for numerical calculations of partial di�erential equations ������

To optimize the approximation of signals with few wavelet coe��
cients� one can also construct adaptive wavelet bases with liftings that
depend on the signal� Short wavelets are needed in the neighborhood
of singularities� but longer wavelets with more vanishing moments can
improve the approximation in regions where the signal is more regu�
lar� Such a basis can be calculated with a time varying lifting whose
coe�cients lj�k�m� are adapted to the local signal properties ������

��� Wavelet Bases on an Interval �

To decompose signals f de�ned over an interval ��� ��� it is necessary
to construct wavelet bases of L���� ��� Such bases are synthesized by
modifying the wavelets �j�n�t � ��j������jt�n of a basis f�j�ng�j�n��Z�
of L��R� The inside wavelets �j�n whose support are included in ��� ��
are not modi�ed� The boundary wavelets �j�n whose supports overlap
t � � or t � � are transformed into functions having a support in ��� ���
which are designed in order to provide the necessary complement to
generate a basis of L���� ��� If � has a compact support then there is a
constant number of boundary wavelets at each scale�

The main di�culty is to construct boundary wavelets that keep
their vanishing moments� The next three sections describe di�erent ap�
proaches to constructing boundary wavelets� Periodic wavelets have no
vanishing moments at the boundary� whereas folded wavelets have one
vanishing moment� The custom�designed boundary wavelets of Section
����� have as many vanishing moments as the inside wavelets but are
more complicated to construct� Scaling functions j�n are also restricted
to ��� �� by modifying the scaling functions j�n�t � ��j�����jt � n
associated to the wavelets �j�n� The resulting wavelet basis of L���� ��
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is composed of ��J scaling functions at a coarse scale �J 	 �� plus ��j

wavelets at each scale �j � �J 
�fintJ�ng��n���J � f�int
j�ng���j�J � ��n���j

�
� ������

On any interval �a� b�� a wavelet orthonormal basis of L��a� b� is con�
structed with a dilation by b� a and a translation by a of the wavelets
in �������

Discrete Basis of C N The decomposition of a signal in a wavelet
basis over an interval is computed by modifying the fast wavelet trans�
form algorithm of Section ������ A discrete signal b�n� of N samples
is associated to the approximation of a signal f � L���� �� at a scale
N�� � �L with �����	


N���� b�n� � aL�n� � hf� intL�ni for � � n 	 ��L �

Its wavelet coe�cients can be calculated at scales � � �j � �L� We set

aj�n� � hf� intj�ni and dj�n� � hf� �int
j�ni for � � n 	 ��j � ������

The wavelets and scaling functions with support inside ��� �� are
identical to the wavelets and scaling functions of a basis of L��R� The
corresponding coe�cients aj�n� and dj�n� can thus be calculated with
the decomposition and reconstruction equations given by Theorem ����
These convolution formulas must however be modi�ed near the bound�
ary where the wavelets and scaling functions are modi�ed� Boundary
calculations depend on the speci�c design of the boundary wavelets�
as explained in the next three sections� The resulting �lter bank al�
gorithm still computes the N coe�cients of the wavelet representation
�aJ � fdjgL�j�J � of aL with O�N operations�

Wavelet coe�cients can also be written as discrete inner products
of aL with discrete wavelets


aj�n� � haL�m�� intj�n�m�i and dj�n� � haL�m�� �int
j�n�m�i � ������

As in Section ������ we verify that�fintJ�n�m�g��n���J � f�int
j�n�m�gL�j�J � ��n���j

�
is an orthonormal basis of C N �
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����� Periodic Wavelets

A wavelet basis f�j�ng�j�n��Z� of L��R is transformed into a wavelet
basis of L���� �� by periodizing each �j�n� The periodization of f �
L��R over ��� �� is de�ned by

fper�t �
��X

k���

f�t� k� ������

The resulting periodic wavelets are

�per
j�n �t �

�p
�j

��X
k���

�

�
t� �jn� k

�j

�
�

For j � �� there are ��j di�erent �per
j�n indexed by � � n 	 ��j� If the

support of �j�n is included in ��� �� then �per
j�n �t � �j�n�t for t � ��� ���

The restriction to ��� �� of this periodization thus modi�es only the
boundary wavelets whose supports overlap t � � or t � �� As indicated
in Figure ����� such wavelets are transformed into boundary wavelets
which have two disjoint components near t � � and t � �� Taken sepa�
rately� the components near t � � and t � � of these boundary wavelets
have no vanishing moments� and thus create large signal coe�cients� as
we shall see later� The following theorem proves that periodic wavelets
together with periodized scaling functions perj�n generate an orthogonal
basis of L���� ���

0 t
1

Figure ����
 The restriction to ��� �� of a periodic wavelet �per
j�n has two

disjoint components near t � � and t � ��

Theorem ��	� For any J � ��f�per
j�n g���j�J���n���j � fperJ�ng��n���J

�
�����	

is an orthogonal basis of L���� ���
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Proof �� The orthogonality of this family is proved with the following
lemma�

Lemma ��� Let ��t�� ��t� � L��R�� If h��t�� ��t�k�i �  for all k � Z
then Z �

�
�per�t��per�t� dt � � ������

To verify ������ we insert the de�nition ������ of periodized func�
tions� Z �

�
�per�t��per�t� dt �

Z ��

��
��t��per�t� dt

�
��X

k���

Z ��

��
��t���t � k� dt � �

Since �f�j�ng���j�J�n�Z � f�J�ngn�Z� is orthogonal in L��R�� we can
verify that any two di�erent wavelets or scaling functions �per and �per in
������ have necessarily a non�periodized version that satis�es h��t�� ��t�
k�i �  for all k � Z� Lemma ��� thus proves that ������ is orthogonal
in L��� ���

To prove that this family generates L��� ��� we extend f � L��� ��
with zeros outside �� �� and decompose it in the wavelet basis of L��R��

f �
JX

j���

��X
n���

hf� �j�ni�j�n �
��X

n���

hf� �J�ni�J�n � ����
�

This zero extension is periodized with the sum ������� which de�nes
fper�t� � f�t� for t � �� ��� Periodizing ����
� proves that f can be
decomposed over the periodized wavelet family ������ in L��� ���

Theorem ���	 shows that periodizing a wavelet orthogonal basis of
L��R de�nes a wavelet orthogonal basis of L���� ��� If J � � then
there is a single scaling function� and one can verify that ����t � ��
The resulting scaling coe�cient hf� ���i is the average of f over ��� ���

Periodic wavelet bases have the disadvantage of creating high am�
plitude wavelet coe�cients in the neighborhood of t � � and t � ��
because the boundary wavelets have separate components with no van�
ishing moments� If f�� �� f��� the wavelet coe�cients behave as if the
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signal were discontinuous at the boundaries� This can also be veri�ed
by extending f � L���� �� into an in�nite � periodic signal fper and by
showing that Z �

�

f�t�per
j�n �t dt �

Z ��

��

fper�t�j�n�t dt� ������

If f�� �� f� then fper�t is discontinuous at t � � and t � �� which cre�
ates high amplitude wavelet coe�cients when �j�n overlaps the interval
boundaries�

Periodic Discrete Transform For f � L���� �� let us consider
aj�n� � hf� perj�n i and dj�n� � hf� �per

j�n i�
We verify as in ������ that these inner products are equal to the coef�
�cients of a periodic signal decomposed in a non�periodic wavelet basis


aj�n� � hfper� j�ni and dj�n� � hfper� �j�ni�
The convolution formulas of Theorem ��� thus apply if we take into
account the periodicity of fper� This means that aj�n� and dj�n� are
considered as discrete signals of period ��j� and all convolutions in
������������ must therefore be replaced by circular convolutions� De�
spite the poor behavior of periodic wavelets near the boundaries� they
are often used because the numerical implementation is particularly
simple�

����� Folded Wavelets

Decomposing f � L���� �� in a periodic wavelet basis was shown in
������ to be equivalent to a decomposition of fper in a regular basis
of L��R� Let us extend f with zeros outside ��� ��� To avoid creating
discontinuities with such a periodization� the signal is folded with re�
spect to t � �
 f��t � f�t � f��t� The support of f� is ���� �� and
it is transformed into a � periodic signal� as illustrated in Figure ����

f fold�t �
��X

k���

f��t� �k �
��X

k���

f�t� �k �
��X

k���

f��k� t� ������
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Clearly f fold�t � f�t if t � ��� ��� and it is symmetric with respect
to t � � and t � �� If f is continuously di�erentiable then f fold is
continuous at t � � and t � �� but its derivative is discontinuous at
t � � and t � � if f ��� �� � and f ��� �� ��

Decomposing f fold in a wavelet basis f�j�ng�j�n��Z� is equivalent to
decomposing f on a folded wavelet basis� Let �fold

j�n be the folding of
�j�n with the summation ������� One can verify thatZ �

�

f�t�fold
j�n �t dt �

Z ��

��

f fold�t�j�n�t dt� ������

Suppose that f is regular over ��� ��� Then f fold is continuous at t � �� �
and hence produces smaller boundary wavelet coe�cients than fper�
However� it is not continuously di�erentiable at t � �� �� which creates
bigger wavelet coe�cients at the boundary than inside�

0

f(t)

1

Figure ����
 The folded signal f fold�t is � periodic� symmetric about
t � � and t � �� and equal to f�t on ��� ���

To construct a basis of L���� �� with the folded wavelets �fold
j�n � it is

su�cient for ��t to be either symmetric or antisymmetric with respect
to t � ���� The Haar wavelet is the only real compactly supported
wavelet that is symmetric or antisymmetric and which generates an
orthogonal basis of L��R� On the other hand� if we loosen up the or�
thogonality constraint� Section ��� proves that there exist biorthogonal
bases constructed with compactly supported wavelets that are either
symmetric or antisymmetric� Let f�j�ng�j�n��Z� and f ��j�ng�j�n��Z� be
such biorthogonal wavelet bases� If we fold the wavelets as well as the
scaling functions then for J � ��f�fold

j�n g���j�J � ��n���j � ffoldJ�n g��n���J
�

������

is a Riesz basis of L���� �� ������ The biorthogonal basis is obtained by
folding the dual wavelets ��j�n and is given byh

f ��fold
j�n g���j�J � ��n���j � f�foldJ�n g��n���J

i
� ������
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If J � � then fold��� � �fold��� � ��
Biorthogonal wavelets of compact support are characterized by a

pair of �nite perfect reconstruction �lters �h� �h� The symmetry of these
wavelets depends on the symmetry and size of the �lters� as explained
in Section ������ A fast folded wavelet transform is implemented with
a modi�ed �lter bank algorithm� where the treatment of boundaries is
slightly more complicated than for periodic wavelets� The symmetric
and antisymmetric cases are considered separately�

Folded Discrete Transform For f � L���� ��� we consider
aj�n� � hf� foldj�n i and dj�n� � hf� �fold

j�n i�
We verify as in ������ that these inner products are equal to the coef�
�cients of a folded signal decomposed in a non�folded wavelet basis


aj�n� � hf fold� j�ni and dj�n� � hf fold� �j�ni�
The convolution formulas of Theorem ��� thus apply if we take into ac�
count the symmetry and periodicity of f fold� The symmetry properties
of  and � imply that aj�n� and dj�n� also have symmetry and period�
icity properties� which must be taken into account in the calculations
of �������������

Symmetric biorthogonal wavelets are constructed with perfect re�
construction �lters h and �h of odd size that are symmetric about n � ��
Then  is symmetric about �� whereas � is symmetric about ���� As a
result� one can verify that aj�n� is �

�j�� periodic and symmetric about
n � � and n � ��j� It is thus characterized by ��j � � samples� for
� � n � ��j� The situation is di�erent for dj�n� which is ��j�� periodic
but symmetric with respect to ���� and ��j � ���� It is characterized
by ��j samples� for � � n 	 ��j�

To initialize this algorithm� the original signal aL�n� de�ned over
� � n 	 N � � must be extended by one sample at n � N � and consid�
ered to be symmetric with respect to n � � and n � N � The extension
is done by setting aL�N � � aL�N � ��� For any J 	 L� the resulting
discrete wavelet representation �fdjgL�j�J � aJ � is characterized by N��
coe�cients� To avoid adding one more coe�cient� one can modify sym�
metry at the right boundary of aL by considering that it is symmetric
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with respect to N � ��� instead of N � The symmetry of the resulting
aj and dj at the right boundary is modi�ed accordingly by studying the
properties of the convolution formula ����	�� As a result� these sig�
nals are characterized by ��j samples and the wavelet representation
has N coe�cients� This approach is used in most applications because
it leads to simpler data structures which keep constant the number of
coe�cients� However� the discrete coe�cients near the right boundary
can not be written as inner products of some function f�t with dilated
boundary wavelets�

Antisymmetric biorthogonal wavelets are obtained with perfect re�
construction �lters h and �h of even size that are symmetric about
n � ���� In this case  is symmetric about ��� and � is antisymmetric
about ���� As a result aj and dj are ��j�� periodic and respectively
symmetric and antisymmetric about ���� and ��j � ���� They are
both characterized by ��j samples� for � � n 	 ��j� The algorithm is
initialized by considering that aL�n� is symmetric with respect to ����
and N � ���� There is no need to add another sample� The resulting
discrete wavelet representation �fdjgL�j�J � aJ � is characterized by N
coe�cients�

����� Boundary Wavelets �

Wavelet coe�cients are small in regions where the signal is regular only
if the wavelets have enough vanishing moments� The restriction of pe�
riodic and folded �boundary� wavelets to the neighborhood of t � �
and t � � have respectively � and � vanishing moment� These bound�
ary wavelets thus cannot fully take advantage of the signal regularity�
They produce large inner products� as if the signal were discontinuous
or had a discontinuous derivative� To avoid creating large amplitude
wavelet coe�cients at the boundaries� one must synthesize boundary
wavelets that have as many vanishing moments as the original wavelet
�� Initially introduced by Meyer� this approach has been re�ned by
Cohen� Daubechies and Vial ������ The main results are given without
proofs�

Multiresolution of L���� �� A wavelet basis of L���� �� is constructed
with a multiresolution approximation fVint

j g���j��� A wavelet has p
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vanishing moments if it is orthogonal to all polynomials of degree p� �
or smaller� Since wavelets at a scale �j are orthogonal to functions in
Vint

j � to guarantee that they have p vanishing moments we make sure
that polynomials of degree p� � are inside Vint

j �
We de�ne an approximation space Vint

j  L���� �� with a compactly
supported Daubechies scaling function � associated to a wavelet with
p vanishing moments� Theorem ��� proves that the support of  has
size �p� �� We translate  so that its support is ��p��� p�� At a scale
�j � ��p��� there are ��j � �p scaling functions with a support inside
��� ��


intj�n�t � j�n�t �
�p
�j

�t� �jn

�j

	
for p � n 	 ��j � p �

To construct an approximation space Vint
j of dimension ��j we add p

scaling functions with a support on the left boundary near t � �


intj�n�t �
�p
�j
leftn

� t

�j

	
for � � n 	 p �

and p scaling functions on the right boundary near t � �


intj�n�t �
�p
�j
right��j���n

�t� �

�j

	
for ��j � p � n 	 ��j �

The following proposition constructs appropriate boundary scaling func�
tions fleftn g��n�p and frightn g��n�p�

Proposition ��� �Cohen� Daubechies� Vial� One can construct bound�
ary scaling functions leftn and rightn so that if ��j � �p then fintj�ng��n���j

is an orthonormal basis of a space Vint
j satisfying

Vint
j  Vint

j��

lim
j���

Vint
j � Closure

��� log���p��
j���

Vint
j

�A � L���� �� �

and the restrictions to ��� �� of polynomials of degree p� � are in Vint
j �
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Proof �� A sketch of the proof is given� All details can be found in ������
Since the wavelet � corresponding to � has p vanishing moments� the
Fix�Strang condition ������ implies that

qk�t� �

��X
n���

nk ��t� n� �������

is a polynomial of degree k� At any scale �j � qk���jt� is still a polynomial
of degree k� and for  � k 	 p this family de�nes a basis of polynomials
of degree p��� To guarantee that polynomials of degree p�� are in Vint

j

we impose that the restriction of qk���jt� to �� �� can be decomposed in
the basis of Vint

j �

qk���jt��
�����t� �

p��X
n��

a�n��leftn ���jt� �

��j�p��X
n�p

nk ����jt� n� �

p��X
n��

b�n��rightn ���jt� ��j� � �������

Since the support of � is ��p� �� p�� the condition ������� together with
������� can be separated into two non�overlapping left and right condi�
tions� With a change of variable� we verify that ������� is equivalent
to

pX
n��p��

nk ��t� n��
������t� �

p��X
n��

a�n��leftn �t�� �������

and
p��X
n��p

nk ��t� n���������t� �

p��X
n��

b�n��rightn �t�� �������

The embedding property Vint
j 
 Vint

j�� is obtained by imposing that
the boundary scaling functions satisfy scaling equations� We suppose
that �leftn has a support �� p � n� and satis�es a scaling equation of the
form

����� �leftn ����t� �

p��X
l��

H left
n�l �

left
l �t� �

p��nX
m�p

hleftn�m ��t�m� � �����
�

whereas �rightn has a support ��p � n� � and satis�es a similar scaling

equation on the right� The constants H left
n�l � hleftn�m� Hright

n�l and hrightn�m are



��� CHAPTER �� WAVELET BASES

adjusted to verify the polynomial reproduction equations ������� and
�������� while producing orthogonal scaling functions� The resulting
family f�intj�ng��n���j is an orthonormal basis of a space Vint

j �

The convergence of the spaces Vint
j to L��� �� when �j goes to  is a

consequence of the fact that the multiresolution spaces Vj generated by
the Daubechies scaling function f�j�ngn�Z converge to L��R��

The proof constructs the scaling functions through scaling equations
speci�ed by discrete �lters� At the boundaries� the �lter coe�cients
are adjusted to construct orthogonal scaling functions with a support in
��� ��� and to guarantee that polynomials of degree p�� are reproduced
by these scaling functions� Table ��� gives the �lter coe�cients for
p � ��

Wavelet Basis of L���� �� LetWint
j be the orthogonal complement of

Vint
j inVint

j��� The support of the Daubechies wavelet � with p vanishing
moments is ��p � �� p�� Since �j�n is orthogonal to any j�l� we verify
that an orthogonal basis of Wint

j can be constructed with the ��j � �p
inside wavelets with support in ��� ��


�int
j�n�t � �j�n�t �

�p
�j
�
� t� �jn

�j

	
for p � n 	 ��j � p�

to which are added �p left and right boundary wavelets

�int
j�n�t �

�p
�j
�left
n

� t

�j

	
for � � n 	 p �

�int
j�n�t �

�p
�j
�right
��j���n

� t� �

�j

	
for ��j � p � n 	 ��j �

Since Wint
j  Vint

j��� the left and right boundary wavelets at any scale
�j can be expanded into scaling functions at the scale �j��� For j � �
we impose that the left boundary wavelets satisfy equations of the form

�p
�
�left
n

�
t

�

�
�

p��X
l��

Gleft
n�l 

left
l �t �

p��nX
m�p

gleftn�m �t�m � ������
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k l Hleft
k�l

Gleft
k�l

k m hleft
k�m

gleft
k�m

� � ����			����� ��������	���� � � ���	��	����� ������������	
� � ���������	� �����	������ � � ������������ �����������
� � ���	��������� ������	������ � 	 ����	���	��� ����	��������
� � �����	������ �����	����	� � � �����������	� ����	�������

k l Hright
k�l

Gright
k�l

k m hright
k�m

gright
k�m

�� �� ������������ ���	�	������� �� �� ����	������� ���	�������
�� �� �������		���� ��	��������� �� �� �����������	 ������������
�� �� ���	������� ������������ �� �	 ��	�����		�� �������������
�� �� ����������	� ������������� �� �	 ���	�	����	� ����	��������

h
��� h
�� h
�� h
��

����������	��� ���	����	�	�	� �������	������ ���������������

Table ���
 Left and right border coe�cients for a Daubechies wavelet
with p � � vanishing moments� The inside �lter coe�cients are
at the bottom of the table� A table of coe�cients for p � � van�
ishing moments can be retrieved over the Internet at the FTP site
ftp
**math�princeton�edu*pub*user*ingrid*interval�tables�

The right boundary wavelets satisfy similar equations� The coe�cients
Gleft
n�l � g

left
n�m� G

right
n�l � grightn�m are computed so that f�int

j�ng��n���j is an or�

thonormal basis ofWint
j � Table ��� gives the values of these coe�cients

for p � ��
For any �J � ��p�� the multiresolution properties prove that

L���� �� � Vint
J �J

j���Wint
j �

which implies that�fintJ�ng��n���J � f�int
j�ng���j�J � ��n���j

�
������

is an orthonormal wavelet basis of L���� ��� The boundary wavelets� like
the inside wavelets� have p vanishing moments because polynomials of
degree p � � are included in the space Vint

J � Figure ���� displays the
�p � � boundary scaling functions and wavelets�
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Figure ����
 Boundary scaling functions and wavelets with p � � van�
ishing moments�

Fast Discrete Algorithm For any f � L���� �� we denote
aj�n� � hf� intj�ni and dj�n� � hf� �int

j�ni for � � n � ��j �

Wavelet coe�cients are computed with a cascade of convolutions iden�
tical to Theorem ��� as long as �lters do not overlap the signal bound�
aries� A Daubechies �lter h is considered here to have a support located
at ��p��� p�� At the boundary� the usual Daubechies �lters are replaced
by the boundary �lters that relate the boundary wavelets and scaling
functions to the �ner�scale scaling functions in ������ and �������

Theorem ��	� �Cohen� Daubechies� Vial�
If � � k 	 p

aj�k� �

p��X
l��

H left
k�l aj���l� �

p��kX
m�p

hleftk�m aj���m��

dj�k� �

p��X
l��

Gleft
k�l aj���l� �

p��kX
m�p

gleftk�m aj���m��

If p � k 	 ��j � p

aj�k� �
��X
l���

h�l � �k� aj���l��
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dj�k� �
��X
l���

g�l � �k� aj���l��

If �p � k 	 �

aj��
�j � k� �

��X
l��p

Hright
k�l aj����

�j�� � l� �

�p��X
m��p��k��

hrightk�m aj����
�j�� �m��

dj��
�j � k� �

��X
l��p

Gright
k�l aj����

�j�� � l� �

�p��X
m��p��k��

grightk�m aj����
�j�� �m��

This cascade algorithm decomposes aL into a discrete wavelet trans�
form �aJ � fdjgL�j�J � with O�N operations� The maximum scale must
satisfy �J � ��p��� because the number of boundary coe�cients re�
mains equal to �p at all scales� The implementation is more compli�
cated than the folding and periodic algorithms described in Sections
����� and ������ but does not require more computations� The signal aL
is reconstructed from its wavelet coe�cients� by inverting the decom�
position formula in Theorem �����

Theorem ��	� �Cohen� Daubechies� Vial�
If � � l � p� �

aj���l� �

p��X
k��

H left
k�l aj�k� �

p��X
k��

Gleft
k�l dj�k��

If p � l � �p� �

aj���l� �

p��X
k��l�p���

hleftk�l aj�k� �
��X

k���

h�l � �k� aj�k� �

p��X
k��l�p���

gleftk�l dj�k� �
��X

k���

g�l � �k� dj�k��

If �p� � � l � ��j�� � �p

aj���l� �
��X

k���

h�l � �k� aj�k� �
��X

k���

g�l � �k� dj�k��



��� CHAPTER �� WAVELET BASES

If �p� � � l � ��p � �

aj����
�j�� � l� �

�l�p�����X
k��p

hrightk�l aj��
�j � k� �

��X
k���

h�l � �k� aj��
�j � k� �

�l�p�����X
k��p

grightk�l dj��
�j � k� �

��X
k���

g�l � �k� dj��
�j � k��

If �� � l � �p

aj����
�j�� � l� �

��X
k��p

Hright
k�l aj��

�j � k� �
��X

k��p

Gright
k�l dj��

�j � k��

The original signal aL is reconstructed from the orthogonal wavelet
representation �aJ � fdjgL�j�J � by iterating these equations for L 	 j �
J � This reconstruction is performed with O�N operations�

��� Multiscale Interpolations �

Multiresolution approximations are closely connected to the general�
ized interpolations and sampling theorems studied in Section ������
The next section constructs general classes of interpolation functions
from orthogonal scaling functions and derives new sampling theorems�
Interpolation bases have the advantage of easily computing the decom�
position coe�cients from the sample values of the signal� Section ��	��
constructs interpolation wavelet bases�

����� Interpolation and Sampling Theorems

Section ����� explains that a sampling scheme approximates a signal by
its orthogonal projection onto a space UT and samples this projection
at intervals T � The space UT is constructed so that any function in
UT can be recovered by interpolating a uniform sampling at intervals
T � We relate the construction of interpolation functions to orthogonal
scaling functions and compute the orthogonal projector on UT�
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We call interpolation function any  such that f�t � ngn�Z is a
Riesz basis of the space U� it generates� and which satis�es

�n �



� if n � �
� if n �� �

� ������

Any f � U� is recovered by interpolating its samples f�n


f�t �
��X

n���

f�n�t� n� ������

Indeed� we know that f is a linear combination of the basis vector
f�t � ngn�Z and the interpolation property ������ yields �������
The Whittaker sampling Theorem ��� is based on the interpolation
function

�t �
sin �t

�t
�

In this case� the space U� is the set of functions whose Fourier trans�
forms are included in ���� ���

Scaling an interpolation function yields a new interpolation for a
di�erent sampling interval� Let us de�ne T �t � �t�T  and

UT �
�
f � L��R with f�T t � U�


�

One can verify that any f � UT can be written

f�t �
��X

n���

f�nT T �t� nT  � ������

Scaling Autocorrelation We denote by o an orthogonal scaling
function� de�ned by the fact that fo�t � ngn�Z is an orthonormal
basis of a space V� of a multiresolution approximation� Theorem ���
proves that this scaling function is characterized by a conjugate mirror
�lter ho� The following theorem de�nes an interpolation function from
the autocorrelation of o ������
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Theorem ��	� Let �o�t � o��t and �ho�n� � ho��n�� If j�o��j �
O��� � j�j�� then

�t �

Z ��

��

o�uo�u� t du � o � �o�t ������

is an interpolation function� Moreover



�
t

�

�
�

��X
n���

h�n��t� n ������

with

h�n� �
��X

m���

ho�m� ho�m� n� � ho � �ho�n�� �����	

Proof �� Observe �rst that

��n� � h�o�t�� �o�t� n�i � �n��

which prove the interpolation property �������� To prove that f��t �
n�gn�Z is a Riesz basis of the space U� it generates� we verify the condi�
tion ������ The autocorrelation ��t� � �o� ��o�t� has a Fourier transform
	���� � j	�o���j�� Condition ����� thus means that there exist A � 
and B �  such that

�� � ���� �� �
�

B
�

��X
k���

j	�o�� � �k��j� � �

A
� �������

We proved in ������ that the orthogonality of a family f�o�t� n�gn�Z is
equivalent to

�� � ���� �� �

��X
k���

j	�o�� � �k��j� � �� �����
�

The right inequality of ������� is therefore valid for A � �� Let us prove
the left inequality� Since j	�o���j � O��� � j�j����� one can verify that
there exists K �  such that for all � � ���� ���

P
jkj�K j	�o����k��j� 	

���� so �����
� implies that
PK

k��K j	�o����k��j� � ���� It follows that

KX
k��K

j	�o�� � �k��j� � �

���K � ��
�
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which proves ������� for B � ���K � ���

Since �o is a scaling function� ����
� proves that there exists a con�
jugate mirror �lter ho such that

�p
�
�o

�
t

�

�
�

��X
n���

ho�n��o�t� n��

Computing ��t� � �o � ��o�t� yields ������� with h�n� � ho � �ho�n��

Theorem ���� proves that the autocorrelation of an orthogonal scaling
function o is an interpolation function  that also satis�es a scaling
equation� One can design  to approximate regular signals e�ciently
by their orthogonal projection in UT� De�nition 	�� measures the reg�
ularity of f with a Lipschitz exponent� which depends on the di�erence
between f and its Taylor polynomial expansion� The following proposi�
tion gives a condition for recovering polynomials by interpolating their
samples with � It derives an upper bound for the error when approx�
imating f by its orthogonal projection in UT�

Proposition ��� �Fix� Strang� Any polynomial q�t of degree smaller
or equal to p� � is decomposed into

q�t �
��X

n���

q�n�t� n ������

if and only if �h�� has a zero of order p at � � ��
Suppose that this property is satis�ed� If f has a compact support and
is uniformly Lipschitz � � p then there exists C � � such that

�T � � � kf � PUT
fk � C T �� ������

Proof �� The main steps of the proof are given� without technical detail�
Let us set T � �j � One can verify that the spaces fVj � U�jgj�Zde�ne a
multiresolution approximation of L��R�� The Riesz basis of V� required
by De�nition ��� is obtained with � � �� This basis is orthogonalized by
Theorem ��� to obtain an orthogonal basis of scaling functions� Theorem
��� derives a wavelet orthonormal basis f�j�ng�j�n��Z� of L��R��
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Using Theorem ���� one can verify that � has p vanishing moments
if and only if 	h��� has p zeros at �� Although � is not the orthogonal
scaling function� the Fix�Strang condition ������ remains valid� It is thus
also equivalent that for k 	 p

qk�t� �
��X

n���

nk ��t� n�

is a polynomial of degree k� The interpolation property ������� implies
that qk�n� � nk for all n � Z so qk�t� � tk� Since ftkg��k�p is a basis
for polynomials of degree p� �� any polynomial q�t� of degree p� � can
be decomposed over f��t� n�gn�Z if and only if 	h��� has p zeros at ��

We indicate how to prove ������ for T � �j� The truncated family
of wavelets f�l�ngl�j�n�Z is an orthogonal basis of the orthogonal com�
plement of U�j � Vj in L��R�� Hence

kf � PU
�j
fk� �

jX
l���

��X
n���

jhf� �l�nij��

If f is uniformly Lipschitz �� since � has p vanishing moments� Theorem
��� proves that there exists A �  such that

jWf��ln� �l�j � jhf� �l�nij � A ��������l�

To simplify the argument we suppose that � has a compact support�
although this is not required� Since f also has a compact support� one
can verify that the number of non�zero hf� �l�ni is bounded by K ��l for
some K � � Hence

kf � PU
�j
fk� �

jX
l���

K ��l A� �������l � KA�

�� ���
���j �

which proves ������ for T � �j �

As long as � � p� the larger the Lipschitz exponent � the faster the
error kf�PUT

fk decays to zero when the sampling interval T decreases�
If a signal f is Ck with a compact support then it is uniformly Lipschitz
k� so Proposition ��� proves that kf � PUT

fk � C T k�
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Example ��	� A cubic spline interpolation function is obtained from
the linear spline scaling function o� The Fourier transform expression
���� yields

��� � j�o��j� � �� sin�����

�� �� � � cos�����
� ������

Figure �����a gives the graph of � which has an in�nite support but
exponential decay� With Proposition ��� one can verify that this in�
terpolation function recovers polynomials of degree � from a uniform
sampling� The performance of spline interpolation functions for gener�
alized sampling theorems is studied in ����� �����
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Figure ����
 �a
 Cubic spline interpolation function� �b
 Deslaurier�
Dubuc interpolation function of degree ��

Example ��	� Deslaurier�Dubuc ����� interpolation functions of de�
gree �p�� are compactly supported interpolation functions of minimal
size that decompose polynomials of degree �p � �� One can verify
that such an interpolation function is the autocorrelation of a scal�
ing function o� To reproduce polynomials of degree �p � �� Propo�
sition ��� proves that �h�� must have a zero of order �p at �� Since
h�n� � ho � �ho�n� it follows that �h�� � j�ho��j�� and hence �ho�� has a
zero of order p at �� Daubechies�s Theorem ��� designs minimum size
conjugate mirror �lters ho which satisfy this condition� Daubechies �l�
ters ho have �p non�zero coe�cients and the resulting scaling function
o has a support of size �p��� The autocorrelation  is the Deslaurier�
Dubuc interpolation function� whose support is ���p� �� �p� ���
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For p � �� o � 	
���� and  is the piecewise linear tent function
whose support is ���� ��� For p � �� the Deslaurier�Dubuc interpolation
function  is the autocorrelation of the Daubechies � scaling function�
shown in Figure ����� The graph of this interpolation function is in
Figure �����b� Polynomials of degree �p � � � � are interpolated by
this function�

The scaling equation ������ implies that any autocorrelation �lter
veri�es h��n� � � for n �� �� For any p � �� the non�zero values of the
resulting �lter are calculated from the coe�cients of the polynomial
������ that is factored to synthesize Daubechies �lters� The support
of h is ���p� �� �p� �� and

h��n � �� � ���p�n
Q�p��

k�� �k � p� ���

�n� ��� �p� n� �! �p� n!
for �p � n 	 p�

������

Dual Basis If f �� UT then it is approximated by its orthogonal pro�
jection PUT

f onUT before the samples at intervals T are recorded� This
orthogonal projection is computed with a biorthogonal basis f�T �t �
nT gn�Z� which is calculated by the following theorem �����

Theorem ���
 Let  be an interpolation function� We de�ne � to be
the function whose Fourier transform is

b��� � ���P��
k��� j��� � �k�j� � ������

Let �T �t � T�� ��T��t� Then the family f�T �t � nT gn�Z is the
biorthogonal basis of fT �t� nT gn�Z in UT�

Proof �� Let us set T � �� Since

b����� � 	a��� 	����� �������

where 	a��� � L����� �� is �� periodic� we derive as in ������ that �� � U�

and hence that ���t�n� �U� for any n � Z� A dual Riesz basis is unique
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and characterized by biorthogonality relations� Let ���t� � ���t�� For
all �n�m� � Z�� we must prove that

h��t� n�� ���t�m�i � �� � ���n�m� � �n�m�� �������

Since the Fourier transform of ��� ���t� is b�����	������ the Fourier transform
of the biorthogonality conditions ������� yields

��X
k���

b���� � �k�� 	���� � �k�� � ��

This equation is clearly satis�ed for
b�� de�ned by �������� The family

f���t � n�gn�Z is therefore the dual Riesz basis of f��t � n�gn�Z� The
extension for any T �  is easily derived�

Figure ���� gives the graph of the cubic spline � associated to the cubic
spline interpolation function� The orthogonal projection of f over UT

is computed by decomposing f in the biorthogonal bases

PUT
f�t �

��X
n���

hf�u� �T �u� nT iT �t� nT � �����	

Let ��T �t � �T ��t� The interpolation property ������ implies that

PUT
f�nT  � hf�u� �T �u� nT i � f � ��T �nT � ������

This discretization of f through a projection onto UT is therefore ob�

tained by a �ltering with ��T followed by a uniform sampling at intervals
T � The best linear approximation of f is recovered with the interpola�
tion formula �����	�

����� Interpolation Wavelet Basis �

An interpolation function  can recover a signal f from a uniform sam�
pling ff�nT gn�Z if f belongs to an appropriate subspace UT of L��R�
Donoho ��	�� has extended this approach by constructing interpolation
wavelet bases of the whole space of uniformly continuous signals� with
the sup norm� The decomposition coe�cients are calculated from sam�
ple values instead of inner product integrals�
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Figure ����
 The dual cubic spline ��t associated to the spline inter�
polation function �t shown in Figure �����a�

Subdivision Scheme Let  be an interpolation function� which is
the autocorrelation of an orthogonal scaling function o� Let j�n�t �
���jt�n� The constant ��j�� that normalizes the energy of j�n is not
added because we shall use a sup norm kfk� � supt�R jf�tj instead of
the L��R norm� and

kj�nk� � kk� � j��j � ��

We de�ne the interpolation space Vj of functions

g �
��X

n���

a�n�j�n�

where a�n� has at most a polynomial growth in n� Since  is an interpo�
lation function� a�n� � g��jn� This space Vj is not included in L��R
since a�n� may not have a �nite energy� The scaling equation ������
implies that Vj��  Vj for any j � Z� If the autocorrelation �lter h

has a Fourier transform �h�� which has a zero of order p at � � �� then
Proposition ��� proves that polynomials of degree smaller than p � �
are included in Vj�

For f �� Vj� we de�ne a simple projector on Vj that interpolates
the dyadic samples f��jn


PVj
f�t �

��X
n���

f��jnj�t� �jn� ������

This projector has no orthogonality property but satis�es PVj
f��jn �

f��jn� Let C� be the space of functions that are uniformly contin�
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uous over R� The following theorem proves that any f � C� can be
approximated with an arbitrary precision by PVj

f when �j goes to zero�

Theorem ���� �Donoho� Suppose that � has an exponential decay�
If f � C� then

lim
j���

kf � PVj
fk� � lim

j���
sup
t�R

jf�t�� PVj
f�t�j � �� ����	
�

Proof �� Let ���� f� denote the modulus of continuity

���� f� � sup
jhj��

sup
t�R

jf�t� h�� f�t�j� �������

By de	nition
 f � C� if lim
���

���� f� � ��

Any t � R can be written t � �j�n � h� with n � Z and jhj � ��
Since PVjf��

jn� � f��jn�


jf��j�n� h�� � PVjf��
j�n� h��j � jf��j�n� h�� � f��jn�j

� jPVjf��
j�n� h��� PVjf��

jn�j
� ���j � f� � ���j � PVjf��

The next lemma proves that ���j � PVjf� � C� ���
j � f� where C� is a

constant independent of j and f � Taking a sup over t � �j�n � h�
implies the 	nal result�

sup
t�R

jf�t�� PVjf�t�j � �� � C�����
j � f�� � when j � ���

Lemma ��� There exists C� � � such that for all j � Z and f � C�

���j � PVjf� � C� ���
j � f�� �������

Let us set j � �� For jhj � �
 a summation by parts gives

PV�f�t� h�� PV�f�t� �
��X

n���
�f�n� ��� f�n�� �h�t� n�

where

�h�t� �

��X
k��

���t� h� k�� ��t� k�� �
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Hence

jPV�f�t�h��PV�f�t�j � sup
n�Z

jf�n����f�n�j
��X

n���
j�h�t�n�j� �������

Since � has an exponential decay
 there exists a constant C� such that
if jhj � � and t � R then

P��
n��� j�h�t� n�j � C�� Taking a sup over t

in ������� proves that

���� PV�f� � C� sup
n�Z

jf�n� ��� f�n�j � C� ���� f��

Scaling this result by �j yields ��������

Interpolation Wavelets The projection PVj
f�t� interpolates the

values f��jn�� When reducing the scale by �� we obtain a �ner in
terpolation PVj��f�t� which also goes through the intermediate sam
ples f��j�n � ������ This re�nement can be obtained by adding �de
tails� that compensate for the di�erence between PVj

f��j�n � �����
and f��j�n � ������ To do this� we create a �detail� space Wj that
provides the values f�t� at intermediate dyadic points t � �j�n� �����
This space is constructed from interpolation functions centered at these
locations� namely �j����n��� We call interpolation wavelets

�j�n � �j����n�� �

Observe that �j�n�t� � ����jt� n� with

��t� � ���t� �� �

The function � is not truly a wavelet since it has no vanishing moment�
However� we shall see that it plays the same role as a wavelet in this de
composition� We de�ne Wj to be the space of all sums

P��
n��� a�n��j�n�

The following theorem proves that it is a �nonorthogonal� complement
of Vj in Vj���

Theorem ���� For any j � Z

Vj�� � Vj �Wj �
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If f � Vj�� then

f �
��X

n���
f��jn��j�n �

��X
n���

dj�n��j�n

with

dj�n� � f
�

�j �n � ����
�
� PVj

f
�

�j �n � ����
�
� �����	�

Proof �� Any f � Vj�� can be written

f �

��X
n���

f��j��n��j���n �

The function f � PVjf belongs to Vj�� and vanishes at f�jngn�Z� It
can thus be decomposed over the intermediate interpolation functions
�j����n�� � �j�n�

f�t�� PVjf�t� �

��X
n���

djn��j�n�t� �Wj�

This proves that Vj�� � Vj �Wj � By construction we know that
Wj � Vj�� so Vj�� � Vj �Wj� Setting t � �j����n � �� in this
formula also veri	es ��������

Theorem ���� re�nes an interpolation from a coarse grid �jn to a �ner
grid �j��n by adding �details� whose coe�cients dj�n� are the interpo
lation errors f��j�n�������PVj

f��j�n������� The following theorem
de�nes a interpolation wavelet basis of C� in the sense of uniform con
vergence�

Theorem ���� If f � C� then

lim
m���

l���

kf �
mX

n��m
f��Jn��J�n �

JX
j�l

mX
n��m

dj�n��j�nk� � �� �������



��� CHAPTER �� WAVELET BASES

The formula ������� decomposes f into a coarse interpolation at
intervals �J plus layers of details that give the interpolation errors on
successively �ner dyadic grids� The proof is done by choosing f to be
a continuous function with a compact support� in which case ������� is
derived from Theorem ���� and ����	
�� The density of such functions
in C� �for the sup norm� allows us to extend this result to any f in C��
We shall write

f �
��X

n���
f��Jn��J�n �

JX
j���

��X
n���

dj�n��j�n�

which means that �f�J�ngn�Z � f�j�ngn�Z�j�J � is a basis of C�� In L��R��
�biorthogonal� scaling functions and wavelets are formally de�ned by

f��Jn� � hf� ��J�ni �

Z ��

��
f�t� ��J�n�t� dt �

dj�n� � hf� ��j�ni �

Z ��

��
f�t� ��j�n�t� dt � �������

Clearly ��J�n�t� � ��t � �Jn�� Similarly� �����	� and ����	�� implies
that ��j�n is a �nite sum of Diracs� These dual scaling functions and
wavelets do not have a �nite energy� which illustrates the fact that
�f�J�ngn�Z � f�j�ngn�Z�j�J � is not a Riesz basis of L��R��

If �h��� has p zeros at � then one can verify that ��j�n has p vanishing
moments� With similar derivations as in the proof of ������ in Theorem
���� one can show that if f is uniformly Lipschitz � � p then there exists
A 	 � such that

jhf� ��j�nij � jdj�n�j � A ��j�

A regular signal yields small amplitude wavelet coe�cients at �ne scales�
We can thus neglect these coe�cients and still reconstruct a precise ap
proximation of f �

Fast Calculations The interpolating wavelet transform of f is calcu
lated at scale � � �j 	 N�� � �L from its sample values ff�N��n�gn�Z�
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At each scale �j� the values of f in between samples f�jngn�Z are cal
culated with the interpolation ����	���

PVj
f
�

�j �n � ����
�

�
��X

k���
f��jk�� �n� k � ����

�
��X

k���
f��jk� hi�n� k�� �������

where the interpolation �lter hi is a subsampling of the autocorrelation
�lter h in ��������

hi�n� � � �n � ���� � h��n � ��� �������

The wavelet coe�cients are computed with �����	��

dj�n� � f
�

�j �n � ����
�
� PVj

f
�

�j �n � ����
�
�

The reconstruction of f�N��n� from the wavelet coe�cients is per
formed recursively by recovering the samples f��j��n� from the coarser
sampling f��jn� with the interpolation ������� to which is added dj�n��
If hi�n� is a �nite �lter of size K and if f has a support in ��� �� then
the decomposition and reconstruction algorithms require KN multipli
cations and additions�

A DeslauriersDubuc interpolation function � has the shortest sup
port while including polynomials of degree �p � � in the spaces Vj�
The corresponding interpolation �lter hi�n� de�ned by ������� has �p
nonzero coe�cients for �p � n 
 p� which are calculated in ����	��� If
p � � then hi��� � hi���� � ����� and hi��� � hi���� � 
���� Suppose
that q�t� is a polynomial of degree smaller or equal to �p � �� Since
q � PVj

q� ������� implies a Lagrange interpolation formula

q
�

�j �n � ����
�

�
��X

k���
q��jk� hi�n� k� �

The Lagrange �lter hi of size �p is the shortest �lter that recovers
intermediate values of polynomials of degree �p � � from a uniform
sampling�
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To restrict the wavelet interpolation bases to a �nite interval ��� ��
while reproducing polynomials of degree �p��� the �lter hi is modi�ed
at the boundaries� Suppose that f�N��n� is de�ned for � � n 
 N �
When computing the interpolation

PVj
f
�

�j �n � ����
�

�
��X

k���
f��jk� hi�n� k��

if n is too close to � or to ��j�� then hi must be modi�ed to ensure that
the support of hi�n � k� remains inside ��� ��j � ��� The interpolation
PVj

f��j�n������ is then calculated from the closest �p samples f��jk�
for �jk � ��� ��� The new interpolation coe�cients are computed in
order to recover exactly all polynomials of degree �p � � �	���� For
p � �� the problem occurs only at n � � and the appropriate boundary
coe�cients are

hi��� �
�

��
� hi���� �

��

��
� hi���� �

��

��
� hi��	� �

�

��
�

The symmetric boundary �lter hi��n� is used on the other side at n �
��j � ��

��� Separable Wavelet Bases �

To any wavelet orthonormal basis f�j�ng�j�n��Z� of L��R�� one can asso
ciate a separable wavelet orthonormal basis of L��R���n

�j��n��x���j��n��x��
o
�j��j��n��n���Z�

� �������

The functions �j��n��x���j��n��x�� mix information at two di�erent scales
�j� and �j� along x� and x�� which we often want to avoid� Separa
ble multiresolutions lead to another construction of separable wavelet
bases whose elements are products of functions dilated at the same
scale� These multiresolution approximations also have important ap
plications in computer vision� where they are used to process images
at di�erent levels of details� Lower resolution images are indeed rep
resented by fewer pixels and might still carry enough information to
perform a recognition task�
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Signal decompositions in separable wavelet bases are computed with
a separable extension of the �lter bank algorithm described in Section
����	� Nonseparable wavelets bases can also be constructed ���� �	
�
but they are used less often in image processing� Section ����� con
structs separable wavelet bases in any dimension� and explains the cor
responding fast wavelet transform algorithm�

����� Separable Multiresolutions

As in one dimension� the notion of resolution is formalized with or
thogonal projections in spaces of various sizes� The approximation of
an image f�x�� x�� at the resolution ��j is de�ned as the orthogonal
projection of f on a space V�

j that is included in L��R��� The space V�
j

is the set of all approximations at the resolution ��j� When the resolu
tion decreases� the size of V�

j decreases as well� The formal de�nition of
a multiresolution approximation fV�

jgj�Z of L��R�� is a straightforward
extension of De�nition ��� that speci�es multiresolutions of L��R�� The
same causality� completeness and scaling properties must be satis�ed�

We consider the particular case of separable multiresolutions� Let
fVjgj�Z be a multiresolution of L��R�� A separable twodimensional
multiresolution is composed of the tensor product spaces

V�
j � Vj �Vj � �����
�

The space V�
j is the set of �nite energy functions f�x�� x�� that are

linear expansions of separable functions�

f�x�� x�� �
��X

m���
a�m� fm�x�� gm�x�� with fm � Vj � gm � Vj �

Section A�� reviews the properties of tensor products� If fVjgj�Z is a
multiresolution approximation of L��R� then fV�

jgj�Z is a multiresolu
tion approximation of L��R���

Theorem ��� demonstrates the existence of a scaling function � such
that f�j�mgm�Z is an orthonormal basis of Vj� Since V�

j � Vj � Vj�
Theorem A�	 proves that for x � �x�� x�� and n � �n�� n���
��j�n�x� � �j�n��x���j�n��x�� �

�

�j
�
�x� � �jn�

�j

�
�
�x� � �jn�

�j

��
n�Z�
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is an orthonormal basis of V�
j � It is obtained by scaling by �j the

twodimensional separable scaling function ���x� � ��x����x�� and
translating it on a twodimensional square grid with intervals �j�

Example ���� Piecewise constant approximation Let Vj be the
approximation space of functions that are constant on ��jm� �j�m� ���
for any m � Z� The tensor product de�nes a twodimensional piecewise
constant approximation� The space V�

j is the set of functions that
are constant on any square ��jn�� �

j�n� � ��� � ��jn�� �
j�n� � ���� for

�n�� n�� � Z
�� The two dimensional scaling function is

���x� � ��x����x�� �

�
� if � � x� � � and � � x� � �
� otherwise

�

Example ���� Shannon approximation Let Vj be the space of
functions whose Fourier transforms have a support included in ����j�� ��j���
The space V�

j is the set of functions whose twodimensional Fourier
transforms have a support included in the lowfrequency square ����j�� ��j���
����j�� ��j��� The twodimensional scaling function is a perfect two
dimensional lowpass �lter whose Fourier transform is

������ ������ �

�
� if j��j � ��j� and j��j � ��j�
� otherwise

�

Example ���	 Spline approximation Let Vj be the space of poly
nomial spline functions of degree p that are Cp��� with nodes located
at ��jm for m � Z� The space V�

j is composed of twodimensional
polynomial spline functions that are p� � times continuously di�eren
tiable� The restriction of f�x�� x�� � V�

j to any square ��jn�� �
j�n� �

���� ��jn�� �
j�n� � ��� is a separable product q��x��q��x�� of two poly

nomials of degree at most p�

Multiresolution Vision An image of ��� by ��� pixels often in
cludes too much information for real time vision processing� Multires
olution algorithms process less image data by selecting the relevant
details that are necessary to perform a particular recognition task �����
The human visual system uses a similar strategy� The distribution of
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photoreceptors on the retina is not uniform� The visual acuity is great
est at the center of the retina where the density of receptors is max
imum� When moving apart from the center� the resolution decreases
proportionally to the distance from the retina center �	����

Figure ���	� Multiresolution approximations aj�n�� n�� of an image at
scales �j� for �� � j � ���

The high resolution visual center is called the fovea� It is respon
sible for high acuity tasks such as reading or recognition� A retina
with a uniform resolution equal to the highest fovea resolution would
require about ������ times more photoreceptors� Such a uniform res
olution retina would increase considerably the size of the optic nerve
that transmits the retina information to the visual cortex and the size
of the visual cortex that processes this data�

Active vision strategies ���� compensate the nonuniformity of visual
resolution with eye saccades� which move successively the fovea over
regions of a scene with a high information content� These saccades
are partly guided by the lower resolution information gathered at the
periphery of the retina� This multiresolution sensor has the advantage
of providing high resolution information at selected locations� and a
large �eld of view� with relatively little data�

Multiresolution algorithms implement in software ����� the search
for important high resolution data� A uniform high resolution image is
measured by a camera but only a small part of this information is pro
cessed� Figure ���	 displays a pyramid of progressively lower resolution
images calculated with a �lter bank presented in Section ����	� Coarse
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to �ne algorithms analyze �rst the lower resolution image and selec
tively increase the resolution in regions where more details are needed�
Such algorithms have been developed for object recognition� and stereo
calculations ��
��� Section ������ explains how to compute velocity
vectors in video sequences with a coarse to �ne matching algorithm�

����� Two�Dimensional Wavelet Bases

A separable wavelet orthonormal basis of L��R�� is constructed with
separable products of a scaling function � and a wavelet �� The scal
ing function � is associated to a onedimensional multiresolution ap
proximation fVjgj�Z� Let fV�

jgj�Z be the separable twodimensional
multiresolution de�ned by V�

j � Vj �Vj� Let W�
j be the detail space

equal to the orthogonal complement of the lower resolution approxima
tion space V�

j in V�
j���

V�
j�� � V�

j �W�
j � �������

To construct a wavelet orthonormal basis of L��R��� the following the
orem builds a wavelet basis of each detail space W�

j �

Theorem ���� Let � be a scaling function and � be the corresponding
wavelet generating a wavelet orthonormal basis of L��R�� We de�ne
three wavelets�

���x� � ��x����x�� � ���x� � ��x����x�� � ���x� � ��x����x���
�������

and denote for � � k � 	

�k
j�n�x� �

�

�j
�k

�
x� � �jn�

�j
�
x� � �jn�

�j

�
�

The wavelet family �
��
j�n � ��

j�n � ��
j�n

�
n�Z� �������

is an orthonormal basis of W�
j and�

��
j�n � ��

j�n � ��
j�n

�
�j�n��Z� �����	�

is an orthonormal basis of L��R���
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Proof �� Equation ������� is rewritten

Vj�� �Vj�� � �Vj �Vj��W�
j � �������

The one�dimensional multiresolution spaceVj�� can also be decomposed
into Vj�� � Vj �Wj � By inserting this in �������
 the distributivity of
� with respect to � proves that

W�
j � �Vj �Wj�� �Wj �Vj�� �Wj �Wj� � �������

Since f�j�mgm�Z and f�j�mgm�Z are orthonormal bases of Vj and Wj 

we derive that

f�j�n��x���j�n��x�� � �j�n��x���j�n��x�� � �j�n��x���j�n��x��g�n��n���Z�
is an orthonormal basis of W�

j � As in the one�dimensional case
 the

overall space L��R� � can be decomposed as an orthogonal sum of the
detail spaces at all resolutions�

L��R� � � ���
j���W

�
j � �������

Hence

f�j�n��x���j�n��x�� � �j�n��x���j�n��x�� � �j�n��x���j�n��x��g�j�n��n���Z�
is an orthonormal basis of L��R� ��

The three wavelets extract image details at di�erent scales and ori
entations� Over positive frequencies� �� and �� have an energy mainly
concentrated respectively on ��� �� and ��� ���� The separable wavelet
expressions ������� imply that

������� ��� � ������ ������ � ������� ��� � ������ ������

and ������� ��� � ������ ������� Hence j ������� ���j is large at low hori
zontal frequencies �� and high vertical frequencies ��� whereas j ������� ���j
is large at high horizontal frequencies and low vertical frequencies� and
j ������� ���j is large at at high horizontal and vertical frequencies� Fig
ure ���� displays the Fourier transform of separable wavelets and scal
ing functions calculated from a onedimensional Daubechies � wavelet�
Wavelet coe�cients calculated with �� and �� are large along edges
which are respectively horizontal and vertical� This is illustrated by
the decomposition of a square in Figure ����� The wavelet �� produces
large coe�cients at the corners�
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Figure ����� Fourier transforms of a separable scaling function and of
	 separable wavelets calculated from a onedimensional Daubechies �
wavelet�
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Figure ����� These dyadic rectangles indicate the regions where the
energy of ��k

j�n is mostly concentrated� for � � k � 	� Image approxi
mations at the scale �j are restricted to the lower frequency square�
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Example ���� For a Shannon multiresolution approximation� the re
sulting twodimensional wavelet basis paves the twodimensional Fourier
plane ���� ��� with dilated rectangles� The Fourier transforms �� and
�� are the indicator functions respectively of ���� �� and �������� �
��� ���� The separable space V�

j contains functions whose twodimensional
Fourier transforms have a support included in the lowfrequency square
����j�� ��j�� � ����j�� ��j��� This corresponds to the support of
���j�n indicated in Figure ����� The detail space W�

j is the orthog
onal complement of V�

j in V�
j�� and thus includes functions whose

Fourier transforms have a support in the frequency annulus between
the two squares ����j�� ��j��� ����j�� ��j�� and ����j���� ��j�����
����j���� ��j����� As shown in Figure ����� this annulus is decomposed
in three separable frequency regions� which are the Fourier supports of
��k
j�n for � � k � 	� Dilating these supports at all scales �j yields an

exact cover of the frequency plane ���� ����

For general separable wavelet bases� Figure ���� gives only an indi
cation of the domains where the energy of the di�erent wavelets is con
centrated� When the wavelets are constructed with a onedimensional
wavelet of compact support� the resulting Fourier transforms have side
lobes that appear in Figure �����

Example ���
 Figure ���� gives two examples of wavelet transforms
computed using separable Daubechies wavelets with p � � vanishing
moments� They are calculated with the �lter bank algorithm of Sec
tion ����	� Coe�cients of large amplitude in d�j � d

�
j and d�j correspond

respectively to vertical high frequencies �horizontal edges�� horizontal
high frequencies �vertical edges�� and high frequencies in both direc
tions �corners�� Regions where the image intensity varies smoothly yield
nearly zero coe�cients� shown in grey� The large number of nearly zero
coe�cients makes it particularly attractive for compact image coding�

Separable Biorthogonal Bases Onedimensional biorthogonal wavelet
bases are extended to separable biorthogonal bases of L��R�� with the
same approach as in Theorem ����� Let �� � and ��� �� be two dual pairs
of scaling functions and wavelets that generate biorthogonal wavelet
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Figure ����� Separable wavelet transforms of Lena and of a white square
in a black background� decomposed respectively on 	 and � octaves�
Black� grey and white pixels correspond respectively to positive� zero
and negative wavelet coe�cients� The disposition of wavelet image
coe�cients dkj �n�m� � hf� �k

j�ni is illustrated at the top�
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bases of L��R�� The dual wavelets of ��� �� and �� de�ned by �������
are

����x� � ���x�� ���x�� � ����x� � ���x�� ���x�� � ����x� � ���x�� ���x�� �
�������

One can verify that �
��
j�n � �

�
j�n � �

�
j�n

�
�j�n��Z� �������

and n
���
j�n �

���
j�n �

���
j�n

o
�j�n��Z�

�����
�

are biorthogonal Riesz bases of L��R���

����� Fast Two�Dimensional Wavelet Transform

The fast wavelet transform algorithm presented in Section ��	�� is ex
tended in two dimensions� At all scales �j and for any n � �n�� n��� we
denote

aj�n� � hf� ��j�ni and dkj �n� � hf� �k
j�ni for � � k � 	 �

For any pair of onedimensional �lters y�m� and z�m� we write the
product �lter yz�n� � y�n�� z�n��� and �y�m� � y��m�� Let h�m� and
g�m� be the conjugate mirror �lters associated to the wavelet ��

The wavelet coe�cients at the scale �j�� are calculated from aj
with twodimensional separable convolutions and subsamplings� The
decomposition formula are obtained by applying the onedimensional
convolution formula ������� and ������� of Theorem ��� to the separable
twodimensional wavelets and scaling functions for n � �n�� n���

aj���n� � aj � �h�h��n� � �������

d�j���n� � aj � �h�g��n� � �������

d�j���n� � aj � �g�h��n� � �������

d�j���n� � aj � �g�g��n� � �����	�

We showed in �	���� that a separable twodimensional convolution can
be factored into onedimensional convolutions along the rows and columns
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of the image� With the factorization illustrated in Figure �����a�� these
four convolutions equations are computed with only six groups of one
dimensional convolutions� The rows of aj are �rst convolved with �h
and �g and subsampled by �� The columns of these two output images
are then convolved respectively with �h and �g and subsampled� which
gives the four subsampled images aj��� d

�
j��� d

�
j�� and d�j���

We denote by �y�n� � �y�n�� n�� the image twice the size of y�n��
obtained by inserting a row of zeros and a column of zeros between pairs
of consecutive rows and columns� The approximation aj is recovered
from the coarser scale approximation aj�� and the wavelet coe�cients
dkj�� with twodimensional separable convolutions derived from the one
dimensional reconstruction formula �����
�

aj�n� � �aj�� �hh�n� � �d�j�� �hg�n� � �d�j�� � gh�n� � �d�j�� � gg�n� � �������

These four separable convolutions can also be factored into six groups
of onedimensional convolutions along rows and columns� illustrated in
Figure �����b��

Let b�n� be an input image whose pixels have a distance �L � N���
We associate to b�n� a function f�x� � V�

L approximated at the scale
�L� Its coe�cients aL�n� � hf� ��L�ni are de�ned like in ������� by

b�n� � N aL�n� � f�N��n� � �������

The wavelet image representation of aL is computed by iterating ������
����	� for L � j 
 J � �

aJ � fd�j � d�j � d�jgL�j�J
	
� �������

The image aL is recovered from this wavelet representation by comput
ing ������� for J 	 j � L�

Finite Image and Complexity When aL is a �nite image of N�

pixels� we face boundary problems when computing the convolutions
������������� Since the decomposition algorithm is separable along
rows and columns� we use one of the three onedimensional boundary
techniques described in Section ���� The resulting values are decom
position coe�cients in a wavelet basis of L���� ���� Depending on the
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Figure ����� �a�� Decomposition of aj with � groups of onedimensional
convolutions and subsamplings along the image rows and columns� �b��
Reconstruction of aj by inserting zeros between the rows and columns
of aj�� and dkj��� and �ltering the output�
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boundary treatment� this wavelet basis is a periodic basis� a folded basis
or a boundary adapted basis�

The resulting images aj and dkj have ���j samples� The images of
the wavelet representation ������� thus include a total of N� samples�
If h and g have size K� the reader can verify that �K����j��� multi
plications and additions are needed to compute the four convolutions
����������	� with the factorization of Figure �����a�� The wavelet
representation ������� is thus calculated with fewer than �

�
KN� opera

tions� The reconstruction of aL by factoring the reconstruction equation
������� requires the same number of operations�

Fast Biorthogonal Wavelet Transform The decomposition of an
image in a biorthogonal wavelet basis is performed with the same fast
wavelet transform algorithm� Let ��h� �g� be the perfect reconstruction
�lters associated to �h� g�� The inverse wavelet transform is computed
by replacing the �lters �h� g� that appear in ������� by ��h� �g��

����� Wavelet Bases in Higher Dimensions �

Separable wavelet orthonormal bases of L��Rp� are constructed for any
p � �� with a procedure similar to the twodimensional extension� Let
� be a scaling function and � a wavelet that yields an orthogonal basis
of L��R�� We denote �� � � and �� � �� To any integer � �  
 �p

written in binary form  � � � � � � p we associate the pdimensional
functions de�ned in x � �x�� � � � � xp� by

���x� � ����x�� � � � �
�n�xp� �

For  � �� we obtain a pdimensional scaling function

���x� � ��x�� � � � ��xp��

Nonzero indexes  correspond to �p � � wavelets� At any scale �j and
for n � �n�� � � � � np� we denote

��
j�n�x� � ��pj�� ��

�x� � �jn�
�j

� � � � �
xp � �jnp

�j

�
�
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Theorem ���� The family obtained by dilating and translating the
�p � � wavelets for  	� �n

��
j�n

o
�����p � �j�n��Zp��

�������

is an orthonormal basis of L��Rp��

The proof is done by induction on p� It follows the same steps as
the proof of Theorem ���� which associates to a wavelet basis of L��R�
a separable wavelet basis of L��R��� For p � �� we verify that the basis
������� includes 	 elementary wavelets� For p � 	� there are � di�erent
wavelets�

Fast Wavelet Transform Let b�n� be an input pdimensional dis
crete signal sampled at intervals N�� � �L� We associate to b�n� an ap
proximation f at the scale �L whose scaling coe�cients aL�n� � hf� ��

L�ni
satisfy

b�n� � Np�� aL�n� � f�N��n� �

The wavelet coe�cients of f at scales �j 	 �L are computed with
separable convolutions and subsamplings along the p signal dimensions�
We denote

aj�n� � hf� ��
j�ni and d�j�n� � hf� ��

j�ni for � 
  
 �p �

The fast wavelet transform is computed with �lters that are separa
ble products of the onedimensional �lters h and g� The separable
pdimensional lowpass �lter is

h��n� � h�n�� � � � h�np� �

Let us denote u��m� � h�m� and u��m� � g�m�� To any integer  �
� � � � p written in a binary form� we associate a separable pdimensional
bandpass �lter

g��n� � u���n�� � � � u
�p�np��

Let �g��n� � g���n�� One can verify that

aj���n� � aj � �h���n� � �������

d�j���n� � aj � �g���n� � �����
�
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We denote by �y�n� the signal obtained by adding a zero between
any two samples of y�n� that are adjacent in the pdimensional lattice
n � �n�� � � � � np�� It doubles the size of y�n� along each direction� If
y�n� has Mp samples� then �y�n� has ��M�p samples� The reconstruction
is performed with

aj�n� � �aj�� � h
��n� �

�p��X
���

�d�j�� � g
��n� � �������

The �p separable convolutions needed to compute aj and fd�jg�����p
as well as the reconstruction ������� can be factored in �p��� � groups
of onedimensional convolutions along the rows of pdimensional sig
nals� This is a generalization of the twodimensional case� illustrated
in Figures ����� The wavelet representation of aL is

�fd�jg�����p � L�j�J � aJ
	
� �������

It is computed by iterating ������� and �����
� for L � j 
 J � The
reconstruction of aL is performed with the partial reconstruction �������
for J 	 j � L�

If aL is a �nite signal of size Np� the onedimensional convolutions
are modi�ed with one of the three boundary techniques described in
Section ���� The resulting algorithm computes decomposition coe�
cients in a separable wavelet basis of L���� ��p� The signals aj and
d�j have ��pj samples� Like aL� the wavelet representation ������� is
composed of Np samples� If the �lter h has K nonzero samples then
the separable factorization of ������� and �����
� requires pK��p�j���

multiplications and additions� The wavelet representation ������� is
thus computed with fewer than p�� � ��p���KNp multiplications and
additions� The reconstruction is performed with the same number of
operations�

��� Problems

���� � Let h be a conjugate mirror 	lter associated to a scaling function
��
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�a� Prove that if �h��� has a zero of order p at � then ���l���k�� � �
for any k � Z� f�g and l 	 p�

�b� Derive that if q 	 p then
P��

n��� nq ��n� �
R ��
�� tq ��t� dt�

���� � Prove that
P��

n��� ��t � n� � � if � is an orthogonal scaling
function�

���� � Let �m be the Battle�Lemari�e scaling function of degree m de�
	ned in ������� Let � be the Shannon scaling function de	ned by
�� � �	����
� Prove that lim

m��� k�m � �k � ��

���� � Suppose that hn� is non�zero only for � � n 	 K� We denote
mn� �

p
� hn�� The scaling equation is ��t� �

PK��
n�� mn����t�

n��

�a� Suppose that K � �� Prove that if t is a dyadic number that
can be written in binary form with i digits� t � ��
�
� � � � 
i

with 
k � f�� �g
 then ��t� is the product

��t� � m
��	m
��	 � � � 	m
i�	 ���� �

�b� For K � �
 show that if m�� � ��� and m�� � ��� then
��t� is singular at all dyadic points� Verify numerically with
WaveLab that the resulting scaling equation does not de	ne
a 	nite energy function ��

�c� Show that one can 	nd two matrices M �� and M �� such that
the K�dimensional vector ��t� � ��t�� ��t���� � � � � ��t�K�
���T satis	es

��t� � M �� ���t� �M �� ���t � �� �

�d� Show that one can compute ��t� at any dyadic number t �
��
�
� � � � 
i with a product of matrices�

��t� � M 
��	M 
��	 � � � 	M 
i�	 ���� �

���� � Let us de	ne

�k���t� �
p
�

��X
n���

hn��k��t� n� � �������

with �� � �	���

 and akn� � h�k�t�� �k�t� n�i �
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�a� Let

P �f��� �
�

�

�
j�h��

�
�j� �f�

�

�
� � j�h��

�
� ��j� �f�

�

�
� ��

�
�

Prove that �ak����� � P �ak����
�b� Prove that if there exists � such that limk��� k�k � �k � �

then � is an eigenvalue of P and ����� �
Q��

p�� �
�����h���p���

What is the degree of freedom on �� in order to still converge
to the same limit ��

�c� Implement inMatlab the computations of �k�t� for the Daubechies
conjugate mirror 	lter with p � � zeros at �� How many iter�
ations are needed to obtain k�k � �k 	 ����� Try to improve
the rate of convergence by modifying ���

���� � Let bn� � f�N��n� with �L � N�� and f � VL� We want to
recover aLn� � hf� �L�ni from bn� to compute the wavelet coe��
cients of f with Theorem ����

�a� Let �Ln� � ��L������Ln�� Prove that bn� � aL � �Ln��
�b� Prove that if there exists C � � such that for all � � ��� ��

��d��� �
��X

k���
���� � �k�� 
 C�

then aL can be calculated from b with a stable 	lter ���L n��
�c� If � is a cubic spline scaling function
 compute numerically

���L n�� For a given numerical precision
 compare the number
of operations needed to compute aL from b with the number
of operations needed to compute the fast wavelet transform of
aL�

�d� Show that calculating aL from b is equivalent to performing a
change of basis in VL
 from a Riesz interpolation basis to an
orthonormal basis�

���� � Quadrature mirror �lters We de	ne a multirate 	lter bank with
four 	lters h
 g
 �h
 and �g
 which decomposes a signal a�n�

a�n� � a� � h�n� � d�n� � a� � g�n��

Using the notation �������
 we reconstruct

�a�n� � �a� � �hn� � �d� � �gn��
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�a� Prove that �a�n� � a�n� l� if

�g��� � �h�� � �� �
b�h��� � �h��� � b�g��� � �b�h�� � �� �

and h satis	es the quadrature mirror condition

�h����� �h��� � �� � � e�il� �

�b� Show that l is necessarily odd�
�c� Verify that the Haar 	lter ������ is a quadrature mirror 	lter

�it is the only 	nite impulse response solution��

���� � Let f be a function of support �� ��
 that is equal to di�erent
polynomials of degree q on the intervals fk� k���g��k�K 
 with
� � � and K � �� Let � be a Daubechies wavelet with p vanish�
ing moments� Depending on p
 compute the number of non�zero
wavelet coe�cients hf� �j�ni� How should we choose p to minimize
this number�

���� � Let � be a box spline of degreem obtained bym�� convolutions
of �	���
 with itself�

�a� Prove that

��t� �
�

m�

m��X
k��

����k
�
m� �
k

�
�t� k���

m�

where x�� � max�x� ��� Hint� write �	���
 � �	��������������
�b� Let Am and Bm be the Riesz bounds of f��t� n�gn�Z� With

Proposition ���
 prove that limm���Bm � ��� Compute
numerically Am and Bm for m � f�� � � � � �g
 with Matlab�

����� � Prove that if f�j�ng�j�n��Z� is an orthonormal basis of L��R�

then for all � � R � f�g P��
j��� j ����j��j� � �� Find an example

showing that the converse is not true�

����� � Let us de	ne

����� �

�
� if ���� � j�j � � or �� � j�j � �� � ����
� otherwise

Prove that f�j�ng�j�n��Z� is an orthonormal basis of L��R�� Prove
that � is not associated to a scaling function � that generates a
multiresolution approximation�
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����� � Express the Coi�et property ������� as an equivalent condition
on the conjugate mirror 	lter �h�ei���

����� � Prove that ��t� has p vanishing moments if and only if for all
j � � the discrete wavelets �j n� de	ned in ������� have p discrete
vanishing moments

��X
n���

nk�j n� � � for � � k 	 p�

����� � Let ��t� be a compactly supported wavelet calculated with
Daubechies conjugate mirror 	lters �h� g�� Let ��j�n�t� � ��j�������jt�
n� be the derivative wavelets�

�a� Verify that h� and g� de	ned by

�h���� � � �h��� �ei� � ���� � �g���� � � �ei� � �� �g���

are 	nite impulse response 	lters�
�b� Prove that the Fourier transform of ���t� can be written

b����� � �g���
����p
�

��Y
p��

�h���
�p��p
�

�

�c� Describe a fast 	lter bank algorithm to compute the derivative
wavelet coe�cients hf� ��j�ni ����

����� � Let ��t� be a compactly supported wavelet calculated with
Daubechies conjugate mirror 	lters �h� g�� Let �ha��� � j�h���j��
We verify that ��a��� � ����� �ha���� � ���� is an almost analytic
wavelet�

�a� Prove that �a is a complex wavelet such that Real�a� � ��
�b� Compute �a��� in Matlab for a Daubechies wavelet with

four vanishing moments� Explain why �a��� � � for � 	 ��
�c� Let �aj�n�t� � ��j���a���jt� n�� Using the fact that

��a��� �
�g������p

�

�h������p
�

j�h����� � �����j�p
�

��Y
k��

�h���k��p
�

show that we can modify the fast wavelet transform algorithm
to compute the �analytic wavelet coe�cients hf� �aj�ni by in�
serting a new 	lter�
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�d� Let � be the scaling function associated to �� We de	ne sep�
arable two�dimensional �analytic wavelets by�

���x� � �a�x����x�� � ���x� � ��x���
a�x�� �

���x� � �a�x���
a�x�� � ���x� � �a�x���

a��x�� �
Let �kj�n�x� � ��j�k���jx�n� for n � Z

�� Modify the separa�
ble wavelet 	lter bank algorithm of Section ����� to compute
the �analytic wavelet coe�cients hf� �kj�ni�

�e� Prove that f�kj�ng��k���j�Z�n�Z� is a frame of the space of real

functions f � L��R� � ����

����� � Multiwavelets We de	ne the following two scaling functions�

���t� � ����t� � ����t� ��

���t� �
�

�

�
����t� � ����t� ��� ����t� � ����t� ��

�
�a� Compute the functions �� and ��� Prove that f���t�n�� ���t�

n�gn�Z is an orthonormal basis of a space V� that will be
speci	ed�

�b� Find �� and �� with a support on �� �� that are orthogonal
to each other and to �� and ��� Plot these wavelets� Verify
that they have � vanishing moments and that they generate
an orthonormal basis of L��R��

����� � Let f fold be the folded function de	ned in ��������

�a� Let ��t�� ��t� � L��R� be two functions that are either sym�
metric or antisymmetric about t � �� If h��t�� ��t � �k�i � �
and h��t�� ���k � t�i � � for all k � Z
 then prove thatZ �

�
�fold�t��fold�t� dt � � �

�b� Prove that if �
 ��
 �
 �� are either symmetric or antisymmetric
with respect to t � ��� or t � �
 and generate biorthogonal
bases of L��R�
 then the folded bases ������� and ������� are
biorthogonal bases of L��� ��� Hint� use the same approach
as in Theorem �����

����� � A recursive 	lter has a Fourier transform that is a ratio of
trigonometric polynomials as in �������
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�a� Let pn� � h � !hn� with !hn� � h�n�� Verify that if h is a
recursive conjugate mirror 	lter then �p��� � �p��� �� � � and
there exists �r��� �

PK��
k�� rk� e�ik� such that

�p��� �
�j�r���j�

j�r���j� � j�r�� � ��j� � �������

�b� Suppose that K is even and that rK��� �� k� � rK��� k��
Verify that

�p��� �
j�r���j�

� j�r��� � �r�� � ��j� � �������

�c� If �r��� � �� � e�i��K�� with K � �
 compute �h��� with
the factorization �������
 and verify that it is a stable 	lter
�Problem ����� Compute numerically and plot withWaveLab
the graph of the corresponding wavelet ��t��

����� � Balancing Suppose that h
 �h de	ne a pair of perfect reconstruc�
tion 	lters satisfying ��������

�a� Prove that

hnewn� �
�

�

�
hn��hn���

�
� �hnewn� �

�

�

�
�hn� � �hn� ��

�
de	nes a new pair of perfect reconstruction 	lters� Verify that
�hnew��� and

b�hnew��� have respectively � more and � less zero

at � than �h��� and b�h��� ����
�b� The Deslauriers�Dubuc 	lters are �h��� � � and

b�h��� � �

��
��e��i� � � e�i� � �� � � ei� � e�i�� �

Compute hnew and �hnew as well as the corresponding biorthog�
onal wavelets �new
 ��new
 after one balancing and after a sec�
ond balancing�

����� � Lifting The 	lter ������� is calculated by lifting lazy 	lters�
Find a dual lifting that produces a lifted 	lter with a support

of size � so that b�hl��� has � zeros at �� Compute the resulting
lifted wavelets and scaling functions� Implement in WaveLab

the corresponding fast wavelet transform and its inverse with the
polyphase decomposition illustrated in Figure �����
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����� � For a Deslaurier�Dubuc interpolation wavelet of degree �
 com�
pute the dual wavelet �� in �������
 which is a sum of Diracs� Verify
that it has � vanishing moments�

����� � Prove that a Deslaurier�Dubuc interpolation function of degree
�p� � converges to a sinc function when p goes to ���

����� � Let � be an autocorrelation scaling function that reproduces
polynomials of degree p � � as in �������� Prove that if f is uni�
formly Lipschitz � then under the same hypotheses as in Theorem
����
 there exists K � � such that

kf � PVjfk� � K ��j �

����� � Let ��t� be an interpolation function that generates an inter�
polation wavelet basis of C��R�� Construct a separable interpo�
lation wavelet basis of the space C��R

p� of uniformly continuous
p�dimensional signals f�x�� � � � � xp�� Hint� construct �p � � inter�
polation wavelets by appropriately translating ��x�� � � � ��xp��

����� � Fractional Brownian Let ��t� be a compactly supported wavelet
with p vanishing moments that generates an orthonormal basis of
L��R�� The covariance of a fractional Brownian motion BH�t� is
given by �������

�a� Prove that EfjhBH � �j�nij�g is proportional to �j��H���� Hint�
use Problem �����

�b� Prove that the decorrelation between same scale wavelet coef�
	cients increases when the number p of vanishing moments of
� increases�

EfhBH � �j�ni hBH � �l�mig � O
�
�j��H��� jn�mj��H�p�

�
�

�c� In two dimensions
 synthesize �approximate fractional Brow�
nian motion images �BH with wavelet coe�cients hBH � �

k
j�ni

that are independent Gaussian random variables
 whose vari�
ances are proportional to �j��H���� Adjust H in order to pro�
duce textures that look like clouds in the sky�

����� � Image mosaic Let f�n�� n�� and f�n�� n�� be two images of
N� pixels� We want to merge the center of f�n�� n�� for N�� �
n�� n� 	 �N�� in the center of f�� Compute in WaveLab the
wavelet coe�cients of f� and f�� At each scale �j and orientation
� � k � �
 replace the ���j�� wavelet coe�cients corresponding
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to the center of f� by the wavelet coe�cients of f�� Reconstruct
an image from this manipulated wavelet representation� Explain
why the image f� seems to be merged in f�
 without the strong
boundary e�ects that are obtained when replacing directly the
pixels of f� by the pixels of f��

����� � Foveal vision A foveal image has a maximum resolution at the
center
 with a resolution that decreases linearly as a function of
the distance to the center� Show that one can construct an ap�
proximate foveal image by keeping a constant number of non�zero
wavelet coe�cients at each scale �j � Implement this algorithm in
WaveLab� You may build a highly compact image code from such
an image representation�

����� � High contrast We consider a color image speci	ed by three color
channels� red rn�
 green gn�
 and blue bn�� The intensity image
�r � g � b��� averages the variations of the three color channels�
To create a high contrast image f 
 for each wavelet �kj�n we set

hf� �kj�ni to be the coe�cient among hr� �kj�ni
 hg� �kj�ni and hb� �kj�ni

which has the maximum amplitude� Implement this algorithm in
WaveLab and evaluate numerically its performance for di�erent
types of multispectral images� How does the choice of � a�ect the
results�

����� � Restoration Develop an algorithm that restores the sharpness
of a smoothed image by increasing the amplitude of wavelet coef�
	cients� Find appropriate ampli	cation functionals depending on
the scale and orientation of the wavelet coe�cients
 in order to
increase the image sharpness without introducing important arti�
facts� To improve the visual quality of the result
 study the impact
of the wavelet properties� symmetry
 vanishing moments and reg�
ularity�

����� � Smooth extension Let f n� be an image whose samples are known
only over a domain D
 which may be irregular and may include
holes� Design and implement an algorithm that computes the
wavelet coe�cients of a smooth extension �f of f over a square do�
main that includesD
 and compute �f from these� Choose wavelets
with p vanishing moments� Set to zero all coe�cients correspond�
ing wavelets whose support do not intersect D
 which is equivalent
to impose that �f is locally a polynomial of degree p� The coef�
	cients of wavelets whose support are in D are calculated from
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f � The issue is therefore to compute the coe�cients of wavelets
whose support intersect the boundary of D� You must guaran�
tee that �f � f on D as well as the numerical stability of your
extension�
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Chapter �

Wavelet Packet and Local

Cosine Bases

Di�erent types of timefrequency structures are encountered in complex
signals such as speech recordings� This motivates the design of bases
whose timefrequency properties may be adapted� Wavelet bases are
one particular family of bases that represent piecewise smooth signals
e�ectively� Other bases are constructed to approximate di�erent types
of signals such as highly oscillatory waveforms�

Orthonormal wavelet packet bases use conjugate mirror �lters to di
vide the frequency axis in separate intervals of various sizes� A discrete
signal of size N is decomposed in more than �N�� wavelet packet bases
with a fast �lter bank algorithm that requires O�N log�N� operations�

If the signal properties change over time� it is preferable to iso
late di�erent time intervals with translated windows� Local cosine
bases are constructed by multiplying these windows with cosine func
tions� Wavelet packet and local cosine bases are dual families of bases�
Wavelet packets segment the frequency axis and are uniformly trans
lated in time whereas local cosine bases divide the time axis and are
uniformly translated in frequency�

�	�
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��� Wavelet Packets �

����� Wavelet Packet Tree

Wavelet packets were introduced by Coifman� Meyer and Wickerhauser
��	
� by generalizing the link between multiresolution approximations
and wavelets� A space Vj of a multiresolution approximation is decom
posed in a lower resolution space Vj�� plus a detail space Wj��� This
is done by dividing the orthogonal basis f�j�t � �jn�gn�Z of Vj into
two new orthogonal bases

f�j���t� �j��n�gn�Z of Vj�� and f�j���t� �j��n�gn�Z of Wj���

The decompositions ������� and ������� of �j�� and �j�� in the basis
f�j�t� �jn�gn�Z are speci�ed by a pair of conjugate mirror �lters h�n�
and

g�n� � ������n h��� n��

The following theorem generalizes this result to any space Uj that
admits an orthogonal basis of functions translated by n�j� for n � Z�

Theorem 
�� �Coifman� Meyer� Wickerhauser� Let f�j�t��jn�gn�Z
be an orthonormal basis of a space Uj� Let h and g be a pair of conju�
gate mirror �lters� De�ne

��j���t� �
��X

n���
h�n� �j�t� �jn� and ��j���t� �

��X
n���

g�n� �j�t� �jn��

�����
The family

f��j���t� �j��n� � ��j���t� �j��n�gn�Z
is an orthonormal basis of Uj�

Proof �� This proof is very similar to the proof of Theorem ���� The
main steps are outlined� The fact that f�j�t � �jn�gn�Z is orthogonal
means that

�

�j

��X
k���

������j�� �
�k�

�j

������ � �� �����
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We derive from ����� that the Fourier transform of ��j�� is

���j����� �
��j���

��X
n���

hn� e�i�
jn� � �h��j�� ��j���� �����

Similarly
 the Fourier transform of ��j�� is

���j����� � �g��j�� ��j���� �����

Proving that f��j���t��j��n�g and f��j���t��j��n�gn�Z are two families
of orthogonal vectors is equivalent to showing that for l � � or l � �

�

�j��

��X
k���

������lj��

�
� �

�k�

�j��

������ � �� �����

These two families of vectors yield orthogonal spaces if and only if

�

�j��

��X
k���

���j��

�
� �

�k�

�j��

�
����j��

�
� �

�k�

�j��

�
� �� �����

The relations ����� and ����� are veri	ed by replacing ���j�� and ���j�� by
����� and ����� respectively
 and by using the orthogonality of the basis
����� and the conjugate mirror 	lter properties

j�h���j� � j�h�� � ��j� � ��

j�g���j� � j�g�� � ��j� � ��

�g��� �h���� � �g�� � �� �h��� � �� � ��

To prove that the family f��j���t� �j��n� � ��j���t� �j��n�gn�Z gen�

erates the same space as f�j�t � �jn�gn�Z
 we must prove that for any
an� � l��Z� there exist bn� � l��Z� and cn� � l��Z� such that

��X
n���

an� �j�t��jn� �
��X

n���
bn� ��j���t��j��n��

��X
n���

cn� ��j���t��j��n��

�����
To do this
 we relate �b��� and �c��� to �a���� The Fourier transform of
����� yields

�a��j�� ��j��� � �b��j���� ���j����� � �c��j���� ���j������ �����
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One can verify that

�b��j���� �
�

�

�
�a��j�� �h���j�� � �a��j� � �� �h���j� � ��

�
and

�c��j���� �
�

�

�
�a��j�� �g���j�� � �a��j� � �� �g���j� � ��

�
satisfy ������

Theorem ��� proves that conjugate mirror �lters transform an orthogo
nal basis f�j�t��jn�gn�Z in two orthogonal families f��j���t��j��n�gn�Z
and f��j���t� �j��n�gn�Z� Let U�

j�� and U�
j�� be the spaces generated

by each of these families� Clearly U�
j�� and U�

j�� are orthogonal and

U�
j�� �U�

j�� � Uj�

Computing the Fourier transform of ����� relates the Fourier transforms
of ��j�� and ��j�� to the Fourier transform of �j�

���j����� � �h��j�� ��j��� � ���j����� � �g��j�� ��j���� ���
�

Since the transfer functions �h��j�� and �g��j�� have their energy con
centrated in di�erent frequency intervals� this transformation can be
interpreted as a division of the frequency support of ��j�

Binary Wavelet Packet Tree Instead of dividing only the approx
imation spaces Vj to construct detail spaces Wj and wavelet bases�
Theorem ��� proves that we can set Uj � Wj and divide these detail
spaces to derive new bases� The recursive splitting of vector spaces
is represented in a binary tree� If the signals are approximated at
the scale �L� to the root of the tree we associate the approximation
space VL� This space admits an orthogonal basis of scaling functions
f�L�t� �Ln�gn�Z with �L�t� � ��L�� ����Lt��

Any node of the binary tree is labeled by �j� p�� where j � L � � is
the depth of the node in the tree� and p is the number of nodes that
are on its left at the same depth j � L� Such a tree is illustrated in
Figure ���� To each node �j� p� we associate a space Wp

j � which admits
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an orthonormal basis f�p
j �t � �jn�gn�Z� by going down the tree� At

the root� we have W�
L � VL and ��

L � �L� Suppose now that we
have already constructed Wp

j and its orthonormal basis Bp
j � f�p

j �t �
�jn�gn�Z at the node �j� p�� The two wavelet packet orthogonal bases
at the children nodes are de�ned by the splitting relations ������

��p
j���t� �

��X
n���

h�n��p
j �t� �jn� ������

and

��p��
j�� �t� �

��X
n���

g�n��p
j �t� �jn�� ������

Since f�p
j �t� �jn�gn�Z is orthonormal�

h�n� � h��p
j���u�� �p

j �u��jn�i � g�n� � h��p��
j�� �u�� �p

j �u��jn�i� ������

L+2
2

L+2
0

L+2 L+2
1 3

0
L+1

1
L+1

0

W

W W W W

W

W L

Figure ���� Binary tree of wavelet packet spaces�

Theorem ��� proves that B�p
j�� � f��p

j���t� �j��n�gn�Z and B�p��
j�� �

f��p��
j�� �t� �j��n�gn�Z are orthonormal bases of two orthogonal spaces

W�p
j�� and W�p��

j�� such that

W�p
j�� �W�p��

j�� � Wp
j � ����	�

This recursive splitting de�nes a binary tree of wavelet packet spaces
where each parent node is divided in two orthogonal subspaces� Figure
��� displays the � wavelet packets �p

j at the depth j � L � 	� calcu
lated with the Daubechies �lter of order �� These wavelet packets are
frequency ordered from left to right� as explained in Section ������
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Figure ���� Wavelet packets computed with the Daubechies � �lter� at
the depth j � L � 	 of the wavelet packet tree� with L � �� They are
ordered from low to high frequencies�
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Figure ��	� Example of admissible wavelet packet binary tree�
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Admissible Tree We call admissible tree any binary tree where each
node has either � or � children� as shown in Figure ��	� Let fji� pig��i�I
be the leaves of an admissible binary tree� By applying the recursive
splitting ����	� along the branches of an admissible tree� we verify that
the spaces fWpi

ji
g��i�I are mutually orthogonal and add up to W�

L�

W�
L � �I

i��W
pi
ji
� ������

The union of the corresponding wavelet packet bases

f�pi
ji

�t� �jin�gn�Z���i�I

thus de�nes an orthogonal basis of W�
L � VL�

Number of Wavelet Packet Bases The number of di�erent wavelet
packet orthogonal bases of VL is equal to the number of di�erent ad
missible binary trees� The following proposition proves that there are
more than ��

J��
di�erent wavelet packet orthonormal bases included in

a full wavelet packet binary tree of depth J �

Proposition 
�� The number BJ of wavelet packet bases in a full
wavelet packet binary tree of depth J satis�es

��
J�� � BJ � �

�

�
�J��� ������

Proof �� This result is proved by induction on the depth J of the wavelet
packet tree� The number BJ of di�erent orthonormal bases is equal to
the number of di�erent admissible binary trees of depth at most J 
 whose
nodes have either � or � children� For J � �
 the tree is reduced to its
root so B� � ��

Observe that the set of trees of depth at most J � � is composed of
trees of depth at least � and at most J �� plus one tree of depth � that
is reduced to the root� A tree of depth at least � has a left and a right
subtree that are admissible trees of depth at most J � The con	guration
of these trees is a priori independent and there are BJ admissible trees
of depth J so

BJ�� � B�
J � �� ������
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Since B� � � and BJ�� 
 B�
J 
 we prove by induction that BJ 
 ��

J��
�

Moreover
log�BJ�� � � log�BJ � log��� �B��J ��

If J 
 � then BJ 
 � so

log�BJ�� � � log�BJ �
�

�
� ������

Since B� � �


log�BJ�� � �J �
�

�

J��X
j��

�j � �J �
�J

�
�

so BJ � �
�

�
�J�� �

For discrete signals of size N � we shall see that the wavelet packet tree is
at most of depth J � log�N � This proposition proves that the number
of wavelet packet bases satis�es �N�� � Blog�N � ��N���

Wavelet Packets on Intervals To construct wavelet packets bases
of L���� ��� we use the border techniques developed in Section ��� to
design wavelet bases of L���� ��� The simplest approach constructs pe
riodic bases� As in the wavelet case� the coe�cients of f � L���� ��
in a periodic wavelet packet basis are the same as the decomposition
coe�cients of fper�t� �

P��
k��� f�t � k� in the original wavelet packet

basis of L��R�� The periodization of f often creates discontinuities at
the borders t � � and t � �� which generate large amplitude wavelet
packet coe�cients�

Section ����	 describes a more sophisticated technique which mod
i�es the �lters h and g in order to construct boundary wavelets which
keep their vanishing moments� A generalization to wavelet packets is
obtained by using these modi�ed �lters in Theorem ���� This avoids
creating the large amplitude coe�cients at the boundary� typical of the
periodic case�

Biorthogonal Wavelet Packets Nonorthogonal wavelet bases are
constructed in Section ��� with two pairs of perfect reconstruction �l
ters �h� g� and ��h� �g� instead of a single pair of conjugate mirror �lters�
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The orthogonal splitting Theorem ��� is extended into a biorthogonal
splitting by replacing the conjugate mirror �lters with these perfect re
construction �lters� A Riesz basis f�j�t��jn�gn�Z of Uj is transformed
into two Riesz bases f��j���t � �j��n�gn�Z and f��j���t� �j��n�gn�Z of
two nonorthogonal spaces U�

j�� and U�
j�� such that

U�
j�� �U�

j�� � Uj�

A binary tree of nonorthogonal wavelet packet Riesz bases can be
derived by induction using this vector space division� As in the orthog
onal case� the wavelet packets at the leaves of an admissible binary tree
de�ne a basis of W�

L� but this basis is not orthogonal�
The lack of orthogonality is not a problem by itself as long as the

basis remains stable� Cohen and Daubechies proved ��	�� that when the
depth j �L increases� the angle between the spaces Wp

j located at the
same depth can become progressively smaller� This indicates that some
of the wavelet packet bases constructed from an admissible binary tree
become unstable� We thus concentrate on orthogonal wavelet packets
constructed with conjugate mirror �lters�

����� Time�Frequency Localization

Time Support If the conjugate mirror �lters h and g have a �nite
impulse response of size K� Proposition ��� proves that � has a support
of size K � � so ��

L � �L has a support of size �K � ���L� Since

��p
j���t� �

��X
n���

h�n��p
j �t� �jn� � ��p��

j�� �t� �
��X

n���
g�n��p

j �t� �jn��

������
an induction on j shows that the support size of �p

j is �K � ���j�
The parameter j thus speci�es the scale �j of the support� The wavelet
packets in Figure ��� are constructed with a Daubechies �lter of K � ��
coe�cients with j � 	 and thus have a support of size ������ �� � ���

Frequency Localization The frequency localization of wavelet pack
ets is more complicated to analyze� The Fourier transform of ������
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proves that the Fourier transforms of wavelet packet children are re
lated to their parent by

���p
j����� � �h��j�� ��p

j ��� � ���p��
j�� ��� � �g��j�� ��p

j ��� � ����
�

The energy of ��p
j is mostly concentrated over a frequency band and

the two �lters �h��j�� and �g��j�� select the lower or higher frequency
components within this band� To relate the size and position of this
frequency band to the indexes �p� j�� we consider a simple example�

Shannon Wavelet Packets Shannon wavelet packets are computed
with perfect discrete lowpass and highpass �lters

j�h���j �

�p
� if � � ����� � �k�� ��� � �k�� with k � Z

� otherwise
������

and

j�g���j �

�p
� if � � ���� � �k�� 	��� � �k�� with k � Z

� otherwise
� ������

In this case it is relatively simple to calculate the frequency support of
the wavelet packets� The Fourier transform of the scaling function is

���
L � ��L � �	���L����L�
� ������

Each multiplication with �h��j�� or �g��j�� divides the frequency sup
port of the wavelet packets in two� The delicate point is to realize
that �h��j�� does not always play the role of a lowpass �lter because
of the side lobes that are brought into the interval ����L�� ��L�� by
the dilation� At the depth j � L� the following proposition proves that
��p
j is proportional to the indicator function of a pair of frequency in

tervals� that are labeled Ikj � The permutation that relates p and k is
characterized recursively �����

Proposition 
�� �Coifman� Wickerhauser� For any j�L 	 � and
� � p 
 �j�L� there exists � � k 
 �j�L such that

j ��p
j ���j � �j�� �Ikj ���� ����	�
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where Ikj is a symmetric pair of intervals

Ikj � ���k � �����j��k���j� � �k���j� �k � �����j�� ������

The permutation k � G�p� satis�es for any � � p 
 �j�L

G��p� �

�
�G�p� if G�p� is even
�G�p� � � if G�p� is odd

������

G��p � �� �

�
�G�p� � � if G�p� is even
�G�p� if G�p� is odd

������

Proof �� The three equations ������
 ������ and ������ are proved by
induction on the depth j �L� For j �L � �
 ������ shows that ������ is
valid� Suppose that ������ is valid for j � l 
 L and any � � p 	 �l�L�
We 	rst prove that ������ and ������ are veri	ed for j � l� From these
two equations we then easily carry the induction hypothesis to prove
that ������ is true for j � l � � and for any � � p 	 �l���L�

Equations ������ and ������ imply that

j�h��l��j �

�p
� if � � ���l����m� ���� ��l����m� ���� with m � Z

� otherwise
������

j�g��l��j �

�p
� if � � ���l����m� ���� ��l����m� ���� with m � Z

� otherwise
������

Since ������ is valid for l
 the support of ��pl is

Ikl � ���k � �����l�����k���l��� � �k���l��� ��k � �����l����

The two children are de	ned by

���p
l����� �

�h��l�� ��pl ��� � ���p��
l�� ��� � �g��l�� ��pl ��� �

We thus derive ������ and ������ by checking the intersection of Ikl with

the supports of �h��j�� and �g��j�� speci	ed by ������ and �������

For Shannon wavelet packets� Proposition ��� proves that ��p
j has a

frequency support located over two intervals of size ��j�� centered at

�k � �������j� The Fourier transform expression ����	� implies that
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these Shannon wavelet packets can be written as cosine modulated
windows

�p
j �t� � ��j���� ����jt� cos

h
��j��k � �����t� �j�p�

i
� ����
�

with

��t� �
sin��t���

�t
and hence ����� � �	��������
����

The translation parameter �j�p can be calculated from the complex

phase of ��p
j �

Frequency Ordering It is often easier to label �k
j a wavelet packet

�p
j whose Fourier transform is centered at 
�k � �������j� with k �

G�p�� This means changing its position in the wavelet packet tree from
the node p to the node k� The resulting wavelet packet tree is frequency
ordered� The left child always corresponds to a lower frequency wavelet
packet and the right child to a higher frequency one�

The permutation k � G�p� is characterized by the recursive equa
tions ������ and ������� The inverse permutation p � G���k� is called a
Gray code in coding theory� This permutation is implemented on binary
strings by deriving the following relations from ������ and ������� If pi
is the ith binary digit of the integer p and ki the ith digit of k � G�p�
then

ki �



��X
l�i

pl

�
mod �� ���	��

and
pi � �ki � ki��� mod �� ���	��

Compactly Supported Wavelet Packets Wavelet packets of com
pact support have a more complicated frequency behavior than Shan
non wavelet packets� but the previous analysis provides important in
sights� If h is a �nite impulse response �lter� �h does not have a support
restricted to ������ ���� over the interval ���� ��� It is however true
that the energy of �h is mostly concentrated in ������ ����� Similarly�
the energy of �g is mostly concentrated in ��������� � ����� ��� for
� � ���� ��� As a consequence� the localization properties of Shannon
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wavelet packets remain qualitatively valid� The energy of ��p
j is mostly

concentrated over

Ikj � ���k � �����j��k���j� � �k���j� �k � �����j��

with k � G�p�� The larger the proportion of energy of �h in ������ �����
the more concentrated the energy of ��p

j in Ikj � The energy concentration

of �h in ������ ���� is increased by having more zeroes at �� so that
�h��� remains close to zero in ���������� ����� ��� Theorem ��� proves
that this is equivalent to imposing that the wavelets constructed in the
wavelet packet tree have many vanishing moments�

These qualitative statements must be interpreted carefully� The side
lobes of ��p

j beyond the intervals Ikj are not completely negligible� For
example� wavelet packets created with a Haar �lter are discontinuous
functions� Hence j ��p

j ���j decays like j�j�� at high frequencies� which
indicates the existence of large side lobes outside Ipk � It is also important
to note that contrary to Shannon wavelet packets� compactly supported
wavelet packets cannot be written as dilated windows modulated by
cosine functions of varying frequency� When the scale increases� wavelet
packets generally do not converge to cosine functions� They may have
a wild behavior with localized oscillations of considerable amplitude�

Walsh Wavelet Packets Walsh wavelet packets are generated by
the Haar conjugate mirror �lter

h�n� �

� �p
�

if n � �� �

� otherwise
�

They have very di�erent properties from Shannon wavelet packets since
the �lter h is well localized in time but not in frequency� The corre
sponding scaling function is � � �	���
 and the approximation space
VL � W�

L is composed of functions that are constant over the intervals
��Ln� �L�n � ���� for n � Z� Since all wavelet packets created with this
�lter belong to VL� they are piecewise constant functions� The support
size of h is K � �� so Walsh functions �p

j have a support of size �j� The
wavelet packet recursive relations ������ become

��p
j���t� �

�p
�
�p
j �t� �

�p
�
�p
j �t� �j�� ���	��
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and

��p��
j�� �t� �

�p
�
�p
j �t��

�p
�
�p
j �t� �j�� ���		�

Since �p
j has a support of size �j� it does not intersect the support of

�p
j �t� �j�� These wavelet packets are thus constructed by juxtaposing

�p
j with its translated version whose sign might be changed� Figure ���

shows the Walsh functions at the depth j�L � 	 of the wavelet packet
tree� The following proposition computes the number of oscillations of
�p
j �

Proposition 
�� The support of a Walsh wavelet packet �p
j is ��� �j��

Over its support� �p
j �t� � 
��j��� It changes sign k � G�p� times�

where G�p� is the permutation de�ned by �����	 and ����
	�

Proof �� By induction on j
 we derive from ������ and ������ that the
support is �� �j � and that �pj �t� � ��j�� over its support� Let k be the

number of times that �pj changes sign� The number of times that ��p
j��

and ��p��
j�� change sign is either �k or �k � � depending on the sign of

the 	rst and last non�zero values of �pj � If k is even
 then the sign of the
	rst and last non�zero values of �pj are the same� Hence the number of

times ��p
j�� and ��p��

j�� change sign is respectively �k and �k � �� If k is
odd
 then the sign of the 	rst and last non�zero values of �pj are di�erent�

The number of times ��p
j�� and ��p��

j�� change sign is then �k�� and �k�
These recursive properties are identical to ������ and �������

A Walsh wavelet packet �p
j is therefore a square wave with k � G�p�

oscillations over a support of size �j� This result is similar to ����
��
which proves that a Shannon wavelet packet �p

j is a window modulated
by a cosine of frequency ��jk�� In both cases� the oscillation frequency
of wavelet packets is proportional to ��jk�

Heisenberg Boxes For display purposes� we associate to any wavelet
packet �p

j �t��jn� a Heisenberg rectangle which indicates the time and
frequency domains where the energy of this wavelet packet is mostly
concentrated� The time support of the rectangle is set to be the same
as the time support of a Walsh wavelet packet �p

j �t � �jn�� which is
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Figure ���� Frequency ordered Walsh wavelet packets computed with
a Haar �lter� at the depth j � L � 	 of the wavelet packet tree� with
L � ��

equal to ��jn� �j�n� ���� The frequency support of the rectangle is de
�ned as the positive frequency support �k���j� �k������j� of Shannon
wavelet packets� with k � G�p�� The scale �j modi�es the time and
frequency elongation of this timefrequency rectangle� but its surface
remains constant� The indices n and k give its localization in time
and frequency� General wavelet packets� for example computed with
Daubechies �lters� have a time and a frequency spread that is much
wider than this Heisenberg rectangle� However� this convention has
the advantage of associating a wavelet packet basis to an exact paving
of the timefrequency plane� Figure ��� shows an example of such a
paving and the corresponding wavelet packet tree�

Figure ��� displays the decomposition of a multichirp signal whose
spectrogram was shown in Figure ��	� The wavelet packet basis is
computed with the Daubechies �� �lter� As expected� the coe�cients of
large amplitude are along the trajectory of the linear and the quadratic
chirps that appear in Figure ��	� We also see the trace of the two
modulated Gaussian functions located at t � ��� and t � �
��
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t

ω

Figure ���� The wavelet packet tree on the left divides the frequency
axis in several intervals� The Heisenberg boxes of the corresponding
wavelet packet basis are on the right�
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Figure ���� Wavelet packet decomposition of the multichirp signal
whose spectrogram is shown in Figure ��	� The darker the gray level
of each Heisenberg box the larger the amplitude jhf� �p

j ij of the corre
sponding wavelet packet coe�cient�
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����� Particular Wavelet Packet Bases

Among the many wavelet packet bases� we describe the properties of
Mband wavelet bases� �local cosine type� bases and �best� bases� The
wavelet packet tree is frequency ordered� which means that �k

j has
a Fourier transform whose energy is essentially concentrated in the
interval �k���j� �k � �����j�� for positive frequencies�

�a� �b�

Figure ���� �a�� Wavelet packet tree of a dyadic wavelet basis� �b��
Wavelet packet tree of an Mband wavelet basis with M � ��

M�band Wavelets The standard dyadic wavelet basis is an example
of a wavelet packet basis of VL� obtained by choosing the admissible
binary tree shown in Figure ����a�� Its leaves are the nodes k � � at
all depth j � L and thus correspond to the wavelet packet basis

f��
j �t� �jn�gn�Z� j	L

constructed by dilating a single wavelet �� �

��
j �t� �

�p
�j
��

�
t

�j

�
�

The energy of ��� is mostly concentrated in the interval �������� �
��� ���� The octave bandwidth for positive frequencies is the ratio be
tween the bandwidth of the pass band and its distance to the zero
frequency� It is equal to � octave� This quantity remains constant by
dilation and speci�es the frequency resolution of the wavelet transform�

Wavelet packets include other wavelet bases constructed with sev
eral wavelets having a better frequency resolution� Let us consider the
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admissible binary tree of Figure ����b�� whose leaves are indexed by
k � � and k � 	 at all depth j �L� The resulting wavelet packet basis
of VL is

f��
j �t� �jn� � ��

j �t� �jn�gn�Z� j	L���

These wavelet packets can be rewritten as dilations of two elementary
wavelets �� and ���

��
j �t� �

�p
�j��

��
� t

�j��

�
� ��

j �t� �
�p
�j��

��
� t

�j��

�
�

Over positive frequencies� the energy of ��� and ��� is mostly concen
trated respectively in ��� 	���� and �	���� ���� The octave bandwidths
of ��� and ��� are thus respectively equal to ��� and ��	� These wavelets
�� and �� have a higher frequency resolution than ��� but their time
support is twice as large� Figure ����a� gives a �band wavelet decom
position of the multichirp signal shown in Figure ���� calculated with
the Daubechies �� �lter�

Higher resolution wavelet bases can be constructed with an arbitrary
number of M � �l wavelets� In a frequency ordered wavelet packet
tree� we de�ne an admissible binary tree whose leaves are the indexes
�l � k 
 �l�� at the depth j � L 	 l� The resulting wavelet packet
basis

f�k
j �t� �jn�gM�k��M � j	L�l

can be written as dilations and translations of M elementary wavelets

�k
j �t� �

�p
�j�l

�k
� t

�j�l

�
�

The support size of �k is proportional to M � �l� Over positive frequen
cies� the energy of ��k is mostly concentrated in �k���l� �k������l�� The
octave bandwidth is therefore ���l��k���l� � k��� for M � k 
 �M �
The M wavelets f�kgM�k��M have an octave bandwidth smaller than
M�� but a time support M times larger than the support of ��� Such
wavelet bases are called Mband wavelets� More general families of M
band wavelets can also be constructed with other Mband �lter banks
studied in ��	��
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Figure ���� �a�� Heisenberg boxes of a �band wavelet decomposition
of the multichirp signal shown in Figure ���� �b�� Decomposition of
the same signal in a pseudolocal cosine wavelet packet basis�
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Pseudo Local Cosine Bases Pseudo local cosine bases are con
structed with an admissible binary tree which is a full tree of depth
J � L � �� The leaves are the nodes indexed by � � k 
 �J�L and the
resulting wavelet packet basis is

f�k
J�t� �Jn�gn�Z� ��k��J�L� ���	��

If these wavelet packets are constructed with a conjugate mirror �lter of
size K� they have a support of size �K����J � Over positive frequencies�
the energy of ��k

j is concentrated in �k���J � �k������J �� The bandwidth
of all these wavelet packets is therefore approximately constant and
equal to ���J � The Heisenberg boxes of these wavelet packets have the
same size and divide the timefrequency plane in the rectangular grid
illustrated in Figure ��
�
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Figure ��
� Admissible tree and Heisenberg boxes of a wavelet packet
pseudo local cosine basis�

Shannon wavelet packets �k
J are written in ����
� as a dilated win

dow � modulated by cosine functions of frequency ��J�k������� In this
case� the uniform wavelet packet basis ���	�� is therefore a local cosine
basis� with windows of constant size� This result is not valid for wavelet
packets constructed with di�erent conjugate mirror �lters� Neverthe
less� the time and frequency resolution of uniform wavelet packet bases
���	�� remains constant� like that of local cosine bases constructed with
windows of constant size� Figure ����b� gives the decomposition coe�
cients of a signal in such a uniform wavelet packet basis�

Best Basis Applications of orthogonal bases often rely on their abil
ity to e�ciently approximate signals with only a few nonzero vectors�
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Choosing a wavelet packet basis that concentrates the signal energy
over a few coe�cients also reveals its timefrequency structures� Sec
tion 
�	�� describes a fast algorithm that searches for a �best� basis
that minimizes a Schur concave cost function� among all wavelet packet
bases� The wavelet packet basis of Figure ��� is calculated with this
best basis search�

����� Wavelet Packet Filter Banks

Wavelet packet coe�cients are computed with a �lter bank algorithm
that generalizes the fast discrete wavelet transform� This algorithm is a
straightforward iteration of the twochannel �lter bank decomposition
presented in Section ��	��� It was therefore used in signal processing
by Croisier� Esteban and Galand ����� when they introduced the �rst
family of perfect reconstruction �lters� The algorithm is presented here
from a wavelet packet point of view�

To any discrete signal input b�n� sampled at intervals N�� � �L�
like in ������� we associate f � VL whose decomposition coe�cients
aL�n� � hf� �L�ni satisfy

b�n� � N��� aL�n� � f�N��n� � ���	��

For any node �j� p� of the wavelet packet tree� we denote the wavelet
packet coe�cients

dpj �n� � hf�t�� �p
j �t� �jn�i�

At the root of the tree d�L�n� � aL�n� is computed from b�n� with ���	���

Wavelet Packet Decomposition We denote �x�n� � x��n� and by �x
the signal obtained by inserting a zero between each sample of x� The
following proposition generalizes the fast wavelet transform Theorem
����

Proposition 
�� At the decomposition

d�pj���k� � dpj �
�h��k� and d�p��

j�� �k� � dpj � �g��k�� ���	��

At the reconstruction

dpj �k� � �d�pj�� � h�k� � �d�p��
j�� � g�k�� ���	��
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The proof of these equations is identical to the proof of Theorem ����
The coe�cients of wavelet packet children d�pj�� and d�p��

j�� are obtained

by subsampling the convolutions of dpj with �h and �g� Iterating these
equations along the branches of a wavelet packet tree computes all
wavelet packet coe�cients� as illustrated by Figure �����a�� From the
wavelet packet coe�cients at the leaves fji � pig��i�I of an admissible
subtree� we recover d�L at the top of the tree by computing ���	�� for
each node inside the tree� as illustrated by Figure �����b��
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Figure ����� �a�� Wavelet packet �lterbank decomposition with suc
cessive �lterings and subsamplings� �b�� Reconstruction by inserting
zeros and �ltering the outputs�

Finite Signals If aL is a �nite signal of size ��L � N � we are facing
the same border convolution problems as in a fast discrete wavelet
transform� One approach explained in Section ����� is to periodize the
wavelet packet basis� The convolutions ���	�� are then replaced by
circular convolutions� To avoid introducing sharp transitions with the
periodization� one can also use the border �lters described in Section
����	� In either case� dpj has ��j samples� At any depth j � L of
the tree� the wavelet packet signals fdpjg��p��j�L include a total of N
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coe�cients� Since the maximum depth is log�N � there are at most
N log�N coe�cients in a full wavelet packet tree�

In a full wavelet packet tree of depth log�N � all coe�cients are
computed by iterating ���	�� for L � j 
 �� If h and g have K non
zero coe�cients� this requires KN log�N additions and multiplications�
This is quite spectacular since there are more than �N�� di�erent wavelet
packet bases included in this wavelet packet tree�

The computational complexity to recover aL � d�L from the wavelet
packet coe�cients of an admissible tree increases with the number of
inside nodes of the admissible tree� When the admissible tree is the full
binary tree of depth log�N � the number of operations is maximum and
equal to KN log�N multiplications and additions� If the admissible
subtree is a wavelet tree� we need fewer than �KN multiplications and
additions�

Discrete Wavelet Packet Bases of l��Z� The signal decomposition
in a conjugate mirror �lter bank can also be interpreted as an expansion
in discrete wavelet packet bases of l��Z�� This is proved with a result
similar to Theorem ����

Theorem 
�� Let f�j�m � �j�Ln�gn�Z be an orthonormal basis of a
space Uj� with j � L � N� De�ne

��j���m� �
��X

n���
h�n� �j�m��j�Ln� � ��j���m� �

��X
n���

g�n� �j�m��j�Ln��

���	��
The family �

��j���m� �j���Ln� � ��j���m� �j���Ln�
�
n�Z

is an orthonormal basis of Uj�

The proof is similar to the proof of Theorem ���� As in the contin
uous time case� we derive from this theorem a binary tree of discrete
wavelet packets� At the root of the discrete wavelet packet tree is the
space W�

L � l��Z� of discrete signals obtained with a sampling inter
val N�� � �L� It admits a canonical basis of Diracs f��

L�m � n� �
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��m� n�gn�Z� The signal aL�m� is speci�ed by its sample values in this
basis� One can verify that the convolutions and subsamplings ���	��
compute

dpj �n� � haL�m�� �p
j �m� �j�Ln�i�

where f�p
j �m��j�Ln�gn�Z is an orthogonal basis of a space Wp

j � These
discrete wavelet packets are recursively de�ned for any j � L and
� � p 
 �j�L by

��p
j���m� �

��X
n���

h�n��p
j �m��j�Ln� � ��p��

j�� �m� �
��X

n���
g�n��p

j �m��j�Ln��

���	
�

��� Image Wavelet Packets �

����� Wavelet Packet Quad�Tree

We construct wavelet packet bases of L��R�� whose elements are sep
arable products of wavelet packets �p

j �x� � �jn���
q
j �x� � �jn�� having

the same scale along x� and x�� These separable wavelet packet bases
are associated to quadtrees� and divide the twodimensional Fourier
plane ���� ��� into square regions of varying sizes� Separable wavelet
packet bases are extensions of separable wavelet bases�

If images approximated at the scale �L� to the root of the quad
tree we associate the approximation space V�

L � VL � VL � L��R��
de�ned in Section ������ Section ����� explains how to decompose VL

with a binary tree of wavelet packet spaces Wp
j � VL� which admit an

orthogonal basis f�p
j �t��jn�gn�Z� The twodimensional wavelet packet

quadtree is composed of separable wavelet packet spaces� Each node
of this quadtree is labeled by a scale �j and two integers � � p 
 �j�L

and � � q 
 �j�L� and corresponds to a separable space

Wp�q
j � Wp

j �Wq
j � ������

The resulting separable wavelet packet for x � �x�� x�� is

�p�q
j �x� � �p

j �x���
q
j �x�� �
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Theorem A�	 proves that an orthogonal basis of Wp�q
j is obtained with

a separable product of the wavelet packet bases of Wp
j and Wq

j � which
can be written n

�p�q
j �x� �jn�

o
n�Z�

�

At the root W���
L � V�

L and the wavelet packet is a twodimensional
scaling function

����
L �x� � ��L�x� � �L�x���L�x�� �

Onedimensional wavelet packet spaces satisfy

Wp
j � W�p

j�� �W�p��
j�� and Wq

j � W�q
j�� �W�q��

j�� �

Inserting these equations in ������ proves that Wp�q
j is the direct sum

of the four orthogonal subspaces

Wp�q
j � W�p��q

j�� �W�p����q
j �W�p��q��

j�� �W�p����q��
j�� � ������

These subspaces are located at the four children nodes in the quadtree�
as shown by Figure ����� We call admissible quad�tree any quadtree
whose nodes have either � or � children� Let fji� pi� qig��i�I be the
indices of the nodes at the leaves of an admissible quadtree� Applying
recursively the reconstruction sum ������ along the branches of this
quadtree gives an orthogonal decomposition of W���

L �

W���
L � �I

i��W
pi�qi
ji

�

The union of the corresponding wavelet packet basesn
�pi�qi
ji

�x� �jin�
o
�n��n���Z� � ��i�I

is therefore an orthonormal basis of V�
L � W���

L �

Number of Wavelet Packet Bases The number of di�erent bases
in a full wavelet packet quadtree of depth J is equal to the number
of admissible subtrees� The following proposition proves that there are
more than ��

J��
such bases�
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Figure ����� A wavelet packet quadtree for images is constructed re
cursively by decomposing each separable space Wp�q

j in four subspaces�

Proposition 
�� The number BJ of wavelet packet bases in a full
wavelet packet quad�tree of depth J satis�es

��
J�� � BJ � �

��

��
�J�� �

Proof �� This result is proved with induction
 as in the proof of Propo�
sition ���� The reader can verify that BJ satis	es an induction relation
similar to �������

BJ�� � B�
J � �� ������

Since B� � �
 B� � �
 and BJ�� 
 B�
J 
 we derive that BJ 
 ��

J��
�

Moreover
 for J 
 �

log�BJ�� � � log�BJ �log����B��J � � � log�BJ �
�

��
� �J �

�

��

J��X
j��

�j �

which implies that BJ 
 �
��

��
�J�� �

For an image of N� pixels� we shall see that the wavelet packet quad
tree has a depth at most log�N � The number of wavelet packet bases
thus satis�es

�
N�

� � Blog�N � �
��

��

N�

� � ����	�

Spatial and Frequency Localization The spatial and frequency lo
calization of twodimensional wavelet packets is derived from the time
frequency analysis performed in Section ������ If the conjugate mirror
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�lter h has K nonzero coe�cients� we proved that �p
j has a support

of size �j�K � �� hence �p
j �x���

q
j �x�� has a square support of width

�j�K � ���
We showed that the Fourier transform of �p

j has its energy mostly
concentrated in

���k � ����j���k��j�� � �k��j�� �k � ����j���

where k � G�p� is speci�ed by Proposition ���� The Fourier transform
of a twodimensional wavelet packet �p�q

j therefore has its energy mostly
concentrated in

�k��
�j�� �k� � ����j��� �k��

�j�� �k� � ����j��� ������

with k� � G�p� and k� � G�q�� and in the three squares that are sym
metric with respect to the two axes �� � � and �� � �� An admissible
wavelet packet quadtree decomposes the positive frequency quadrant
into squares of dyadic sizes� as illustrated in Figure ����� For example�
the leaves of a full wavelet packet quadtree of depth j � L de�ne a
wavelet packet basis that decomposes the positive frequency quadrant
into squares of constant width equal to ��j�� This wavelet packet ba
sis is similar to a twodimensional local cosine basis with windows of
constant size�

����� Separable Filter Banks

The decomposition coe�cients of an image in a separable wavelet packet
basis are computed with a separable extension of the �lter bank algo
rithm described in Section ������ Let b�n� be an input image whose
pixels have a distance �L � N��� We associate to b�n� a function
f � V�

L approximated at the scale �L� whose decomposition coe�cients
aL�n� � hf�x� � ��L�x� �Ln�i are de�ned like in ��������

b�n� � N aL�n� � f�N��n� �

The wavelet packet coe�cients

dp�qj �n� � hf� �p�q
j �x� �jn�i

characterize the orthogonal projection of f in Wp�q
j � At the root� d���L �

aL�
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Figure ����� A wavelet packet quadtree decomposes the positive fre
quency quadrant into squares of progressively smaller sizes as we go
down the tree�

Separable Filter Bank From the separability of wavelet packet
bases and the onedimensional convolution formula of Proposition ������
we derive that for any n � �n�� n��

d�p��qj�� �n� � dp�qj � �h�h��n� � d�p����q
j�� �n� � dp�qj � �g�h��n�� ������

d�p��q��
j�� �n� � dp�qj � �h�g��n� � d�p����q��

j�� �n� � dp�qj � �g�g��n�� ������

The coe�cients of a wavelet packet quadtree are thus computed by
iterating these equations along the branches of the quadtree� The
calculations are performed with separable convolutions along the rows
and columns of the image� illustrated in Figure ���	�

At the reconstruction

dp�qj �n� � �d�p��qj�� � hh�n� � �d�p����q
j�� � gh�n�

� �d�p��q��
j�� � hg�n� � �d�p����q��

j�� � gg�n�� ������

The image aL � d���L is reconstructed from wavelet packet coe�cients
stored at the leaves of any admissible quadtree by repeating the partial
reconstruction ������ in the inside nodes of this quadtree�

Finite Images If the image aL has N� � ���L pixels� the onedimen
sional convolution border problems are solved with one of the two ap
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Figure ���	� �a�� Wavelet packet decomposition implementing ������
and ������ with onedimensional convolutions along the rows and
columns of dp�q� � �b�� Wavelet packet reconstruction implementing
�������
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proaches described in Sections ����� and ����	� Each wavelet packet
image dp�qj includes ���j pixels� At the depth j � L� there are N�

wavelet packet coe�cients in fdp�qj g��p�q��j�L� A quadtree of maxi
mum depth log�N thus includes N� log�N coe�cients� If h and g have
K nonzero coe�cients� the onedimensional convolutions that imple
ment ������ and ������ require �K���j multiplications and additions�
All wavelet packet coe�cients at the depth j���L are thus computed
from wavelet packet coe�cients located at the depth j�L with �KN�

calculations� The N� log�N wavelet packet coe�cients of a full tree of
depth log�N are therefore obtained with �KN� log�N multiplications
and additions� The numerical complexity of reconstructing aL from
a wavelet packet basis depends on the number of inside nodes of the
corresponding quadtree� The worst case is a reconstruction from the
leaves of a full quadtree of depth log�N � which requires �KN� log�N
multiplications and additions�

��� Block Transforms �

Wavelet packet bases are designed by dividing the frequency axis in in
tervals of varying sizes� These bases are thus particularly well adapted
to decomposing signals that have di�erent behavior in di�erent fre
quency intervals� If f has properties that vary in time� it is then more
appropriate to decompose f in a block basis that segments the time
axis in intervals whose sizes are adapted to the signal structures� The
next section explains how to generate a block basis of L��R� from any
basis of L���� ��� The cosine bases described in Sections ��	�� and ��	�	
de�ne particularly interesting block bases�

����� Block Bases

Block orthonormal bases are obtained by dividing the time axis in con
secutive intervals �ap� ap��� with

lim
p���

ap � �� and lim
p���

ap � ���



���� BLOCK TRANSFORMS ���

The size lp � ap�� � ap of each interval is arbitrary� Let g � �	���
� An
interval is covered by the dilated rectangular window

gp�t� � �	ap�ap��
�t� � g

�
t� ap
lp

�
� ������

The following theorem constructs a block orthogonal basis of L��R�
from a single orthonormal basis of L���� ���

Theorem 
�� If fekgk�Z is an orthonormal basis of L���� �� then�
gp�k�t� � gp�t�

�p
lp
ek

� t� ap
lp

�
�p�k��Z

����
�

is a block orthonormal basis of L��R��

Proof �� One can verify that the dilated and translated family�
�p
lp
ek

� t� ap
lp

��
k�Z

������

is an orthonormal basis of L�ap� ap���� If p �� q then hgp�k� gq�ki � � since
their supports do not overlap� The family ������ is thus orthonormal� To
expand a signal f in this family
 it is decomposed as a sum of separate
blocks

f�t� �
��X

p���
f�t� gp�t��

and each block f�t�gp�t� is decomposed in the basis �������

Block Fourier Basis A block basis is constructed with the Fourier
basis of L���� ��� n

ek�t� � exp�i�k�t�
o
k�Z

�

The time support of each block Fourier vector gp�k is �ap� ap���� of size
lp� The Fourier transform of g � �	���
 is

�g��� �
sin�����

���
exp

�
i�

�

�
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and

�gp�k��� �
p
lp �g�lp� � �k�� exp

��i��kap
lp

�
�

It is centered at �k� l��p and has a slow asymptotic decay proportional
to l��p j�j��� Because of this bad frequency localization� even though
a signal f is smooth� its decomposition in a block Fourier basis may
include large high frequency coe�cients� This can also be interpreted
as an e�ect of periodization�

Discrete Block Bases For all p � Z� we suppose that ap � Z�
Discrete block bases are built with discrete rectangular windows whose
supports are �ap� ap�� � ��

gp�n� � �	ap�ap����
�n��

Since dilations are not de�ned in a discrete framework� we generally
cannot derive bases of intervals of varying sizes from a single basis� The
following theorem thus supposes that we can construct an orthonormal
basis of C l for any l 	 �� The proof is straightforward�

Theorem 
�� Suppose that fek�lg��k�l is an orthogonal basis of C l � for
any l 	 �� The familyn

gp�k�n� � gp�n� ek�lp�n� ap�
o
��k�lp�p�Z

������

is a block orthonormal basis of l��Z��

A discrete block basis is constructed with discrete Fourier bases�
ek�l�n� �

�p
l

exp

�
i��kn

l

��
��k�l

�

The resulting block Fourier vectors gp�k have sharp transitions at the
window border� and are thus not well localized in frequency� As in the
continuous case� the decomposition of smooth signals f may produce
large amplitude high frequency coe�cients because of border e�ects�
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Block Bases of Images General block bases of images are con
structed by partitioning the plane R� into rectangles f�ap� bp���cp� dp�gp�Z
of arbitrary length lp � bp� ap and width wp � dp� cp� Let fekgk�Z be
an orthonormal basis of L���� �� and g � �	���
� We denote

gp�k�j�x� y� � g
�x� ap

lp

�
gq

�y � cp
wp

� �p
lpwp

ek

�x� ap
lp

�
ej

�y � cp
wp

�
�

The family fgp�k�jg�k�j��Z� is an orthonormal basis of L���ap� bp���cp� dp���
and hence fgp�k�jg�p�k�j��Z� is an orthonormal basis of L��R���

For discrete images� we de�ne discrete windows that cover each
rectangle

gp � �	ap�bp��
�	cp�dp��
�

If fek�lg��k�l is an orthogonal basis of C l for any l 	 �� thenn
gp�k�j�n�� n�� � gp�n�� n�� ek�lp�n� � ap� ej�wp�n� � cp�

o
�k�j�p��Z�

�

is a block basis of l��Z���

����� Cosine Bases

If f � L���� �� and f��� 	� f���� even though f might be a smooth
function� the Fourier coe�cients

hf�u�� ei�k�ui �

Z �

�

f�u� e�i�k�u du

have a relatively large amplitude at high frequencies �k�� Indeed� the
Fourier series expansion

f�t� �
��X

k���
hf�u�� ei�k�ui ei�k�t

is a function of period �� equal to f over ��� ��� and which is therefore
discontinuous if f��� 	� f���� This shows that the restriction of a
smooth function to an interval generates large Fourier coe�cients� As
a consequence� block Fourier bases are rarely used� A cosine I basis
reduces this border e�ect by restoring a periodic extension �f of f which
is continuous if f is continuous� High frequency cosine I coe�cients thus
have a smaller amplitude than Fourier coe�cients�
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f(t)

f(t)
~

0 1 2-1

Figure ����� The function �f�t� is an extension of f�t�� it is symmetric
about � and of period ��

Cosine I Basis We de�ne �f to be the function of period � that is
symmetric about � and equal to f over ��� ���

�f�t� �

�
f�t� for t � ��� ��
f��t� for t � ���� ��

������

If f is continuous over ��� �� then �f is continuous over R� as shown by
Figure ����� However� if f has a nonzero right derivative at � or left
derivative at �� then �f is nondi�erentiable at integer points�

The Fourier expansion of �f over ��� �� can be written as a sum of
sine and cosine terms�

�f�t� �
��X
k��

a�k� cos

�
��kt

�

�
�

��X
k��

b�k� sin

�
��kt

�

�
�

The sine coe�cients b�k� are zero because �f is even� Since f�t� � �f�t�
over ��� ��� this proves that any f � L���� �� can be written as a linear
combination of the cosines fcos�k�t�gk�N� One can verify that this
family is orthogonal over ��� ��� It is therefore an orthogonal basis of
L���� ��� as stated by the following theorem�

Theorem 
�� �Cosine I� The familyn
�k
p

� cos��kt�
o
k�N

with �k �

�
����� if k � �
� if k 	� �

is an orthonormal basis of L���� ���

Block Cosine Basis Let us divide the real line with square windows
gp � �	ap�ap��
� Theorem ��	 proves that�

gp�k�t� � gp�t�

s
�

lp
�k cos

�
�k

t� ap
lp

�
k�N�p�Z

�
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is a block basis of L��R�� The decomposition coe�cients of a smooth
function have a faster decay at high frequencies in a block cosine basis
than in a block Fourier basis� because cosine bases correspond to a
smoother signal extension beyond the intervals �ap� ap����

Cosine IV Basis Other cosine bases are constructed from Fourier
series� with di�erent extensions of f beyond ��� ��� The cosine IV basis
appears in fast numerical computations of cosine I coe�cients� It is also
used to construct local cosine bases with smooth windows in Section
������

Any f � L���� �� is extended into a function �f of period �� which is
symmetric about � and antisymmetric about � and ���

�f�t� �

����
���

f�t� if t � ��� ��
f��t� if t � ���� ��

�f��� t� if t � ��� ��
�f�� � t� if t � �������

If f��� 	� �� the antisymmetry at � creates a function �f that is discon
tinuous at f��n � �� for any n � Z� as shown by Figure ����� This
extension is therefore less regular than the cosine I extension �������

Since �f is � periodic� it can be decomposed as a sum of sines and
cosines of period ��

�f�t� �
��X
k��

a�k� cos
���kt

�

�
�

��X
k��

b�k� sin
���kt

�

�
�

The symmetry about � implies that

b�k� �
�

�

Z �

��
�f�t� sin

���kt

�

�
dt � ��

For even frequencies� the antisymmetry about � and �� yields

a��k� �
�

�

Z �

��
�f�t� cos

�����k�t

�

�
dt � ��

The only nonzero components are thus cosines of odd frequencies�

�f�t� �
��X
k��

a��k � �� cos

�
��k � ����t

�

�
� ����	�
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Since f�t� � �f�t� over ��� ��� this proves that any f � L���� �� is de
composed as a sum of such cosine functions� One can verify that the
restriction of these cosine functions to ��� �� is orthogonal in L���� ���
which implies the following theorem�

f(t)
~ f(t)

-2 0 21-1

Figure ����� A cosine IV extends f�t� into a signal �f�t� of period �
which is symmetric with respect to � and antisymmetric with respect
to ��

Theorem 
�	 �Cosine IV� The family

�p
� cos

h�
k �

�

�

�
�t
i�

k�N

is an orthonormal basis of L���� ���

The cosine transform IV is not used in block transforms because
it has the same drawbacks as a block Fourier basis� Block Cosine IV
coe�cients of a smooth f have a slow decay at high frequencies because
such a decomposition corresponds to a discontinuous extension of f
beyond each block� Section ����� explains how to avoid this issue with
smooth windows�

����� Discrete Cosine Bases

Discrete cosine bases are derived from the discrete Fourier basis with the
same approach as in the continuous time case� To simplify notations�
the sampling distance is normalized to �� If the sampling distance was
originally N�� then the frequency indexes that appear in this section
must be multiplied by N �



���� BLOCK TRANSFORMS ���

Discrete Cosine I A signal f �n� de�ned for � � n 
 N is extended
by symmetry with respect to ���� into a signal �f �n� of size �N �

�f �n� �

�
f �n� for � � n 
 N
f ��n� �� for �N � n � ��

� ������

The �N discrete Fourier transform of �f can be written as a sum of sine
and cosine terms�

�f �n� �
N��X
k��

a�k� cos

�
k�

N

�
n �

�

�

��
�

N��X
k��

b�k� sin

�
k�

N

�
n �

�

�

��
�

Since �f is symmetric about ����� necessarily b�k� � � for � � k 
 N �
Moreover f �n� � �f �n� for � � n 
 N � so any signal f � C N can be
written as a sum of these cosine functions� The reader can also verify
that these discrete cosine signals are orthogonal in C

N � We thus obtain
the following theorem�

Theorem 
�� �Cosine I� The family�
�k

r
�

N
cos
hk�
N

�
n �

�

�

�i
��k�N

with �k �

�
����� if k � �
� otherwise

is an orthonormal basis of C N �

This theorem proves that any f � C N can be decomposed into

f �n� �
�

N

N��X
k��

�fI �k��k cos

�
k�

N

�
n �

�

�

��
� ������

where

�fI �k� �

�
f �n�� �k cos

�
k�

N

�
n �

�

�

���
� �k

N��X
n��

f �n� cos

�
k�

N

�
n �

�

�

��
�

������

is the discrete cosine transform I �DCTI� of f � The next section de
scribes a fast discrete cosine transform which computes �fI withO�N log�N�
operations�
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Discrete Block Cosine Transform Let us divide the integer set Z
with discrete windows gp�n� � �	ap�ap��
�n�� with ap � Z� Theorem ���
proves that the corresponding block basis�

gp�k�n� � gp�n��k

r
�

l p
cos

�
k�

lp

�
n �

�

�
� ap

���
��k�N�p�Z

is an orthonormal basis of l��Z�� Over each block of size lp � ap���ap�
the fast DCTI algorithm computes all coe�cients with O�lp log� lp� op
erations� Section �����	 describes the JPEG image compression stan
dard� which decomposes images in a separable block cosine basis� A
block cosine basis is used as opposed to a block Fourier basis because
it yields smaller amplitude high frequency coe�cients� which improves
the coding performance�

Discrete Cosine IV To construct a discrete cosine IV basis� a signal
f of N samples is extended into a signal �f of period �N � which is
symmetric with respect to ���� and antisymmetric with respect to
N � ��� and �N � ���� As in ����	�� the decomposition of �f over
a family of sines and cosines of period �N has no sine terms and no
cosine terms of even frequency� Since �f �n� � f �n�� for � � n 
 N � we
derive that f can also be written as a linear expansion of these odd
frequency cosines� which are orthogonal in C N � We thus obtain the
following theorem�

Theorem 
�
 �Cosine IV� The family�r
�

N
cos
h �
N

�
k �

�

�

��
n �

�

�

�i
��k�N

is an orthonormal basis of C N �

This theorem proves that any f � C N can be decomposed into

f �n� �
�

N

N��X
k��

�fIV �k� cos

�
�

N

�
k �

�

�

��
n �

�

�

��
� ������
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where

�fIV �k� �
N��X
n��

f �n� cos

�
�

N

�
k �

�

�

��
n �

�

�

��
������

is the discrete cosine transform IV �DCTIV� of f �

����� Fast Discrete Cosine Transforms �

The discrete cosine transform IV �DCTIV� of a signal of size N is
related to the discrete Fourier transform �DFT� of a complex signal of
size N�� with a formula introduced by Duhamel� Mahieux� and Petit
����� ��� By computing this DFT with the fast Fourier transform �FFT�
described in Section 	�	�	� we need O�N log�N� operations to compute
the DCTIV� The DCTI coe�cients are then calculated through an
induction relation with the DCTIV� due to Wang �	����

Fast DCT�IV To clarify the relation between a DCTIV and a DFT�
we split f �n� in two halfsize signals of odd and even indices�

b�n� � f ��n��

c�n� � f �N � �� �n��

The DCTIV ������ is rewritten

�fIV �k� �

N����X
n��

b�n� cos

��
�n �

�

�

��
k �

�

�

� �
N

�
�

N����X
n��

c�n� cos

��
N � �� �n �

�

�

��
k �

�

�

� �
N

�

�

N����X
n��

b�n� cos

��
n �

�

�

��
k �

�

�

���

N

�
�

����k
N����X
n��

c�n� sin

��
n �

�

�

��
k �

�

�

���

N

�
�
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The even frequency indices can thus be expressed as a real part

�fIV ��k� �

Real
n

exp
��i�k

N

	PN����
n�� �b�n� � ic�n�� exp

��i�n � �
�
� �
N

	
exp

h
�i��kn
N��

io
�

����
�

whereas the odd coe�cients correspond to an imaginary part

�fIV �N � �k � �� �

�Im
n

exp
��i�k

N

	PN����
n�� �b�n� � ic�n�� exp

��i�n � �
�
� �
N

	
exp

h
�i��kn
N��

io
�

������

For � � n 
 N��� we denote

g�n� � �b�n� � i c�n�� exp

�
�i
�
n �

�

�

� �
N

�
�

The DFT �g�k� of g�n� is computed with an FFT of size N��� Equations
����
� and ������ prove that

�fIV ��k� � Real

�
exp

��i�k
N

�
�g�k�

�
�

and

�fIV �N � �k � �� � �Im

�
exp

��i�k
N

�
�g�k�

�
�

The DCTIV coe�cients �fIV �k� are thus obtained with one FFT of
size N�� plus O�N� operations� which makes a total of O�N log�N�
operations� To normalize the DCTIV� the resulting coe�cients must

be multiplied by
q

�
N

� An e�cient implementation of the DCTIV with

a splitradix FFT requires ����

�DCT�IV �N� �
N

�
log�N � N� ������

real multiplications and

�DCT�IV �N� �
	N

�
log�N ������
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additions�
The inverse DCTIV of �fIV is given by ������� Up to the propor

tionality constant ��N � this sum is the same as ������� where �fIV and
f are interchanged� This proves that the inverse DCTIV is computed
with the same fast algorithm as the forward DCTIV�

Fast DCT�I A DCTI is calculated with an induction relation that
involves the DCTIV� Regrouping the terms f �n� and f �N � �� n� of
a DCTI ������ yields

�fI ��k� � �k

N����X
n��

�f �n� � f �N � �� n�� cos

�
� k

N��

�
n �

�

�

��
� ����	�

�fI ��k � �� �

N����X
n��

�f �n�� f �N � �� n�� cos

�
� �k � ����

N��

�
n �

�

�

��
�������

The even index coe�cients of the DCTI are thus equal to the DCTI
of the signal f �n� � f �N � � � n� of length N��� The odd coe�cients
are equal to the DCTIV of the signal f �n� � f �N � � � n� of length
N��� The number of multiplications of a DCTI is thus related to the
number of multiplications of a DCTIV by the induction relation

�DCT�I�N� � �DCT�I�N��� � �DCT�IV �N���� ������

while the number of additions is

�DCT�I�N� � �DCT�I�N��� � �DCT�IV �N��� � N� ������

Since the number of multiplications and additions of a DCTIV is
O�N log�N� this induction relation proves that the number of mul
tiplications and additions of this algorithm is also O�N log�N��

If the DCTIV is implemented with a splitradix FFT� inserting
������ and ������ in the recurrence equations ������ and ������� we
derive that the number of multiplications and additions to compute a
DCTI of size N is

�DCT�I�N� �
N

�
log�N � �� ������
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and

�DCT�I�N� �
	N

�
log�N �N � �� ������

The inverse DCTI is computed with a similar recursive algorithm�
Applied to �fI � it is obtained by computing the inverse DCTIV of the
odd index coe�cients �fI ��k � �� with ������ and an inverse DCTI of a
size N�� applied to the even coe�cients �fI ��k� with ����	�� From the
values f �n� � f �N � ��n� and f �n�� f �N � ��n�� we recover f �n� and
f �N � �� n�� The inverse DCTIV is identical to the forward DCTIV
up to a multiplicative constant� The inverse DCTI thus requires the
same number of operations as the forward DCTI�

��� Lapped Orthogonal Transforms �

Cosine and Fourier block bases are computed with discontinuous rect
angular windows that divide the real line in disjoint intervals� Multi
plying a signal with a rectangular window creates discontinuities that
produce large amplitude coe�cients at high frequencies� To avoid these
discontinuity artifacts� it is necessary to use smooth windows�

The BalianLow Theorem ��� proves that for any u� and ��� there
exists no di�erentiable window g of compact support such thatn

g�t� nu�� exp�ik��t�
o
�n�k��Z�

is an orthonormal basis of L��R�� This negative result discouraged
any research in this direction� until Malvar discovered in discrete signal
processing that one could create orthogonal bases with smooth win
dows modulated by a cosine IV basis ����� ��	�� This result was inde
pendently rediscovered for continuous time functions by Coifman and
Meyer ��	��� with a di�erent approach that we shall follow here� The
roots of these new orthogonal bases are lapped projectors� which split
signals in orthogonal components with overlapping supports ����� Sec
tion ����� introduces these lapped projectors� the construction of con
tinuous time and discrete lapped orthogonal bases is explained in the
following sections� The particular case of local cosine bases is studied
in more detail�
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����� Lapped Projectors

Block transforms compute the restriction of f to consecutive inter
vals �ap� ap��� and decompose this restriction in an orthogonal basis of
�ap� ap���� Formally� the restriction of f to �ap� ap��� is an orthogonal
projection on the space Wp of functions with a support included in
�ap� ap���� To avoid the discontinuities introduced by this projection�
we introduce new orthogonal projectors that perform a smooth defor
mation of f �

Projectors on Half Lines Let us �rst construct two orthogonal pro
jectors that decompose any f � L��R� in two orthogonal components
P�f and P�f whose supports are respectively ������� and ���� ���
For this purpose we consider a monotone increasing pro�le function �
such that

��t� �

�
� if t 
 ��
� if t 	 �

����
�

and
t � ���� �� � ���t� � ����t� � �� ������

A naive de�nition

P�f�t� � ���t� f�t� and P�f�t� � ����t� f�t�

satis�es the support conditions but does not de�ne orthogonal func
tions� Since the supports of P�f�t� and P�f�t� overlap only on ���� ���
the orthogonality is obtained by creating functions having a di�erent
symmetry with respect to � on ���� ���

P�f�t� � ��t� ���t� f�t� � ���t� f��t�� � ��t� p�t� � ������

and

P�f�t� � ���t� ����t� f�t�� ��t� f��t�� � ���t� q�t� � ������

The functions p�t� and q�t� are respectively even and odd� and since
��t����t� is even it follows that

hP�f� P�fi �

Z �

��
��t� ���t� p�t� q��t� dt � �� ����	�
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Clearly P�f belongs to the space W� of functions f � L��R� such
that there exists p�t� � p��t� with

f�t� �

�
� if t 
 ��
��t� p�t� if t � ���� ��

�

Similarly P�f is in the space W� composed of f � L��R� such that
there exists q�t� � �q��t� with

f�t� �

�
� if t 	 �
���t� q�t� if t � ���� ��

�

Functions in W� and W� may have an arbitrary behavior on ������
and ������� respectively � The following theorem characterizes P�

and P�� We denote by Id the identity operator�

Theorem 
� �Coifman� Meyer� The operators P� and P� are or�
thogonal projectors respectively on W� and W�� The spaces W� and
W� are orthogonal and

P� � P� � Id� ������

Proof �� To verify that P� is a projector we show that any f � W�

satis	es P�f � f � If t 	 �� then P�f�t� � f�t� � � and if t � � then
P�f�t� � f�t� � �� If t � ��� �� then f�t� � ��t� p��t� and inserting
������ yields

P�f�t� � ��t� ���t� p��t� � ����t� p���t�� � ��t� p��t��

because p��t� is even and ��t� satis	es ������� The projector P� is proved
to be orthogonal by showing that it is self�adjoint�

hP�f� gi �

Z �

��
���t� f�t� g��t� dt�

Z �

��
��t����t� f��t� g��t� dt�Z ��

�
f�t� g��t� dt�

A change of variable t� � �t in the second integral veri	es that this for�
mula is symmetric in f and g and hence hP�f� gi � hf� P�gi� Identical
derivations prove that P� is an orthogonal projector on W��

The orthogonality of W� and W� is proved in ������� To verify
������
 for f � L��R� we compute

P�f�t� � P�f�t� � f�t� ���t� � ����t�� � f�t�� ������
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0 a

β(     )

a+

ηβ(     )a-t
η

t-a

1

η η ta-

Figure ����� A multiplication with �� t�a



� and ��a�t



� restricts the sup

port of functions to �a� ����� and ���� a � ��

These halfline projectors are generalized by decomposing signals in two
orthogonal components whose supports are respectively �a������ and
���� a���� For this purpose� we scale and translate the pro�le function
�� t�a



�� so that it increases from � to � on �a��� a���� as illustrated in

Figure ����� The symmetry with respect to �� which transforms f�t� in
f��t�� becomes a symmetry with respect to a� which transforms f�t�
in f��a� t�� The resulting projectors are

P�
a�
f�t� � �

�t� a

�

� �
�
�t� a

�

�
f�t� � �

�a� t

�

�
f��a� t�

�
������

and

P�
a�
f�t� � �

�a� t

�

� �
�
�a� t

�

�
f�t�� �

�t� a

�

�
f��a� t�

�
� ������

A straightforward extension of Theorem ��
 proves that P�
a�
 is an or

thogonal projector on the space W�
a�
 of functions f � L��R� such that

there exists p�t� � p��a� t� with

f�t� �

�
� if t 
 a� �
������t� a�� p�t� if t � �a� �� a � ��

� ������

Similarly P�
a�
 is an orthogonal projector on the space W�

a�
 composed
of f � L��R� such that there exists q�t� � �q��a� t� with

f�t� �

�
� if t 
 ��
������a� t�� q�t� if t � �a� �� a� ��

� ������

The spaces W�
a�
 and W�

a�
 are orthogonal and

P�
a�
 � P�

a�
 � Id� ����
�



���CHAPTER �� WAVELET PACKET AND LOCAL COSINE BASES

Projectors on Intervals A lapped projector splits a signal in two
orthogonal components that overlap on �a � �� a � ��� Repeating such
projections at di�erent locations performs a signal decomposition into
orthogonal pieces whose supports overlap� Let us divide the time axis
in overlapping intervals�

Ip � �ap � �p� ap�� � �p���

with
lim

p���
ap � �� and lim

p���
ap � ��� ������

To ensure that Ip�� and Ip�� do not intersect for any p � Z� we impose
that

ap�� � �p�� � ap � �p�

and hence
lp � ap�� � ap � �p�� � �p� ������

The support of f is restricted to Ip by the operator

Pp � P�
ap�
p P

�
ap����p��

� ������

Since P�
ap�
p and P�

ap����p��
are orthogonal projections on W�

ap�
p and

W�
ap����p��

� it follows that Pp is an orthogonal projector on

Wp � W�
ap�
p � W�

ap����p��
� ����	�

Let us divide Ip in two overlapping intervals Op� Op�� and a central
interval Cp�

Ip � �ap � �p� ap�� � �p��� � Op � Cp � Op�� ������

with

Op � �ap � �p� ap � �p� and Cp � �ap � �p� ap�� � �p����

The space Wp is characterized by introducing a window gp whose sup
port is Ip� and which has a raising pro�le on Op and a decaying pro�le
on Op���

gp�t� �

����
���

� if t �� Ip
�����p �t� ap�� if t � Op

� if t � Cp

�����p���ap�� � t�� if t � Op��

������
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This window is illustrated in Figure ����� It follows from ������� ������
and ����	� that Wp is the space of functions f � L��R� that can be
written

f�t� � gp�t� h�t� with h�t� �

�
h��ap � t� if t � Op

�h��ap�� � t� if t � Op��
������

p
g    (t)

p-1
g    (t)

p+1

−η
p

ap
+ηp+1

ap+1+η
p

ap

g  (t)

−ηap+1 p+1

Figure ����� Each window gp has a support �ap � �p� ap�� � �p��� with
an increasing pro�le and a decreasing pro�le over �ap� �p� ap � �p� and
�ap�� � �p��� ap�� � �p����

The function h is symmetric with respect to ap and antisymmetric
with respect to ap��� with an arbitrary behavior in Cp� The projector
Pp on Wp de�ned in ������ can be rewritten

Ppf�t� �

���
��
P�
ap�
pf�t� if t � Op

f�t� if t � Cp

P�
ap���
p��

f�t� if t � Op��

� gp�t� hp�t�� ������

where hp�t� is calculated by inserting ������ and �������

hp�t� �

��
�
gp�t� f�t� � gp��ap � t� f��ap � t� if t � Op

f�t� if t � Cp

gp�t� f�t�� gp��ap�� � t� f��ap�� � t� if t � Op��

� ������

The following proposition derives a decomposition of the identity�

Proposition 
�	 The operator Pp is an orthogonal projector on Wp�
If p 	� q then Wp is orthogonal to Wq and

��X
p���

Pp � Id� ����
�
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Proof �� If p �� q and jp � qj � � then functions in Wp and Wq have
supports that do not overlap so these spaces are orthogonal� If q � p��
then

Wp �W�
ap�
p � W�

ap����p��
and Wp�� �W�

ap���
p�� � W�
ap���
p�� �

Since W�
ap����p��

is orthogonal to W�
ap���
p�� it follows that Wp is or�

thogonal to Wp��� To prove ������
 we 	rst verify that

Pp � Pp�� � P�
ap�
p P

�
ap���
p�� � ������

This is shown by decomposing Pp and Pp�� with ������ and inserting

P�
ap���
p�� � P�ap���
p�� � Id�

As a consequence
mX
p�n

Pp � P�
an�
n P

�
am�
m � ������

For any f � L��R�


kf � P�
an�
n P

�
am�
mfk� 


Z an�
n

��
jf�t�j�dt�

Z ��

am�
m
jf�t�j�dt

and inserting ������ proves that

lim
n���
m���

kf � P�
an�
n P

�
am�
mfk� � ��

The summation ������ implies �������

Discretized Projectors Projectors Pp that restrict the signal sup
port to �ap��p� ap����p��� are easily extended for discrete signals� Sup
pose that fapgp�Z are half integers� which means that ap���� � Z� The
windows gp�t� de�ned in ������ are uniformly sampled gp�n� � gp�n��
As in ������ we de�ne the space Wp � l��Z� of discrete signals

f �n� � gp�n� h�n� with h�n� �

�
h��ap � n� if n � Op

�h��ap�� � n� if n � Op��
� ���
��

The orthogonal projector Pp on Wp is de�ned by an expression identical
to ������������

Ppf �n� � gp�n� hp�n� ���
	�
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with

hp�n� �

��
�
gp�n� f �n� � gp��ap � n� f ��ap � n� if n � Op

f �n� if n � Cp

gp�n� f �n�� gp��ap�� � n� f ��ap�� � n� if n � Op��

� ���
��

Finally we prove as in Proposition ��� that if p 	� q� then Wp is orthog
onal to Wq and

��X
p���

Pp � Id� ���
��

����� Lapped Orthogonal Bases

An orthogonal basis of L��R� is de�ned from a basis fekgk�N of L���� ��
by multiplying a translation and dilation of each vector with a smooth
window gp de�ned in ������� A local cosine basis of L��R� is derived
from a cosineIV basis of L���� ���

The support of gp is �ap � �p� ap�� � �p���� with lp � ap�� � ap� as
illustrated in Figure ����� The design of these windows also implies
symmetry and quadrature properties on overlapping intervals�

gp�t� � gp����ap�� � t� for t � �ap�� � �p��� ap�� � �p��� ���
��

and

g�p�t� � g�p���t� � � for t � �ap�� � �p��� ap�� � �p����

Each ek � L���� �� is extended over R into a function �ek that is
symmetric with respect to � and antisymmetric with respect to �� The
resulting �ek has period � and is de�ned over ���� �� by

�ek�t� �

����
���

ek�t� if t � ��� ��
ek��t� if t � ���� ��

�ek��� t� if t � ��� ��
�ek�� � t� if t � �������

�

The following theorem derives an orthonormal basis of L��R��
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Theorem 
��� �Coifman� Malvar� Meyer� Let fekgk�N be an or�
thonormal basis of L���� ��� The family�

gp�k�t� � gp�t�
�p
lp

�ek

�
t� ap
lp

�
k�N � p�Z

���
��

is an orthonormal basis of L��R��

Proof �� Since �ek�l
��
p �t � ap�� is symmetric with respect to ap and an�

tisymmetric with respect to ap�� it follows from ������ that gp�k � Wp

for all k � N� Proposition ��� proves that the spaces Wp and Wq are
orthogonal for p �� q and that L��R� � ���

p���W
p� To prove that ������

is an orthonormal basis of L��R� we thus need to show that�
gp�k�t� � gp�t�

�p
lp

�ek

�
t� ap
lp

��
k�N�p�Z

������

is an orthonormal basis of Wp�

Let us prove 	rst that any f � Wp can be decomposed over this
family� Such a function can be written f�t� � gp�t�h�t� where the re�
striction of h to ap� ap��� is arbitrary
 and h is respectively symmetric
and antisymmetric with respect to ap and ap��� Since f�ekgk�N is an
orthonormal basis of L��� ��
 clearly�

�p
lp

�ek

� t� ap
lp

��
k�N

������

is an orthonormal basis of L�ap� ap���� The restriction of h to ap� ap���
can therefore be decomposed in this basis� This decomposition remains

valid for all t � ap��p� ap����p��� since h�t� and the l
����
p �ek�l

��
p �t�ap��

have the same symmetry with respect to ap and ap��� Therefore f�t� �
h�t�gp�t� can be decomposed over the family ������� The following lemma
	nishes the proof by showing that the orthogonality of functions in ������
is a consequence of the orthogonality of ������ in L�ap� ap����

Lemma ��� If fb�t� � hb�t� gp�t� � Wp and fc�t� � hc�t� gp�t� � Wp�

then

hfb� fci �
Z ap���
p��

ap�
p
fb�t� f

�
c �t� dt �

Z ap��

ap

hb�t�h
�
c�t� dt� �������
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Let us evaluate

hfb� fci �
Z ap���
p��

ap�
p
hb�t�h

�
c�t� g

�
p�t� dt� �������

We know that hb�t� and hc�t� are symmetric with respect to ap soZ ap�
p

ap�
p
hb�t�h

�
c�t� g

�
p�t� dt �

Z ap�
p

ap

hb�t�h
�
c�t� g

�
p�t� � g�p��ap � t�� dt�

Since g�p�t� � g�p��ap�� � t� � � over this interval
 we obtainZ ap�
p

ap�
p
hb�t�h

�
c�t� g

�
p�t� dt �

Z ap�
p

ap

hb�t�hc�t� dt� �������

The functions hb�t� and hc�t� are antisymmetric with respect to ap�� so
hb�t�h

�
c�t� is symmetric about ap��� We thus prove similarly thatZ ap���
p��

ap���
p��
hb�t�h

�
c�t� g

�
p���t� dt �

Z ap��

ap���
p��
hb�t�h

�
c�t� dt� �������

Since gp�t� � � for t � ap � �p� ap�� � �p���
 inserting ������� and
������� in ������� proves the lemma property ��������

Theorem ���� is similar to the block basis Theorem ��	 but it has the
advantage of using smooth windows gp as opposed to the rectangular
windows that are indicator functions of �ap� ap���� It yields smooth
functions gp�k only if the extension �ek of ek is a smooth function� This
is the case for the cosine IV basis fek�t� �

p
� cos��k � �����t�gk�N of

L���� �� de�ned in Theorem ���� Indeed cos��k � �����t� has a natural
symmetric and antisymmetric extension with respect to � and � over
R� The following corollary derives a local cosine basis�

Corollary 
�� The family of local cosine functions�
gp�k�t� � gp�t�

s
�

lp
cos

�
�
�
k �

�

�

� t� ap
lp

�
k�N � p�Z

�������

is an orthonormal basis of L��R��
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Cosine�Sine I Basis Other bases can be constructed with functions
having a di�erent symmetry� To maintain the orthogonality of the win
dowed basis� we must ensure that consecutive windows gp and gp�� are
multiplied by functions that have an opposite symmetry with respect
to ap��� For example� we can multiply g�p with functions that are sym
metric with respect to both ends a�p and a�p��� and multiply g�p�� with
functions that are antisymmetric with respect to a�p�� and a�p��� Such
bases can be constructed with the cosine I basis fp��k cos��kt�gk�Z
de�ned in Theorem ���� with �� � ����� and �k � � for k 	� �� and
with the sine I family fp� sin��kt�gk�N� � which is also an orthonormal
basis of L���� ��� The reader can verify that if

g�p�k�t� � g�p�t�

s
�

l�p
�k cos

�
�k

t� a�p
l�p

�

g�p���k�t� � g�p���t�

s
�

l�p��
sin

�
�k

t� a�p��

l�p��

�

then fgp�kgk�N�p�Z is an orthonormal basis of L��R��

Lapped Transforms in Frequency Lapped orthogonal projectors
can also divide the frequency axis in separate overlapping intervals�
This is done by decomposing the Fourier transform �f��� of f�t� over a
local cosine basis de�ned on the frequency axis fgp�k���gp�Z�k�N� This
is also equivalent to decomposing f�t� on its inverse Fourier transform
f �
��

�gp�k��t�gp�Z�k�N� As opposed to wavelet packets� which decompose
signals in dyadic frequency bands� this approach o�ers complete �exi
bility on the size of the frequency intervals �ap � �p� ap�� � �p����

A signal decomposition in a Meyer wavelet or wavelet packet ba
sis can be calculated with a lapped orthogonal transform applied in
the Fourier domain� Indeed� the Fourier transform ���
�� of a Meyer
wavelet has a compact support and fj ����j��jgj�Z can be considered as
a family asymmetric windows� whose supports only overlap with adja
cent windows with appropriate symmetry properties� These windows
cover the whole frequency axis�

P��
j��� j ����j��j� � �� As a result�

the Meyer wavelet transform can be viewed as a lapped orthogonal
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transform applied in the Fourier domain� It can thus be e�ciently
implemented with the folding algorithm of Section ������

����� Local Cosine Bases

The local cosine basis de�ned in ������� is composed of functions

gp�k�t� � gp�t�

s
�

lp
cos

�
�
�
k �

�

�

� t� ap
lp

�

with a compact support �ap��p� ap����p���� The energy of their Fourier
transforms is also well concentrated� Let �gp be the Fourier transform
of gp�

�gp�k��� �
exp��iap �p�k�

�

s
�

lp

�
�gp�� � �p�k� � �gp�� � �p�k�

�
�

where

�p�k �
��k � ����

lp
�

The bandwidth of �gp�k around �p�k and ��p�k is equal to the bandwidth
of �gp� If the sizes �p and �p�� of the variation intervals of gp are pro
portional to lp� then this bandwidth is proportional to l��p �

For smooth functions f � we want to guarantee that the inner prod
ucts hf� gp�ki have a fast decay when the center frequency �p�k increases�
The Parseval formula proves that

hf� gp�ki �
eiap�p�k

��

s
�

lp

Z ��

��
�f���

�
�g�p�� � �p�k� � �g�p�� � �p�k�

�
d��

The smoothness of f implies that j �f���j has a fast decay at large fre
quencies �� This integral will therefore become small when �p�k in
creases if gp is a smooth window� because j�gp���j has a fast decay�

Window Design The regularity of gp depends on the regularity of
the pro�le � which de�nes it in ������� This pro�le must satisfy

���t� � ����t� � � for t � ���� ��� �������
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plus ��t� � � if t 
 �� and ��t� � � if t 	 �� One example is

���t� � sin
��

�
�� � t�

�
for t � ���� ���

but its derivative at t � 
� is nonzero so � is not di�erentiable at 
��
Windows of higher regularity are constructed with a pro�le �k de�ned
by induction for k � � by

�k���t� � �k
�

sin
�t

�

�
for t � ���� ���

For any k � �� one can verify that �k satis�es ������� and has �k � �
vanishing derivatives at t � 
�� The resulting � and gp are therefore
�k � � times continuously di�erentiable�

Heisenberg Box A local cosine basis can be symbolically repre
sented as an exact paving of the timefrequency plane� The time and
frequency region of high energy concentration for each local cosine vec
tor gp�k is approximated by a Heisenberg rectangle

�ap� ap����
h
�p�k � �

�lp
� �p�k �

�

�lp

i
�

as illustrated in Figure ����� A local cosine basis fgp�kgk�N�p�Z corre
sponds to a timefrequency grid whose size varies in time�

Figure ���
�a� shows the decomposition of a digital recording of
the sound �grea� coming from the word �greasy�� The window sizes
are adapted to the signal structures with the best basis algorithm de
scribed in Section 
�	��� High amplitude coe�cients are along spectral
lines in the timefrequency plane� which correspond to di�erent har
monics� Most Heisenberg boxes appear in white� which indicates that
the corresponding inner product is nearly zero� This signal can thus be
approximated with a few nonzero local cosine vectors� Figure ���
�b�
decomposes the same signal in a local cosine basis composed of small
windows of constant size� The signal timefrequency structures do not
appear as well as in Figure ���
�a��
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apap-1 ap+1
lp

0 t

g  (t)p
t

ω

0

Figure ����� The Heisenberg boxes of local cosine vectors de�ne a reg
ular grid over the timefrequency plane�

Translation and Phase Cosine modulations as opposed to complex
exponentials do not provide easy access to phase information� The
translation of a signal can induce important modi�cations of its de
composition coe�cients in a cosine basis� Consider for example

f�t� � gp�k�t� � gp�t�

s
�

lp
cos

�
�
�
k �

�

�

�t� ap
lp

�
�

Since the basis is orthogonal� hf� gp�ki � �� and all other inner products
are zero� After a translation by � � lp���k � ��

f� �t� � f

�
t� lp

�k � �

�
� gp�t�

s
�

lp
sin

�
�
�
k �

�

�

� t� ap
lk

�
�

The opposite parity of sine and cosine implies that hf� � gp�ki � �� In
contrast� hf� � gp�k��i and hf� � gp�k��i become nonzero� After transla
tion� a signal component initially represented by a cosine of frequency
��k������lp is therefore spread over cosine vectors of di�erent frequen
cies�
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Figure ���
� �a�� The signal at the top is a recording of the sound �grea�
in the word �greasy�� This signal is decomposed in a local cosine basis
with windows of varying sizes� The larger the amplitude of jhf� gp�kij
the darker the gray level of the Heisenberg box� �b�� Decomposition in
a local cosine basis with small windows of constant size�
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This example shows that the local cosine coe�cients of a pattern
are severely modi�ed by any translation� We are facing the same trans
lation distortions as observed in Section ��� for wavelets and time
frequency frames� This lack of translation invariance makes it di�cult
to use these bases for pattern recognition�

����� Discrete Lapped Transforms

Lapped orthogonal bases are discretized by replacing the orthogonal
basis of L���� �� with a discrete basis of C N � and uniformly sampling
the windows gp� Discrete local cosine bases are derived with discrete
cosineIV bases�

Let fapgp�Z be a sequence of half integers� ap � ��� � Z with

lim
p���

ap � �� and lim
p���

ap � ���

A discrete lapped orthogonal basis is constructed with the discrete pro
jectors Pp de�ned in ���
	�� These operators are implemented with
the sampled windows gp�n� � gp�n�� Suppose that fek�l�n�g��k�l is an
orthogonal basis of signals de�ned for � � n 
 l� These vectors are
extended over Z with a symmetry with respect to ���� and an an
tisymmetry with respect to l � ���� The resulting extensions have a
period �l and are de�ned over ���l� �l � �� by

�el�k�n� �

����
���

el�k�n� if n � ��� l � ��
el�k���� n� if n � ��l����

�ek��l � �� n� if n � �l� �l � ��
�ek��l � n� if n � ���l��l � ��

�

The following theorem proves that multiplying these vectors with the
discrete windows gp�n� yields an orthonormal basis of l��Z��

Theorem 
��� �Coifman� Malvar� Meyer� Suppose that fek�lg��k�l
is an orthogonal basis of C l � for any l 	 �� The familyn

gp�k�n� � gp�n� �ek�lp�n� ap�
o
��k�lp�p�Z

�������

is a lapped orthonormal basis of l��Z��
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The proof of this theorem is identical to the proof of Theorem ����
since we have a discrete equivalent of the spaces Wp and their projec
tors� It is also based on a discrete equivalent of Lemma ���� which is
veri�ed with the same derivations� Beyond the proof of Theorem �����
we shall see that this lemma is important for quickly computing the
decomposition coe�cients hf� gp�ki�

Lemma 
�� Any fb�n� � gp�n� hb�n� � Wp and fc�n� � gp�n� hc�n� �
Wp satisfy

hfb� fci �
X

ap�
p�n�ap���
p��
fb�n� f �c �n� �

X
ap�n�ap��

hb�n� h�c �n�� �������

Theorem ���� is similar to the discrete block basis Theorem ��� but
constructs an orthogonal basis with smooth discrete windows gp�n�� The
discrete cosine IV bases�

el�k�n� �

r
�

l
cos

�
�

l

�
k �

�

�

��
n �

�

�

��
��k�l

have the advantage of including vectors that have a natural symmetric
and antisymmetric extension with respect to ���� and l � ���� This
produces a discrete local cosine basis of l��Z��

Corollary 
�� The family�
gp�k�n� � gp�n�

s
�

lp
cos

�
�
�
k �

�

�

�n� ap
lp

�
��k�lp�p�Z

�������

is an orthonormal basis of l��Z��

Fast Lapped Orthogonal Transform A fast algorithm introduced
by Malvar ���� replaces the calculations of hf� gp�ki by a computation
of inner products in the original bases fel�kg��k�l� with a folding proce
dure� In a discrete local cosine basis� these inner products are calculated
with the fast DCTIV algorithm�
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To simplify notations� as in Section ����� we decompose Ip � �ap �
�p� ap�� � �p��� into Ip � Op � Cp �Op�� with

Op � �ap � �p� ap � �p� and Cp � �ap � �p� ap�� � �p����

The orthogonal projector Pp on the space Wp generated by fgp�kg��k�lp
was calculated in ���
	��

Ppf �n� � gp�n� hp�n��

where hp is a folded version of f �

hp�n� �

��
�
gp�n� f �n� � gp��ap � n� f ��ap � n� if n � Op

f �n� if n � Cp

gp�n� f �n�� gp��ap�� � n� f ��ap�� � n� if n � Op��

� �����
�

Since gp�k �Wp�

hf� gp�ki � hPpf� gp�ki � hgphp � gp�elp�ki�

Since �elp�k�n� � elp�k�n� for n � �ap� ap���� Lemma ��� derives that

hf� gp�ki �
X

ap�n�ap��

hp�n� elp�k�n� � hhp� elp�ki	ap�ap��
� �������

This proves that the decomposition coe�cients hf� gp�ki can be calcu
lated by folding f into hp and computing the inner product with the
orthogonal basis felp�kg��k�lp de�ned over �ap� ap����

For a discrete cosine basis� the DCTIV coe�cients

hhp� elp�ki	ap�ap��
 �
X

ap�n�ap��

hp�n�

s
�

lp
cos

�
�
�
k �

�

�

�n� ap
lp

�
�������

are computed with the fast DCTIV algorithm of Section ��	��� which
requires O�lp log� lp� operations� The inverse lapped transform recovers
hp�n� over �ap� ap��� from the lp inner products fhhp� elp�ki	ap�ap��
g��k�lp�
In a local cosine IV basis� this is done with the fast inverse DCT
IV� which is identical to the forward DCTIV and requires O�lp log� lp�
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operations� The reconstruction of f is done by applying ���
�� which
proves that

f �n� �
��X

p���
Ppf �n� �

��X
p���

gp�n� hp�n�� �������

Let us denote O�
p � �ap � �p� ap� and O�

p � �ap� ap � �p�� The
restriction of ������� to �ap� ap��� gives

f �n� �

��
�
gp�n� hp�n� � gp���n� hp���n� if n � O�

p

hp�n� if n � Cp

gp�n� hp�n� � gp���n� hp���n� if n � O�
p��

The symmetry of the windows guarantees that gp���n� � gp��ap�n� and
gp���n� � gp��ap�� � n�� Since hp���n� is antisymmetric with respect to
ap and hp���n� is symmetric with respect to ap��� we can recover f �n�
on �ap� ap��� from the values of hp���n�� hp�n� and hp���n� computed
respectively on �ap��� ap�� �ap� ap���� and �ap��� ap����

f �n� �

��
�
gp�n� hp�n�� gp��ap � n� hp����ap � n� if n � O�

p

hp�n� if n � Cp

gp�n� hp�n� � gp��ap�� � n� hp����ap�� � n� if n � O�
p��

�����	�

This unfolding formula is implemented with O�lp� calculations� The
inverse local cosine transform thus requires O�lp log� lp� operations to
recover f �n� on each interval �ap� ap��� of length lp�

Finite Signals If f �n� is de�ned for � � n 
 N � the extremities of
the �rst and last interval must be a� � ���� and aq � N � ���� A fast
local cosine algorithm needs O�lp log� lp� additions and multiplications
to decompose or reconstruct the signal on each interval of length lp�
On the whole signal of length N � it thus needs a total of O�N log� L�
operations� where L � sup��p�q lp�

Since we do not know the values of f �n� for n 
 �� at the left
border we set �� � �� This means that g��n� jumps from � to � at
n � �� The resulting transform on the left boundary is equivalent to a
straight DCTIV� Section ��	�� shows that since cosine IV vectors are
even on the left boundary� the DCTIV is equivalent to a symmetric
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signal extension followed by a discrete Fourier transform� This avoids
creating discontinuity artifacts at the left border�

At the right border� we also set �q � � to limit the support of gq��
to ��� N���� Section ����� explains that since cosine IV vectors are odd
on the right boundary� the DCTIV is equivalent to an antisymmetric
signal extension� If f �N � �� 	� �� this extension introduces a sharp
signal transition that creates arti�cial high frequencies� To reduce this
border e�ect� we replace the cosine IV modulation

gq���k�n� � gq���n�

s
�

lq��
cos

�
�
�
k �

�

�

�n� aq��
lq��

�

by a cosine I modulation

gq���k�n� � gq���n�

s
�

lq��
�k cos

�
�k

n� aq��
lq��

�
�

The orthogonality with the other elements of the basis is maintained
because these cosine I vectors� like cosine IV vectors� are even with
respect to aq��� Since cos��kn� aq���lq��� is also symmetric with re
spect to aq � N����� computing a DCTI is equivalent to performing a
symmetric signal extension at the right boundary� which avoids discon
tinuities� In the fast local cosine transform� we thus compute a DCTI
of the last folded signal hq�� instead of a DCTIV� The reconstruction
algorithm uses an inverse DCTI to recover hq�� from these coe�cients�

��� Local Cosine Trees �

Corollary ��� constructs local cosine bases for any segmentation of the
time axis into intervals �ap� ap��� of arbitrary lengths� This result is
more general than the construction of wavelet packet bases that can
only divide the frequency axis into dyadic intervals� whose length are
proportional to powers of �� However� Coifman and Meyer ��	�� showed
that restricting the intervals to dyadic sizes has the advantage of cre
ating a tree structure similar to a wavelet packet tree� �Best� local
cosine bases can then be adaptively chosen with the fast dynamical
programming algorithm described in Section 
�	���
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����� Binary Tree of Cosine Bases

A local cosine tree includes orthogonal bases that segment the time axis
in dyadic intervals� For any j � �� the interval ��� �� is divided in �j

intervals of length ��j by setting

ap�j � p ��j for � � p � �j�

These intervals are covered by windows gp�j de�ned by ������ with a
support �ap�j � �� ap���j � ���

gp�j�t� �

����
���
������t� ap�j�� if t � �ap�j � �� ap�j � ��
� if t � �ap�j � �� ap���j � ��
������ap���j � t�� if t � �ap���j � �� ap���j � ��
� otherwise

�������

To ensure that the support of gp�j is in ��� �� for p � � and p � �j��� we
modify respectively the left and right sides of these windows by setting
g��j�t� � � if t � ��� ��� and g�j���j�t� � � if t � ��� �� ��� It follows that
g��� � �	���
� The size � of the raising and decaying pro�les of gp�j is
independent of j� To guarantee that windows overlap only with their
two neighbors� the length ap���j � ap�j � ��j must be larger than the
size �� of the overlapping intervals and hence

� � ��j��� �������

Similarly to wavelet packet trees� a local cosine tree is constructed
by recursively dividing spaces built with local cosine bases� A tree node
at a depth j and a position p is associated to a space Wp

j generated by
the local cosine family

Bp
j �

�
gp�j�t�

r
�

��j
cos

�
�
�
k �

�

�

�t� ap�j
��j

�
k�Z

� �������

Any f �Wj
p has a support in �ap�j � �� ap���j � �� and can be written

f�t� � gp�j�t� h�t� where h�t� is respectively symmetric and antisym
metric with respect to ap�j and ap���j� The following proposition shows
that Wp

j is divided in two orthogonal spaces W�p
j�� and W�p��

j�� that are
built over the two half intervals�
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Proposition 
�� �Coifman� Meyer� For any j � � and p 
 �j� the
spaces W�p

j�� and W
�p��
j�� are orthogonal and

Wp
j � W�p

j�� �W�p��
j�� � �������

Proof �� The orthogonality ofW�p
j�� andW

�p��
j�� is proved by Proposition

���� We denote Pp�j the orthogonal projector on W
p
j � With the notation

of Section �����
 this projector is decomposed into two splitting projectors
at ap�j and ap���j�

Pp�j � P�
ap�j �
 P

�
ap���j �
�

Equation ������ proves that

P�p�j�� � P�p���j�� � P�
a�p�j���
 P

�
a�p���j���
 � P�

ap�j �
 P
�
ap���j �
 � Pp�j�

This equality on orthogonal projectors implies ��������

The space Wp
j located at the node �j� p� of a local cosine tree is therefore

the sum of the two spaces W�p
j�� and W�p��

j�� located at the children
nodes� Since g��� � �	���
 it follows that W�

� � L���� ��� The maximum
depth J of the binary tree is limited by the support condition � � ��J���
and hence

J � � log������ �������

Admissible Local Cosine Bases As in a wavelet packet binary
tree� many local cosine orthogonal bases are constructed from this local
cosine tree� We call admissible binary tree any subtree of the local cosine
tree whose nodes have either � or � children� Let fji� pig��i�I be the
indices at the leaves of a particular admissible binary tree� Applying
the splitting property ������� along the branches of this subtree proves
that

L���� �� � W�
� � �I

i��W
pi
ji
�

Hence� the union of local cosine bases �Ii��Bpi
ji

is an orthogonal basis of
L���� ��� This can also be interpreted as a division of the time axis into
windows of various length� as illustrated by Figure �����

The number BJ of di�erent dyadic local cosine bases is equal to
the number of di�erent admissible subtrees of depth at most J � For
J � � log������ Proposition ��� proves that

�����
� � BJ � �����
��
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Figure ���
 shows the decomposition of a sound recording in two dyadic
local cosine bases selected from the binary tree� The basis in �a� is
calculated with the best basis algorithm of Section 
�	���

Choice of � At all scales �j� the windows gp�j of a local cosine tree
have raising and decaying pro�les of the same size �� These windows can
thus be recombined independently from their scale� If � is small com
pared to the interval size ��j then gp�j has a relatively sharp variation
at its borders compared to the size of its support� Since � is not pro
portional to ��j� the energy concentration of �gp�j is not improved when
the window size ��j increases� Even though f may be very smooth over
�ap�j� ap���j�� the border variations of the window create relatively large
coe�cients up to a frequency of the order of ����

W

W

W

W

W

0
0

1
0

1

2
3

2
2

1

2η 2η

Figure ����� An admissible binary tree of local cosine spaces divides
the time axis in windows of dyadic lengths�

To reduce the number of large coe�cients we must increase �� but
this also increases the minimum window size in the tree� which is ��J �
��� The choice of � is therefore the result of a tradeo� between window
regularity and the maximum resolution of the time subdivision� There
is no equivalent limitation in the construction of wavelet packet bases�

����� Tree of Discrete Bases

For discrete signals of size N � a binary tree of discrete cosine bases
is constructed like a binary tree of continuous time cosine bases� To
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simplify notations� the sampling distance is normalized to �� If it is
equal to N�� then frequency parameters must be multiplied by N �

The subdivision points are located at half integers�

ap�j � pN ��j � ��� for � � p � �j�

The discrete windows are obtained by sampling the windows gp�t� de
�ned in �������� gp�j�n� � gp�j�n�� The same border modi�cation is used
to ensure that the support of all gp�j�n� is in ��� N � ���

A node at depth j and position p in the binary tree corresponds to
the space Wp

j generated by the discrete local cosine family

Bp
j �

�
gp�j�n�

r
�

��jN
cos

�
�
�
k �

�

�

�n� ap�j
��jN

�
��k�N��j

�

Since g��� � �	��N��
� the space W�
� at the root of the tree includes any

signal de�ned over � � n 
 N � so W�
� � C N � As in Proposition ��� we

verify that Wp
j is orthogonal to Wq

j for p 	� q and that

Wp
j � W�p

j�� �W�p��
j�� � �����
�

The splitting property �����
� implies that the union of local co
sine families Bp

j located at the leaves of an admissible subtree is an
orthogonal basis of W�

� � C N � The minimum window size is limited by
�� � ��jN so the maximum depth of this binary tree is J � log�

N
�


�

One can thus construct more than ��
J��

� �N���
� di�erent discrete
local cosine bases within this binary tree�

Fast Calculations The fast local cosine transform algorithm de
scribed in Section ����� requires O���jN log���

�jN�� operations to com
pute the inner products of f with the ��jN vectors in the local cosine
family Bp

j � The total number of operations to perform these compu
tations at all nodes �j� p� of the tree� for � � p 
 �j and � � j � J �
is therefore O�NJ log�N�� The local cosine decompositions in Fig
ure ���
 are calculated with this fast algorithm� To improve the right
border treatment� Section ����� explains that the last DCTIV should
be replaced by a DCTI� at each scale �j� The signal f is recovered
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from the local cosine coe�cients at the leaves of any admissible binary
tree� with the fast local cosine reconstruction algorithm� which needs
O�N log�N� operations�

����� Image Cosine Quad�Tree

A local cosine binary tree is extended in two dimensions into a quad
tree� which recursively divides square image windows into four smaller
windows� This separable approach is similar to the extension of wavelet
packet bases in two dimensions� described in Section ����

Let us consider images of N� pixels� A node of the quadtree is
labeled by its depth j and two indices p and q� Let gp�j�n� be the
discrete onedimensional window de�ned in Section ������ At the depth
j� a node �p� q� corresponds to a separable space

Wp�q
j � Wp

j �Wq
j � �������

which is generated by a separable local cosine basis of ���jN� vectors

Bp�q
j �

�
gp�j�n�� gq�j�n��

�

��jN
cos

�
�
�
k� �

�

�

�n� � ap�j
��jN

�

cos

�
�
�
k� �

�

�

�n� � aq�j
��jN

��
��k��k����jN

We know from �����
� that

Wp
j � W�p

j�� �W�p��
j�� and Wq

j � W�q
j�� �W�q��

j�� �

Inserting these equations in ������� proves that Wp�q
j is the direct sum

of four orthogonal subspaces�

Wp�q
j � W�p��q

j�� �W�p����q
j�� �W�p��q��

j�� �W�p����q��
j�� � �������

A space Wp�q
j at a node �j� p� q� is therefore decomposed in the four

subspaces located at the four children nodes of the quadtree� This
decomposition can also be interpreted as a division of the square win
dow gp�j�n��gq�j�n�� into four subwindows of equal sizes� as illustrated
in Figure ����� The space located at the root of the tree is

W���
� � W�

� �W�
�� �������
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It includes all images of N� pixels� The size � of the raising and decaying
pro�les of the onedimensional windows de�nes the maximum depth
J � log�

N
�


of the quadtree�

-j

2  N-j

2  N
W j

p,q

j+1

j+1

j+1

j+1
2p,2q+1

2p,2q 2p+1,2q

2p+1,2q+1W

W

W

W

Figure ����� Functions in Wp�q
j have a support located in a square

region of the image� It is divided into four subspaces that cover smaller
squares in the image�

Admissible Quad�Trees An admissible subtree of this local cosine
quadtree has nodes that have either � or four children� Applying the
decomposition property ������� along the branches of an admissible
quadtree proves that the spaces Wpi�qi

ji
located at the leaves decompose

W���
� in orthogonal subspaces� The union of the corresponding two

dimensional local cosine bases Bpi�qi
ji

is therefore an orthogonal basis of

W���
� � We proved in ������ that there are more than ��

J��
� �N

���
�

di�erent admissible trees of maximum depth J � log�
N
�


� These bases
divide the image plane into squares of varying sizes� Figure ���� gives
an example of image decomposition in a local cosine basis corresponding
to an admissible quadtree� This local cosine basis is selected with the
best basis algorithm of Section 
�	���

Fast Calculations The decomposition of an image f �n� over a sepa
rable local cosine family Bp�q

j requires O����jN� log���
�jN�� operations�

with a separable implementation of the fast onedimensional local cosine
transform� For a full local cosine quadtree of depth J � these calcula
tions are performed for � � p� q 
 �j and � � j � J � which requires
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Figure ����� The grid shows the support of the windows gj�p�n�� gj�q�n��
of a �best� local cosine basis selected in the local cosine quadtree�

O�N�J log�N� multiplications and additions� The original image is re
covered from the local cosine coe�cients at the leaves of any admissible
subtree with O�N� log�N� computations�

��� Problems

���� � Prove the discrete splitting Theorem ����

���� � Meyer wavelet packets are calculated with a Meyer conjugate
mirror 	lter ������� Compute the size of the frequency support of
��pj as a function of �j� Study the convergence of �j�n�t� when the

scale �j goes to ���

���� � Extend the separable wavelet packet tree of Section ����� for
discrete p�dimensional signals� Verify that the wavelet packet
tree of a p�dimensional discrete signal of Np samples includes
O�Np log�N� wavelet packet coe�cients that are calculated with
O�K Np log�N� operations if the conjugate mirror 	lter h has K
non�zero coe�cients�

���� � Anisotropic wavelet packets �pj a� �L�jn���
q
l b� �L�ln�� may

have di�erent scales �j and �l along the rows and columns� A
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decomposition over such wavelet packets is calculated with a 	l�
ter bank that 	lters and subsamples the image rows j � L times
whereas the columns are 	ltered and subsampled l�L times� For
an image f n� of N� pixels
 show that a dictionary of anisotropic
wavelet packets includes O�N�log�N ��� di�erent vectors� Com�
pute the number of operations needed to decompose f in this dic�
tionary�

���� � Hartley transform Let cas�t� � cos�t� � sin�t�� We de	ne

B �

�
gkn� �

�p
N

cas

�
��nk

N

��
��k�N

�

�a� Prove that B is an orthonormal basis of C N �
�b� For any signal f n� of size N 
 	nd a fast Hartley transform

algorithm based on the FFT
 which computes fhf� gkig��k�N
with O�N log�N� operations�

���� � Prove that fp� sin�k � �����t�gk�Z is an orthonormal basis of
L��� ��� Find a corresponding discrete orthonormal basis of C N �

���� � Prove that fp� sin�k�t�gk�Z is an orthonormal basis of L��� ���
Find a corresponding discrete orthonormal basis of C N �

���� � Lapped Fourier basis

�a� Construct a lapped orthogonal basis f�gp�kg�p�k��Z of L��R�
from the Fourier basis fexp�i��kt�gk�Z of L��� ���

�b� Explain why this local Fourier basis does not contradict the
Balian�Low Theorem ����

�c� Let f � L��R� be such that j �f���j � O��� � j�jp���� for some
p � �� Compute the rate of decay of jhf� �gp�kij when the fre�
quency index jkj increases� Compare it with the rate of decay
of jhf� gp�kij
 where gp�k is a local cosine vector �������� How
do the two bases compare for signal processing applications�

���� � Describe a fast algorithm to compute the Meyer orthogonal
wavelet transform with a lapped transform applied in the Fourier
domain� Calculate the numerical complexity of this algorithm for
periodic signals of size N � Compare this result with the numeri�
cal complexity of the standard fast wavelet transform algorithm

where the convolutions with Meyer conjugate mirror 	lters are
calculated with an FFT�

����� � Arbitrary Walsh tilings



���CHAPTER �� WAVELET PACKET AND LOCAL COSINE BASES

�a� Prove that two Walsh wavelet packets �pj�n and �p
�

j��n� are or�
thogonal if their Heisenberg boxes de	ned in Section ����� do
not intersect in the time�frequency plane ����

�b� A dyadic tiling of the time�frequency plane is an exact cover
f�jn� �j�n����	k���j � �k������j �g�j�n�p��I 
 where the index
set I is adjusted to guarantee that the time�frequency boxes
do not intersect and that they leave no hole� Prove that any
such tiling corresponds to a Walsh orthonormal basis of L��R�
f�pj�ng�p�j�n��I �

����� � Double tree We want to construct a dictionary of block wavelet
packet bases
 which has the freedom to segment both the time
and frequency axes� For this purpose
 as in a local cosine basis
dictionary
 we construct a binary tree
 which divides �� �� in �j

intervals p��j � �p�����j �
 that correspond to nodes indexed by p
at the depth j of the tree� At each of these nodes
 we construct
another tree of wavelet packet orthonormal bases of L�p��j � �p�
����j � �����

�a� De	ne admissible sub�trees in this double tree
 whose leaves
correspond to orthonormal bases of L��� ��� Give an example
of an admissible tree and draw the resulting tiling of the time�
frequency plane�

�b� Give a recursive equation that relates the number of admissible
sub�trees of depth J�� and of depth J � Give an upper bound
and a lower bound for the total number of orthogonal bases in
this double tree dictionary�

�c� Can one 	nd a basis in a double tree that is well adapted
to implement an e�cient transform code for audio signals�
Justify your answer�

����� � An anisotropic local cosine basis for images is constructed with
rectangular windows that have a width �j that may be di�erent
from their height �l� Similarly to a local cosine tree
 such bases
are calculated by progressively dividing windows
 but the horizon�
tal and vertical divisions of these windows is done independently�
Show that a dictionary of anisotropic local cosine bases can be rep�
resented as a graph� Implement in WaveLab an algorithm that
decomposes images in a graph of anisotropic local cosine bases�



Chapter �

An Approximation Tour

It is time to wonder why are we constructing so many di�erent orthonor
mal bases� In signal processing� orthogonal bases are of interest because
they can e�ciently approximate certain types of signals with just a few
vectors� Two examples of such applications are image compression and
the estimation of noisy signals� which are studied in Chapters �� and
���

Approximation theory studies the error produced by di�erent ap
proximation schemes in an orthonormal basis� A linear approxima
tion projects the signal over M vectors chosen a priori� In Fourier or
wavelet bases� this linear approximation is particularly precise for uni
formly regular signals� However� better approximations are obtained
by choosing the M basis vectors depending on the signal� Signals with
isolated singularities are well approximated in a wavelet basis with this
nonlinear procedure�

A further degree of freedom is introduced by choosing the basis
adaptively� depending on the signal properties� From families of wavelet
packet bases and local cosine bases� a fast dynamical programming
algorithm is used to select the �best� basis that minimizes a Schur
concave cost function� The approximation vectors chosen from this
�best� basis outline the important signal structures� and characterize
their timefrequency properties� Pursuit algorithms generalize these
adaptive approximations by selecting the approximation vectors from
redundant dictionaries of timefrequency atoms� with no orthogonality
constraint�

���
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	�� Linear Approximations �

A signal can be represented with M parameters in an orthonormal basis
by keeping M inner products with vectors chosen a priori� In Fourier
and wavelet bases� Sections 
���� and 
���	 show that such a linear
approximation is e�cient only if the signal is uniformly regular� Linear
approximations of random vectors are studied and optimized in Section

�����

	���� Linear Approximation Error

Let B � fgmgm�N be an orthonormal basis of a Hilbert space H� Any
f � H can be decomposed in this basis�

f �
��X
m��

hf� gmi gm�

If instead of representing f by all inner products fhf� gmigm�N we use
only the �rst M � we get the approximation

fM �
M��X
m��

hf� gmi gm�

This approximation is the orthogonal projection of f over the space
VM generated by fgmg��m�M � Since

f � fM �
��X
m�M

hf� gmi gm�

the approximation error is

l�M � � kf � fMk� �
��X
m�M

jhf� gmij�� �
���

The fact that kfk� �
P��

m�� jhf� gmij� 
 �� implies that the error
decays to zero�

lim
M���

l�M � � ��
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However� the decay rate of l�M � as M increases depends on the decay
of jhf� gmij as m increases� The following theorem gives equivalent
conditions on the decay of l�M � and jhf� gmij�

Theorem �� For any s 	 ���� there exists A�B 	 � such that ifP��
m�� jmj�s jhf� gmij� 
 �� then

A
��X
m��

m�s jhf� gmij� �
��X
M��

M�s�� l�M � � B
��X
m��

m�s jhf� gmij� �
���

and hence l�M � � o�M��s��

Proof �� By inserting �����
 we compute

��X
M��

M�s�� 
lM � �

��X
M��

��X
m�M

M�s�� jhf� gmij� �
��X
m��

jhf� gmij�
mX

M��

M�s���

For any s � ���Z m

�
x�s�� dx �

mX
M��

M�s�� �
Z m��

�
x�s�� dx

which implies that
Pm

M��M
�s�� � m�s and hence proves ������

To verify that 
lM � � o�M��s�
 observe that 
lm� 
 
lM � for
m �M 
 so


lM �

M��X
m�M��

m�s�� �
M��X

m�M��

m�s�� 
lm� �
��X

m�M��

m�s�� 
lm�� �����

Since
P��

m��m
�s��
lm� 	 �� it follows that

lim
M���

��X
m�M��

m�s�� 
lm� � ��

Moreover
 there exists C � � such that
PM��

m�M��m
�s�� 
 CM�s
 so

����� implies that limM��� 
lM �M�s � ��
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This theorem proves that the linear approximation error of f in the
basis B decays faster than M��s if f belongs to the space

WB�s �

�
f � H �

��X
m��

m�s jhf� gmij� 
 ��


�

The next sections prove that if B is a Fourier or wavelet basis� then
WB�s is a Sobolev space� Observe that the linear approximation of
f from the �rst M vectors of B is not always precise because these
vectors are not necessarily the best ones with which to approximate f �
Nonlinear approximations calculated with vectors chosen adaptively
depending upon f are studied in Section 
���

	���� Linear Fourier Approximations

The Fourier basis can approximate uniformly regular signals with few
lowfrequency sinuso� dal waves� The approximation error is related
to the Sobolev di�erentiability� It is also calculated for discontinuous
signals having a bounded total variation�

Sobolev Di�erentiability The smoothness of f can be measured
by the number of times it is di�erentiable� However� to distinguish the
regularity of functions that are n � � times� but not n times� contin
uously di�erentiable� we must extend the notion of di�erentiability to
nonintegers� This can be done in the Fourier domain� Recall that
the Fourier transform of the derivative f ��t� is i� �f���� The Plancherel
formula proves that f � � L��R� if

Z ��

��
j�j� j �f���j� d� � ��

Z ��

��
jf ��t�j� dt 
 ���

This suggests replacing the usual pointwise de�nition of the derivative
by a de�nition based on the Fourier transform� We say that f � L��R�
is di�erentiable in the sense of Sobolev ifZ ��

��
j�j� j �f���j� d� 
 ��� �
���
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This integral imposes that j �f���j must have a su�ciently fast decay
when the frequency � goes to ��� As in Section ��	��� the regularity
of f is measured from the asymptotic decay of its Fourier transform�

This de�nition is generalized for any s 	 �� The space Ws�R� of
Sobolev functions that are s times di�erentiable is the space of functions
f � L��R� whose Fourier transforms satisfy ����Z ��

��
j�j�s j �f���j� d� 
 ��� �
���

If s 	 n � ���� then one can verify �Problem 
��� that f is n times
continuously di�erentiable� We de�ne the space Ws��� �� of functions
on ��� �� that are s times di�erentiable in the sense of Sobolev as the
space of functions f � L���� �� that can be extended outside ��� �� into
a function f �Ws�R��

Fourier Approximations Theorem 	�� proves �modulo a change of
variable� that fei��mtgm�Z is an orthonormal basis of L���� ��� We can
thus decompose f � L���� �� in the Fourier series

f�t� �
��X

m���
hf�u�� ei��mui ei��mt �
���

with

hf�u�� ei��mui �

Z �

�

f�u� e�i��mu du�

The decomposition �
��� de�nes a periodic extension of f for all t �
R� The decay of the Fourier coe�cients jhf�u�� ei��muij as m increases
depends on the regularity of this periodic extension� To avoid creating
singularities at t � � or at t � � with this periodization� we suppose
that the support of f is strictly included in ��� ��� One can then prove
�not trivial� that if f � L���� �� is a function whose support is included
in ��� ��� then f �Ws��� �� if and only if

��X
m���

jmj�s jhf�u�� ei��muij� 
 ��� �
���



��� CHAPTER 	� AN APPROXIMATION TOUR

The linear approximation of f � L���� �� by the M sinuso� ds of lower
frequencies is

fM�t� �
X

jmj�M��

hf�u�� ei��mui ei��mt�

For di�erentiable functions in the sense of Sobolev� the following propo
sition computes the approximation error

l�M � � kf � fMk� �

Z �

�

jf�t�� fM�t�j� dt �
X

jmj	M��

jhf�u�� ei��muij� �

�
���

Proposition �� Let f � L���� �� be a function whose support is in�
cluded in ��� ��� Then f �Ws��� �� if and only if

��X
M��

M�s l�M �

M

 ��� �
�
�

which implies l�M � � o�M��s��

Functions in Ws��� �� with a support in ��� �� are characterized by
�
���� This proposition is therefore a consequence of Theorem 
��� The
linear Fourier approximation thus decays quickly if and only if f has a
large regularity exponent s in the sense of Sobolev�

Discontinuities and Bounded Variation If f is discontinuous�
then f �� Ws��� �� for any s 	 ���� Proposition 
�� thus proves that
l�M � can decay like M�� only if � � �� For bounded variation func
tions� which are introduced in Section ��	�	� the following proposition
proves that l�M � � O�M���� A function has a bounded variation if

kfkV �

Z �

�

jf ��t�j dt 
 �� �

The derivative must be taken in the sense of distributions because f
may be discontinuous� as is the case for f � �	�����
� Recall that a�M � �
b�M � if a�M � � O�b�M �� and b�M � � O�a�M ���
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Proposition �� � If kfkV 
 �� then l�M � � O�kfk�V M����

� If f � C �	�����
 then l�M � � kfk�V M���

Proof �� If kfkV 	 �� then

jhf�u�� exp�i�m�u�ij �

����Z �

�
f�u� exp��i�m�u� du

����
�

����Z �

�
f ��u�

exp��i�m�u�

�i�m�
dt

���� � kfkV
�jmj� �

Hence


lM � �
X

jmj	M��

jhf�u�� exp�i�m�u�ij� � kfk�V
���

X
jmj	M��

�

m�
� O�kfk�V M����

If f � C �	�����
 then kfkV � �C and

jhf�u�� exp�i�m�u�ij �
�

� if m �� � is even
C��� jmj� if m is odd


so 
lM � � C�M���

This proposition shows that when f is discontinuous with bounded
variations� then l�M � decays typically like M��� Figure 
���b� shows a
bounded variation signal approximated by Fourier coe�cients of lower
frequencies� The approximation error is concentrated in the neighbor
hood of discontinuities where the removal of high frequencies creates
Gibbs oscillations �see Section ��	����

Localized Approximations To localize Fourier series approxima
tions over intervals� we multiply f by smooth windows that cover each
of these intervals� The BalianLow Theorem ��� proves that one can
not build local Fourier bases with smooth windows of compact support�
However� Section ����� constructs orthonormal bases by replacing com
plex exponentials by cosine functions� For appropriate windows gp of
compact support �ap � �p� ap�� � �p���� Corollary ��� constructs an or
thonormal basis of L��R���

gp�k�t� � gp�t�

s
�

lp
cos

�
�
�
k �

�

�

�t� ap
lp

�
k�N�p�Z

�
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Figure 
��� Top� Original signal f � Middle� Signal fM approxi
mated from lower frequency Fourier coe�cients� with M�N � ���� and
kf � fMk�kfk � ���	 ����� Bottom� Signal fM approximated from
larger scale Daubechies � wavelet coe�cients� with M�N � ���� and
kf � fMk�kfk � ���� �����
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Writing f in this local cosine basis is equivalent to segmenting it into
several windowed components fp�t� � f�t� gp�t�� which are decomposed
in a cosine IV basis� If gp is C�� the regularity of gp�t� f�t� is the
same as the regularity of f over �ap � �p� ap�� � �p���� Section ��	��
relates cosine IV coe�cients to Fourier series coe�cients� It follows
from Proposition 
�� that if fp �Ws�R�� then the approximation

fp�M �
M��X
k��

hf� gp�ki gp�k

yields an error

p�l�M � � kfp � fp�Mk� � o�M��s��

The approximation error in a local cosine basis thus depends on the
local regularity of f over each window support�

	���� Linear Multiresolution Approximations

Linear approximations of f from large scale wavelet coe�cients are
equivalent to �nite element approximations over uniform grids� The
approximation error depends on the uniform regularity of f � In a peri
odic orthogonal wavelet basis� this approximation behaves like a Fourier
series approximation� In both cases� it is necessary to impose that f
have a support inside ��� �� to avoid border discontinuities created by
the periodization� This result is improved by the adapted wavelet basis
of Section ����	� whose border wavelets keep their vanishing moments�
These wavelet bases e�ciently approximate any function that is uni
formly regular over ��� ��� as well as the restriction to ��� �� of regular
functions having a larger support�

Uniform Approximation Grid Section ��� explains how to design
wavelet orthonormal bases of L���� ��� with a maximum scale �J 
 ��h

f�J�ng��n���J � f�j�ng���j�J � ��n���j

i
� �
����

We suppose that the wavelets �j�n are in Cq and have q vanishing
moments� The M � ��l scaling functions and wavelets at scales �j 	 �l
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de�ne an orthonormal basis of the approximation space Vl�h
f�J�ng��n���J � f�j�ngl�j�J � ��n���j

i
� �
����

The approximation of f over the M �rst wavelets and scaling functions
is an orthogonal projection on Vl�

fM � PVl
f �

JX
j�l��

��j��X
n��

hf� �j�ni�j�n �
��J��X
n��

hf� �J�ni�J�n� �
����

Since Vl also admits an orthonormal basis of M � ��l scaling functions
f�l�ng��n���l� this projection can be rewritten�

fM � PVl
f �

��l��X
n��

hf� �l�ni�l�n� �
��	�

This summation is an approximation of f with ��l �nite elements
�l�n�t� � �l�t��ln� translated over a uniform grid� The approximation
error is the energy of wavelet coe�cients at scales �ner than �l�

l�M � � kf � fMk� �
lX

j���

��j��X
n��

jhf� �j�nij�� �
����

If ��l 
 M 
 ��l��� one must include in the approximations �
���� and
�
��	� the coe�cients of the M ���l wavelets f�l���ng��n�M���l at the
scale �l���

Approximation error Like a Fourier basis� a wavelet basis provides
an e�cient approximation of functions that are s times di�erentiable
in the sense of Sobolev over ��� �� �i�e�� functions of Ws��� ���� If � has
q vanishing moments then ������ proves that the wavelet transform is a
multiscale di�erential operator of order q� To test the di�erentiability
of f up to order s we thus need q 	 s� The following theorem gives
a necessary and su�cient condition on the wavelet coe�cients so that
f �Ws��� ���
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Theorem �� Let � 
 s 
 q be a Sobolev exponent� A function f �
L���� �� is in Ws��� �� if and only if

JX
j���

��j��X
n��

���sj jhf� �j�nij� 
 ��� �
����

Proof �� We give an intuitive justi	cation but not a proof of this result�
To simplify
 we suppose that the support of f is included in ��� ��� If we
extend f by zeros outside �� �� then f �Ws�R�
 which means thatZ ��

��
j�j�s j �f���j� d� 	 ��� ������

The low frequency part of this integral always remains 	nite because
f � L��R��Z
j�j���J�

j�j�s j �f���j� d� � ���sJ ��s
Z
j�j��

j �f���j� d� � ���sJ ��s kfk��

The energy of ��j�n is essentially concentrated in the intervals ���j������j���
��j�� ��j���� As a consequence

��j��X
n��

jhf� �j�nij� �
Z
��j��j�j���j���

j �f���j� d��

Over this interval j�j � ��j 
 so

��j��X
n��

���sj jhf� �j�nij� �
Z
��j��j�j���j���

j�j�s j �f���j� d��

It follows that

JX
j���

��j��X
n��

���sj jhf� �j�nij� �
Z
j�j���J�

j�j�s j �f���j� d��

which explains why ������ is equivalent to �������

This theorem proves that the Sobolev regularity of f is equivalent to
a fast decay of the wavelet coe�cients jhf� �j�nij when the scale �j de
creases� If � has q vanishing moments but is not q times continuously
di�erentiable� then f �Ws��� �� implies �
����� but the opposite impli
cation is not true� The following proposition uses the decay condition
�
���� to compute the approximation error with M wavelets�
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Proposition �� Let � 
 s 
 q be a Sobolev exponent� A function
f � L���� �� is in Ws��� �� if and only if

��X
M��

M�s l�M �

M

 �� � �
����

which implies l�M � � o�M��s��

Proof �� Let us write the wavelets �j�n � gm with m � ��j � n� One
can verify that the Sobolev condition ������ is equivalent to

��X
m��

jmj�s jhf� gmij� 	 ���

The proof ends by applying Theorem ����

Proposition 
�	 proves that f �Ws��� �� if and only if the approxima
tion error l�M � decays slightly faster than M��s� The wavelet approx
imation error is of the same order as the Fourier approximation error
calculated in �
�
�� If the wavelet has q vanishing moments but is not q
times continuously di�erentiable� then f �Ws��� �� implies �
���� but
the opposite implication is false�

If f has a discontinuity in ��� �� then f �� Ws��� �� for s 	 ���
so Proposition 
�	 proves that we cannot have l�M � � O�M��� for
� 	 �� If f has bounded variation� one can verify �Problem 
��� that
l�M � � O�M���� and if f � �	�����
 then l�M � � M��� This result is
identical to Proposition 
��� obtained in a Fourier basis�

Figure 
�� gives an example of discontinuous signal with bounded
variation� which is approximated by its larger scale wavelet coe�cients�
The largest amplitude errors are in the neighborhood of singularities�
where the scale should be re�ned� The relative approximation error
kf � fMk�kfk � ���� ���� is almost the same as in a Fourier basis�

Multidimensional Approximations The results of this section are
easily extended to multidimensional signals decomposed in the separa
ble wavelet basis constructed in Section ������ If f � L���� ��d then
f is approximated by M � ��d l wavelets at scales �j 
 �l� As in
dimension d � �� the decay rate of the error l�M � depends on the
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�a� �b�

Figure 
��� �a�� Original Lena f of N� � ���� pixels� �b�� Linear
approximations fM from M � N���� Symmlet � wavelet coe�cients at
scales �j 	 ��N��� kf � fMk�kfk � ���	��

Sobolev regularity of f � In dimension d � �� the linear approximation
error of bounded variation functions may decay arbitrarily slowly� For
any decreasing sequence ��M � such that limM��� ��M � � � one can
show �Problem 
��� that there exists a bounded variation image f on
��� ��� such that l�M � � ��M �� If f is discontinuous along a contour of
length L 	 � then one cannot have l�M � � O�M��� for � 	 �� The
approximation error thus decays extremely slowly�

Figure 
���a� has N� � ���� pixels� Since its support is normalized
to ��� ���� the N� wavelet coe�cients are at scales � 	 �j 	 N��� Figure

���b� is approximated with M � ���N� wavelet coe�cients at scales
�j 	 ��N��� which suppresses the �ner details� Gibbs oscillations
appear in the neighborhood of contours� Section 
���� explains how
to improve this approximation with a nonlinear selection of wavelet
coe�cients�



��� CHAPTER 	� AN APPROXIMATION TOUR

	���� Karhunen�Lo
eve Approximations �

Let us consider a whole class of signals that we approximate with the
�rst M vectors of a basis� These signals are modeled as realizations of a
random vector F �n� of size N � We show that the basis that minimizes
the average linear approximation error is the KarhunenLo!eve basis
�principal components��

Appendix A�� reviews the covariance properties of random vectors�
If F �n� does not have a zero mean� we subtract the expected value
EfF �n�g from F �n� to get a zero mean� The random vector F can be
decomposed in an orthogonal basis fgmg��m�N �

F �
N��X
m��

hF� gmi gm �

Each coe�cient

hF� gmi �
N��X
n��

F �n� g�m�n�

is a random variable �see Appendix A���� The approximation from the
�rst M vectors of the basis is

FM �

M��X
m��

hF� gmi gm�

The resulting meansquare error is

l�M � � E

n
kF � FMk�

o
�

N��X
m�M

E

n
jhF� gmij�

o
�

This error is related to the covariance of F de�ned by

R�n�m� � EfF �n�F ��m�g�
Let K be the covariance operator represented by this matrix� For any
vector x�n��

E

n
jhF� xij�

o
� E

�
N��X
n��

N��X
m��

F �n�F �m� x�n� x��m�
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�
N��X
n��

N��X
m��

R�n�m� x�n� x��m�

� hKx� xi�

The error l�M � is therefore a sum of the last N�M diagonal coe�cients
of the covariance operator

l�M � �

N��X
m�M

hKgm� gmi�

The covariance operator K is Hermitian and positive and is thus di
agonalized in an orthogonal basis called a KarhunenLo!eve basis� This
basis is not unique if several eigenvalues are equal� The following the
orem proves that a KarhunenLo!eve basis is optimal for linear approx
imations�

Theorem �� Let K be a covariance operator� For all M � �� the
approximation error

l�M � �

N��X
m�M

hKgm� gmi

is minimum if and only if fgmg��m�N is a Karhunen�Lo�eve basis whose
vectors are ordered by decreasing eigenvalues

hKgm� gmi � hKgm��� gm��i for � � m 
 N � ��

Proof �� Let us consider an arbitrary orthonormal basis fhmg��m�N �
The trace tr�K� of K is independent of the basis�

tr�K� �

N��X
m��

hKhm� hmi�

The basis that minimizes
PN��

m�M hKhm� hmi thus maximizes
PM��

m�� hKhm� hmi�
Let fgmg��m�N be a basis that diagonalizes K�

Kgm � ��m gm with ��m 
 ��m�� for � � m 	 N � ��
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The theorem is proved by verifying that for all M 
 �


M��X
m��

hKhm� hmi �
M��X
m��

hKgm� gmi �
M��X
m��

��m�

To relate hKhm� hmi to the eigenvalues f��i g��i�N 
 we expand hm in
the basis fgig��i�N �

hKhm� hmi �
N��X
i��

jhhm� giij� ��i � ������

Hence

M��X
m��

hKhm� hmi �
M��X
m��

N��X
i��

jhhm� giij� ��i �
N��X
i��

qi �
�
i

with

� � qi �

M��X
m��

jhhm� giij� � � and

N��X
i��

qi � M�

We evaluate

M��X
m��

hKhm� hmi �
M��X
i��

��i �

N��X
i��

qi �
�
i �

M��X
i��

��i

�

N��X
i��

qi �
�
i �

M��X
i��

��i � ��M��
�
M �

N��X
i��

qi

�

�
M��X
i��

���i � ��M��� �qi � �� �
N��X
i�M

qi ��
�
i � ��M����

Since the eigenvalues are listed in order of decreasing amplitude
 it fol�
lows that

M��X
m��

hKhm� hmi �
M��X
m��

��m � ��

Suppose that this last inequality is an equality� We 	nish the proof by
showing that fhmg��m�N must be a Karhunen�Lo"eve basis� If i 	 M 

then ��i �� ��M�� implies qi � �� If i 
 M 
 then ��i �� ��M�� implies
qi � �� This is valid for all M 
 � if hhm� gii �� � only when ��i � ��m�
This means that the change of basis is performed inside each eigenspace
of K so fhmg��m�N also diagonalizes K�
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Theorem 
�	 proves that a KarhunenLo!eve basis yields the smallest
average error when approximating a class of signals by their projection
on M orthogonal vectors� chosen a priori� This result has a simple ge
ometrical interpretation� The realizations of F de�ne a cloud of points
in C N � The density of this cloud speci�es the probability distribution
of F � The vectors gm of the KarhunenLo!eve basis give the directions
of the principal axes of the cloud� Large eigenvalues ��

m correspond
to directions gm along which the cloud is highly elongated� Theorem

�	 proves that projecting the realizations of F on these principal com
ponents yields the smallest average error� If F is a Gaussian random
vector� the probability density is uniform along ellipsoids whose axes
are proportional to �m in the direction of gm� These principal directions
are thus truly the preferred directions of the process�

Random Shift Processes If the process is not Gaussian� its proba
bility distribution can have a complex geometry� and a linear approxi
mation along the principal axes may not be e�cient� As an example� we
consider a random vector F �n� of size N that is a random shift modulo
N of a deterministic signal f �n� of zero mean�

PN��
n�� f �n� � ��

F �n� � f ��n� P � modN �� �
��
�

The shift P is an integer random variable whose probability distribution
is uniform on ��� N � ���

Pr�P � p� �
�

N
for � � p 
 N�

This process has a zero mean�

EfF �n�g �
�

N

N��X
p��

f ��n� p� modN � � ��

and its covariance is

R�n� k� � EfF �n�F �k�g �
�

N

N��X
p��

f ��n� p� modN � f ��k � p� modN �

�
�

N
f �� �f �n� k� with �f �n� � f ��n� � �
����
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Hence R�n� k� � RF �n� k� with

RF �k� �
�

N
f �� �f �k��

Since RF is N periodic� F is a circular stationary random vector� as
de�ned in Appendix A��� The covariance operator K is a circular con
volution with RF and is therefore diagonalized in the discrete Fourier
KarhunenLo!eve basis f �p

N
exp

�
i��mn
N

�g��m�N � The eigenvalues are
given by the Fourier transform of RF �

��
m � �RF �m� �

�

N
j �f �m�j�� �
����

Theorem 
�	 proves that a linear approximation that projects F on
M vectors selected a priori is optimized in this Fourier basis� To better
understand this result� let us consider an extreme case where f �n� �
��n� � ��n � ��� Theorem 
�	 guarantees that the Fourier Karhunen
Lo!eve basis produces a smaller expected approximation error than does
a canonical basis of Diracs fgm�n� � ��n�m�g��m�N � Indeed� we do not
know a priori the abscissa of the nonzero coe�cients of F � so there is no
particular Dirac that is better adapted to perform the approximation�
Since the Fourier vectors cover the whole support of F � they always
absorb part of the signal energy�

E

�����DF �n��
�p
N

exp

�
i��mn

N

�E����
�


� �RF �m� �
�

N
sin�

�
�k

N

�
�

Selecting M higher frequency Fourier coe�cients thus yields a better
meansquare approximation than choosing a priori M Dirac vectors to
perform the approximation�

The linear approximation of F in a Fourier basis is not e�cient
because all the eigenvalues �RF �m� have the same order of magnitude� A
simple nonlinear algorithm can improve this approximation� In a Dirac
basis� F is exactly reproduced by selecting the two Diracs corresponding
to the largest amplitude coe�cients� whose positions P and P � �
depend on each realization of F � A nonlinear algorithm that selects
the largest amplitude coe�cient for each realization of F is not e�cient
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in a Fourier basis� Indeed� the realizations of F do not have their
energy concentrated over a few large amplitude Fourier coe�cients�
This example shows that when F is not a Gaussian process� a nonlinear
approximation may be much more precise than a linear approximation�
and the KarhunenLo!eve basis is no longer optimal�

	�� Non
Linear Approximations �

Linear approximations project the signal on M vectors selected a priori�
This approximation is improved by choosing the M vectors depending
on each signal� The next section analyzes the performance of these
nonlinear approximations� These results are then applied to wavelet
bases�

	���� Non�Linear Approximation Error

A signal f � H is approximated with M vectors selected adaptively in
an orthonormal basis B � fgmgm�N of H� Let fM be the projection of
f over M vectors whose indices are in IM �

fM �
X
m�IM

hf� gmi gm�

The approximation error is the sum of the remaining coe�cients�

�M � � kf � fMk� �
X
m��IM

jhf� gmij�� �
����

To minimize this error� the indices in IM must correspond to the M
vectors having the largest inner product amplitude jhf� gmij� These
are the vectors that best correlate f � They can thus be interpreted as
the �main� features of f � The resulting n�M � is necessarily smaller
than the error of a linear approximation �
���� which selects the M
approximation vectors independently of f �

Let us sort fjhf� gmijgm�N in decreasing order� We denote f rB�k� �
hf� gmk

i the coe�cient of rank k�

jf rB�k�j � jf rB�k � ��j with k 	 ��
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The best nonlinear approximation is

fM �
MX
k��

f rB�k� gmk
� �
��	�

It can also be calculated by applying the thresholding function

�T �x� �

�
x if jxj � T
� if jxj 
 T

�
����

with a threshold T such that f rB�M � �� 
 T � f rB�M ��

fM �
��X
m��

�T �hf� gmi� gm � �
����

The minimum nonlinear approximation error is

n�M � � kf � fMk� �
��X

k�M��

jf rB�k�j��

The following theorem relates the decay of this approximation error as
M increases to the decay of jf rB�k�j as k increases�

Theorem �� Let s 	 ���� If there exists C 	 � such that jf rB�k�j �
C k�s then

n�M � � C�

�s� �
M���s� �
����

Conversely� if n�M � satis�es ����
	 then

jf rB�k�j �
�

�� �

�s

��s
C k�s � �
����

Proof �� Since


nM � �

��X
k�M��

jf rBk�j� � C�
��X

k�M��

k��s�
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and
��X

k�M��

k��s �
Z ��

M
x��s dx �

M���s

�s� �
������

we derive �������

Conversely
 let � 	 �



n�M � 

MX

k��M��

jf rBk�j� 
 ��� ��M jf rBM �j� �

So if ������ is satis	ed

jf rBM �j� � 
n�M �

�� �
M�� � C�

�s� �

����s

�� �
M��s�

For � � �� ���s we get ������ for k � M �

The decay of sorted inner products can be evaluated from the lp norm
of these inner products�

kfkB�p �



��X
m��

jhf� gmijp
���p

�

The following theorem relates the decay of n�M � to kfkB�p�

Theorem �� Let p 
 �� If kfkB�p 
 �� then

jf rB�k�j � kfkB�p k���p �
��
�

and n�M � � o�M����p��

Proof �� We prove ������ by observing that

kfkpB�p �
��X
n��

jf rBn�jp 

kX

n��

jf rBn�jp 
 k jf rBk�jp�

To show that 
nM � � o�M����p�
 we set

Sk� �

�k��X
n�k

jf rBn�jp 
 k jf rB�k�jp�
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Hence


nM � �

��X
k�M��

jf rBk�j� �
��X

k�M��

Sk�����p �k������p

� sup
k	M��

jSk�j��p
��X

k�M��

�k������p �

Since kfkpB�p �
P��

n�� jf rBn�jp 	 ��
 it follows that limk��� supk	M�� jSk�j �
�� We thus derive from ������ that 
nM � � o�M����p��

This theorem speci�es spaces of functions that are well approximated
by a few vectors of an orthogonal basis B� We denote

BB�p �
n
f � H � kfkB�p 
 ��

o
� �
�	��

If f � BB�p then Theorem 
�� proves that n�M � � o�M����p�� This
is called a Jackson inequality ����� Conversely� if n�M � � O�M����p�
then the Bernstein inequality �
���� for s � ��p shows that f � BB�q
for any q 	 p� Section 
���	 studies the properties of the spaces BB�p
for wavelet bases�

	���� Wavelet Adaptive Grids

A nonlinear approximation in a wavelet orthonormal basis de�nes an
adaptive grid that re�nes the approximation scale in the neighborhood
of the signal singularities� Theorem 
�� proves that this nonlinear
approximation introduces a small error if the sorted wavelet coe�cients
have a fast decay� which can be related to Besov spaces ������ We study
the performance of such wavelet approximations for bounded variation
functions and piecewise regular functions�

We consider a wavelet basis adapted to L���� ��� constructed in Sec
tion ����	 with compactly supported wavelets that are Cq with q van
ishing moments�

B �
h
f�J�ng��n���J � f�j�ng���j�J � ��n���j

i
�
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To simplify the notation we write �J�n � �J���n� The best nonlinear
approximation of f � L���� �� from M wavelets is

fM �
X

�j�n��IM
hf� �j�ni�j�n �

where IM is the index set of the M wavelet coe�cients having the
largest amplitude jhf� �j�nij� The approximation error is

n�M � � kf � fMk� �
X

�j�n���IM
jhf� �j�nij��

Let f rB�k� � hf� �jk�nki be the coe�cient of rank k� jf rB�k�j � jf rB�k � ��j
for k � �� Theorem 
�� proves that jf rB�k�j � O�k�s� if and only if
n�M � � O�M��s�� The error n�M � is always smaller than the lin
ear approximation error l�M � studied in Section 
���	� but we must
understand under which condition this improvement is important�

Piecewise Regularity If f is piecewise regular then we show that
n�M � has a fast decay as M increases� Few wavelet coe�cients are
a�ected by isolated discontinuities and the error decay depends on the
uniform regularity between these discontinuities�

Proposition �� If f has a �nite number of discontinuities on ��� ��
and is uniformly Lipschitz � 
 q between these discontinuities� then
n�M � � O�M�����

Proof �� We prove that 
nM � � O�M���� by verifying that f rBk� �
O�k������� and applying inequality ������ of Theorem ���� We distin�
guish type � wavelets �j�n
 whose support includes an abscissa where f is
discontinuous
 from type � wavelets
 whose support is included in a do�
main where f is uniformly Lipschitz �� Let f rB��k� and f

r
B��k� be the val�

ues of the wavelet coe�cient of rank k among type � and type � wavelets�
We show that f rBk� � O�k������� by verifying that f rB��k� � O�k�������
and that f rB��k� � O�k��������

If f is uniformly Lipschitz � on the support of �j�n then there exists
A such that

jhf� �j�nij � A �j������� � ������
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Indeed
 orthogonal wavelet coe�cients are samples of the continuous
wavelet transform hf� �j�ni � Wf��jn� �j�
 so ������ is a consequence of
�������

For any l � �
 there are at most �l type � coe�cients at scales
�j � ��l� Moreover
 ������ shows that all type � coe�cients at scales
�j � ��l are smaller than A �l�������
 so

f rB���
l� � A��l������� �

It follows that f rB��k� � O�k�������
 for all k � ��

Let us now consider the type � wavelets� There exists K � � such
that each wavelet �j�n has its support included in �jn � �jK��� �jn �
�jnK���� At each scale �j 
 there are thus at most K wavelets whose
support includes a given abscissa v� This implies that there are at most
KD wavelets �j�n whose support includes at least one of the D disconti�
nuities of f � Since f is uniformly Lipschitz � � � outside these points
 f
is necessarily uniformly bounded on �� �� and thus uniformly Lipschitz
�� Hence ������ shows that there exists A such that jhf� �j�nij � A �j���
Since there are at most lKD type � coe�cients at scales �j � ��l and
since all type � coe�cients at scales �j � ��l are smaller than A��l�� we
get

f rB��lKD� � A��l�� �

This implies that f rB��k� � O�k������ for any � � �
 which ends the
proof�

If � 	 ���� then n�M � decays faster than l�M � since we saw in Section

���	 that the presence of discontinuities implies that l�M � decays like
M��� The more regular f is between its discontinuities� the larger
the improvement of nonlinear approximations with respect to linear
approximations�

Adaptive Grids Isolated singularities create large amplitude wavelet
coe�cients but there are few of them� The approximation fM calculated
from the M largest amplitude wavelet coe�cients can be interpreted
as an adaptive grid approximation� where the approximation scale is
re�ned in the neighborhood of singularities�

A nonlinear approximation keeps all coe�cients jhf� �j�nij � T � for
a threshold f rB�M � � T 	 f rB�M � ��� In a region where f is uniformly
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Lipschitz �� since jhf� �j�nij � A �j������� the coe�cients above T are
typically at scales

�j 	 �l �

�
T

A

���������

�

Setting to zero all wavelet coe�cients below the scale �l is equivalent
to computing a local approximation of f at the scale �l� The smaller
the local Lipschitz regularity �� the �ner the approximation scale �l�

Figure 
�	 shows the nonlinear wavelet approximation of a piece
wise regular signal� Observe that the largest amplitude wavelet co
e�cients are in the cone of in�uence of each singularity� Since the
approximation scale is re�ned in the neighborhood of each singularity�
they are much better restored than in the �xed scale linear approxima
tion shown in Figure 
��� The nonlinear approximation error in this
case is �� times smaller than the linear approximation error�

Nonlinear wavelet approximations are nearly optimal compared to
adaptive spline approximations� A spline approximation f sM is calcu
lated by choosing K nodes t� 
 t� 
 � � � 
 tK inside ��� ��� Over each
interval �tk� tk���� f is approximated by the closest polynomial of degree
r� This polynomial spline f sM is speci�ed by M � K�r��� parameters�
which are the node locations ftkg��k�K plus the K�r � �� parameters
of the K polynomials of degree r� To reduce kf � f sMk� the nodes
must be closely spaced when f is irregular and farther apart when f is
smooth� However� �nding the M parameters that minimize kf � f sMk
is a di�cult nonlinear optimization�

A nonlinear approximation with wavelets having q � r � � van
ishing moments is much faster to compute than an optimized spline
approximation� A spline wavelet basis of BattleLemari"e gives non
linear approximations that are also splines functions� but the nodes tk
are restricted to dyadic locations �jn� with a scale �j that is locally
adapted to the signal regularity� For large classes of signals� includ
ing the balls of Besov spaces� the maximum approximation errors with
wavelets or with optimized splines have the same decay rate when M
increases ������ The computational overhead of an optimized spline
approximation is therefore not worth it�
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Figure 
�	� �a�� Original signal f � �b�� Larger M � ����N wavelet
coe�cients calculated with a Symmlet �� �c�� Nonlinear approxi
mation fM recovered from the M wavelet coe�cients shown above�
kf � fMk�kfk � ��� �����
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	���� Besov Spaces �

Studying the performance of nonlinear wavelet approximations more
precisely requires introducing a new space� As previously� we write
�J�n � �J���n� The Besov space Bs

����� �� is the set of functions f �
L���� �� such that

kfks��� �

�
B� J��X

j���

�
����j�s��������

�
���j��X

n��

jhf� �j�nij
�
A

��
�
 !
��
CA

���


 �� �

�
�	��
Frazier� Jawerth ����� and Meyer ����� proved that Bs

����� �� does not
depend on the particular choice of wavelet basis� as long as the wavelets
in the basis have q 	 s vanishing moments and are in Cq� The space
Bs
����� �� corresponds typically to functions that have a �derivative of

order s� that is in L��� ��� The index � is a fune tuning parameter�
which is less important� We need q 	 s because a wavelet with q
vanishing moments can test the di�erentiability of a signal only up to
the order q�

If � � �� then functions in Bs
����� �� have a uniform regularity of

order s� For � � � � �� Theorem 
�� proves that Bs
������ �� � Ws��� ��

is the space of s times di�erentiable functions in the sense of Sobolev�
Proposition 
�	 proves that this space is characterized by the decay of
the linear approximation error l�M � and that l�M � � o�M��s�� Since
n�M � � l�M � clearly n�M � � o�M�s�� One can verify �Problem 
���
that for a large class of functions inside Ws��� ��� the nonlinear ap
proximation error has the same decay rate as the linear approximation
error� It is therefore not useful to use nonlinear approximations in a
Sobolev space�

For � 
 �� functions in Bs
����� �� are not necessarily uniformly reg

ular� The adaptativity of nonlinear approximations then improves the
decay rate of the error signi�cantly� In particular� if p � � � � and
s � ��� � ��p� then the Besov norm is a simple lp norm�

kfks��� �

�
� J��X

j���

��j��X
n��

jhf� �j�nijp
�
A

��p

�
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Theorem 
�� proves that if f � Bs
����� ��� then n�M � � o�M����p�� The

smaller p� the faster the error decay� The proof of Proposition 
�� shows
that although f may be discontinuous� if the number of discontinuities
is �nite and f is uniformly Lipschitz � between these discontinuities�
then its sorted wavelet coe�cients satisfy jf rB�k�j � O�k�������� so f �
Bs
����� �� for ��p 
 � � ���� This shows that these spaces include

functions that are not s times di�erentiable at all points� The linear
approximation error l�M � for f � Bs

����� �� can decrease arbitrarily
slowly because the M wavelet coe�cients at the largest scales may be
arbitrarily small� A nonlinear approximation is much more e�cient in
these spaces�

Bounded Variation Bounded variation functions are important ex
amples of signals for which a nonlinear approximation yields a much
smaller error than a linear approximation� The total variation norm is
de�ned in ������ by

kfkV �

Z �

�

jf ��t�j dt �

The derivative f � must be understood in the sense of distributions�
in order to include discontinuous functions� The following theorem
computes an upper and a lower bound of kfkV from the modulus of
wavelet coe�cients� Since kfkV does not change when a constant is
added to f � the maximum amplitude of f is controlled with the sup
norm kfk� � supt�R jf�t�j�

Theorem �	 Consider a wavelet basis constructed with � such that
k�kV 
 ��� There exist A�B 	 � such that for all f � L���� ��

kfkV � kfk� � B
J��X
j���

��j��X
n��

��j�� jhf� �j�nij � B kfk����� � �
�		�

and

kfkV �kfk� � A sup
j�J��

�
���j��X

n��

��j�� jhf� �j�nij
�
A � A kfk����� � �
�	��
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Proof �� By decomposing f in the wavelet basis

f �

JX
j���

��j��X
n��

hf� �j�ni�j�n �

��J��X
n��

hf� �J�ni�J�n�

we get

kfkV � kfk� �
JX

j���

��j��X
n��

jhf� �j�nij
�
k�j�nkV � k�j�nk�

�
������

�

��J��X
n��

jhf� �J�nij
�
k�J�nkV � k�J�nk�

�
�

The wavelet basis includes wavelets whose support are inside ��� �� and
border wavelets
 which are obtained by dilating and translating a 	nite
number of mother wavelets� To simplify notations we write the basis as
if there were a single mother wavelet� �j�n�t� � ��j������jt�n�� Hence

we verify with a change of variable that

k�j�nkV � k�j�nk� �

Z �

�
��j�� ��j j�����jt� n�j dt

���j�� sup
t�	���


j����jt� n�j

� ��j��
�
k�kV � k�k�

�
�

Since �J�n�t� � ��J������J t� n� we also prove that

k�J�nkV � k�J�nk� � ��J��
�
k�kV � k�k�

�
�

The inequality ������ is thus derived from �������

Since � has at least one vanishing moment
 its primitive � is a func�
tion with the same support
 which we suppose included in �K���K����
To prove ������
 for j � J we make an integration by parts�

��j��X
n��

jhf� �j�nij �

��j��X
n��

����Z �

�
f�t� ��j������jt� n� dt

����
�

��j��X
n��

����Z �

�
f ��t� �j������jt� n� dt

����
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� �j��
��j��X
n��

Z �

�
jf ��t�j j����jt� n�j dt �

Since � has a support in �K���K���

��j��X
n��

jhf� �j�nij � �j��K sup
t�R

j��t�j
Z �

�
jf ��t�j dt � A���j��kfkV �

������

The largest scale �J is a 	xed constant and hence

��J��X
n��

jhf� �J�nij � ���J�� sup
t�	���


jf�t�j
Z �

�
j�J�n�t�jdt

� ��J�� kfk�
Z �

�
j��t�jdt � A�� �J�� kfk� �

This inequality and ������ prove �������

This theorem shows that the total variation norm is bounded by two
Besov norms�

A kfk����� � kfkV � kfk� � B kfk����� �

One can verify that if kfkV 
 ��� then kfk� 
 �� �Problem 
����
but we do not control the value of kfk� from kfkV because the addition
of a constant changes kfk� but does not modify kfkV � The space
BV��� �� of bounded variation functions is therefore embedded in the
corresponding Besov spaces�

B�
������ �� � BV��� �� � B�

������ �� �

If f � BV��� �� has discontinuities� then the linear approximation error
l�M � does not decay faster than M��� The following theorem proves
that n�M � has a faster decay�

Proposition �� There exists B such that for all f � BV��� ��

n�M � � B kfk�V M�� � �
�	��
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Proof �� We denote by f rBk� the wavelet coe�cient of rank k
 excluding
all the scaling coe�cients hf� �J�ni
 since we cannot control their value
with kfkV � We 	rst show that there exists B� such that for all f �
BV�� ��

jf rBk�j � B� kfkV k����� ������

To take into account the fact that ������ does not apply to the �J scaling
coe�cients hf� �J�ni
 we observe that in the worst case they are selected
by the non�linear approximation so


�M � �
��X

k�M��J��

jf rBk�j� � ������

Since �J is a constant
 inserting ������ proves �������

The upper bound ������ is proved by computing an upper bound of
the number of coe�cients larger than an arbitrary threshold T � At scale
�j 
 we denote by f rBj� k� the coe�cient of rank k among fhf� �j�nig��n���j �
The inequality ������ proves that for all j � J

��j��X
n��

jhf� �j�nij � A�� �j�� kfkV �

It thus follows from ������ that

f rBj� k� � A�� �j�� kfkV k�� � C �j�� k�� �

At scale �j 
 the number kj of coe�cients larger than T thus satis	es

kj � min���j � �j�� C T��� �

The total number k of coe�cients larger than T is

k �

JX
j���

kj �
X

�j��C��T ����
��j �

X
�j	�C��T ����

�j��CT��

� � �CT�������

By choosing T � jf rBk�j
 since C � A�� kfkV 
 we get

jf rBk�j � ����A�� kfkV k���� �
which proves �������
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The error decay rate M�� obtained with wavelets for all bounded vari
ation functions cannot be improved either by optimal spline approxi
mations or by any nonlinear approximation calculated in an orthonor
mal basis ������ In this sense� wavelets are optimal for approximating
bounded variation functions�

	���� Image Approximations with Wavelets

Nonlinear approximations of functions in L���� ��d can be calculated in
separable wavelet bases� In multiple dimensions� wavelet approxima
tions are often not optimal because they cannot be adapted to the geom
etry of the signal singularities� We concentrate on the twodimensional
case for image processing�

Section ����� constructs a separable wavelet basis of L���� ��d from a
wavelet basis of L���� ��� with separable products of wavelets and scaling
functions� We suppose that all wavelets of the basis of L���� �� are Cq

with q vanishing moments� The wavelet basis of L���� ��� includes three
elementary wavelets f�lg��l�� that are dilated by �j and translated over
a square grid of interval �j in ��� ���� Modulo modi�cations near the
borders� these wavelets can be written

�l
j�n�x� �

�

�j
�l

�
x� � �jn�

�j
�
x� � �jn�

�j

�
� �
����

If we limit the scales to �j � �J � we must complete the wavelet family
with twodimensional scaling functions

�J�n�x� �
�

�J
�

�
x� � �Jn�

�J
�
x� � �Jn�

�J

�

to obtain an orthonormal basis

B �
�
f�J�ng�Jn�	����� � f�l

j�ngj�J � �jn�	����� � ��l��
�
�

A nonlinear approximation fM in this wavelet basis is constructed
from the M wavelet coe�cients of largest amplitude� Figure 
���b�
shows the position of these M � N���� wavelet coe�cients for Lena�
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The large amplitude coe�cients are located in the area where the im
age intensity varies sharply� in particular along the edges� The corre
sponding approximation fM is shown in Figure 
���a�� This nonlinear
approximation is much more precise than the linear approximation of
Figure 
���b�� l�M � � �� n�M �� As in one dimension� the nonlinear
wavelet approximation can be interpreted as an adaptive grid approx
imation� By keeping wavelet coe�cients at �ne scales� we re�ne the
approximation along the image contours�

�a� �b�

Figure 
��� �a�� Nonlinear approximation fM of a Lena image
f of N� � ���� pixels� with M � N���� wavelet coe�cients�
kf � fMk�kfk � ������ Compare with the linear approximation of
Figure 
���b�� �b�� The positions of the largest M wavelet coe�cients
are shown in black�

Bounded Variation Images Besov spaces over ��� ��� are de�ned
with norms similar to �
�	��� these norms are calculated from the mod
ulus of wavelet coe�cients� We rather concentrate on the space of
bounded variation functions� which is particularly important in image
processing�
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The total variation of f is de�ned in Section ��	�	 by

kfkV �

Z �

�

Z �

�

j�rf�x�� x��j dx� dx� � �
����

The partial derivatives of �rf must be taken in the general sense of
distribution in order to include discontinuous functions� Let �#t be
the level set de�ned as the boundary of

#t � f�x�� x�� � R
� � f�x�� x�� 	 tg �

Theorem ��� proves that the total variation depends on the length
H���#t� of level sets�

Z �

�

Z �

�

j�rf�x�� x��j dx� dx� �

Z ��

��
H���#t� dt� �
����

The following theorem gives upper and lower bounds of kfkV from
wavelet coe�cients and computes the decay of the approximation error
n�M �� We suppose that the separable wavelet basis has been calculated
from a onedimensional wavelet with bounded variation� We denote by
f rB�k� the rank k wavelet coe�cient of f � without including the ��J

scaling coe�cients hf� �J�ni�

Theorem �� �Cohen� DeVore� Pertrushev� Xu� If kfkV 
 ��
then there exist A�B 	 � such that

A kfkV �
JX

j���

�X
l��

X
��jn�	���
�

jhf� �l
j�nij�

X
��Jn�	���
�

jhf� �J�nij � �
��	�

The sorted wavelet coecients f rB�k� satisfy

jf rB�k�j � B kfkV k�� �
����

so

n�M � � B� kfk�V M�� � �
����
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Figure 
��� Sorted wavelet coe�cients log� jf rB�k�j as a function of log� k
for two images� �a�� Lena image shown in Figure 
���a�� �b�� Mandrill
image shown in Figure �����

Proof �� We prove ������ exactly as we did ������
 by observing that
k�lj�nkV � k�lkV and that k�J�nkV � k�kV � The proof of ������ is much
more technical �����

To take into account the exclusion of the ��J scaling coe�cients
hf� �J�ni in ������
 we observe as in ������ that 
�M � �P��

k�M���J�� jf rBk�j�

from which we derive �������

The norm kfk� that appears in Theorem 
�� does not appear in The
orem 
�� because in two dimensions kfkV 
 �� does not imply that
kfk� 
 ��� The inequality �
���� proves that if kfkV 
 �� then
jf rB�k�j � O�k���� Lena is a bounded variation image in the sense
of ������� and Figure 
�� shows that indeed log� jf rB�k�j decays with a
slope that reaches �� as log� k increases� In contrast� the Mandrill
image shown in Figure ���� does not have a bounded total variation
because of the fur� and indeed log� jf rB�k�j decays with slope that reaches
����� 	 ���

The upper bound �
���� proves that the nonlinear approximation
error n�M � of a bounded variation image decays at least like M���
whereas one can prove �Problem 
��� that the linear approximation er
ror l�M � may decay arbitrarily slowly� The nonlinear approximation
of Lena in Figure 
���a� is indeed much more precise than the linear ap
proximation in Figure 
���b�� which is calculated with the same number
of wavelet coe�cients�
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Piecewise Regular Images In one dimension� Proposition 
�� proves
that a �nite number of discontinuities does not in�uence the decay rate
of sorted wavelet coe�cients jf rB�k�j� which depends on the uniform sig
nal regularity outside the discontinuities� Piecewise regular functions
are thus better approximated than functions for which we only know
that they have a bounded variation� A piecewise regular image has dis
continuities along curves of dimension �� which create a nonnegligible
number of high amplitude wavelet coe�cients� The following propo
sition veri�es with a simple example of piecewise regular image� that
the sorted wavelet coe�cients jf rB�k�j do not decay faster than k��� As
in Theorem 
��� the ��J scaling coe�cients hf� �J�ni are not included
among the sorted wavelet coe�cients�

Proposition �	 If f � �� is the indicator function of a set # whose
border �# has a �nite length� then

jf rB�k�j � kfkV k�� � �
����

and hence
n�M � � kfk�V M�� � �
����

Proof �� The main idea of the proof is given without detail� If the sup�
port of �lj�n does not intersect the border �#
 then hf� �lj�ni � � because

f is constant over the support of �lj�n� The wavelets �lj�n have a square

support of size proportional to �j 
 which is translated on a grid of inter�
val �j � Since �# has a 	nite length L
 there are on the order of L ��j

wavelets whose support intersects �#� Figure ����b� illustrates the po�
sition of these coe�cients�

Along the border
 we verify that jhf� �lj�nij � �j by replacing the
wavelet by its expression ������� Since the amplitude of these coe�cients
decreases as the scale �j decreases and since there are on the order of
L ��j non�zero coe�cients at scales larger than �j 
 the wavelet coe�cient
f rBk� of rank k is at a scale �j such that k � L ��j � Hence jf rBk�j � �j �
Lk��� The co�area ������ formula proves that kfkV � L
 so jf rBk�j �
kfkV k��
 which proves ������� As in the proof of Theorem ���
 ������ is
derived from �������

This proposition shows that the sorted wavelet coe�cients of f � �� do
not decay any faster than the sorted wavelet coe�cients of any bounded
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�

�a� �b�

Figure 
��� �a�� Image f � ��� �b�� At the scale �j� the wavelets �l
j�n

are translated on a grid of interval �j� which is indicated by the smaller
dots� They have a square support proportional to �j� The darker dots
correspond to wavelets whose support intersects the frontier of #� for
which hf� �l

j�ni 	� ��

variation function� for which �
���� proves that jf rB�k�j � O�kfkV k����
This property can be extended to piecewise regular functions that have
a discontinuity of amplitude larger than a 	 � along a contour of length
L 	 �� The nonlinear approximation errors n�M � of general bounded
variation images and piecewise regular images have essentially the same
decay�

Approximation with Adaptive Geometry Supposing that an im
age has bounded variations is equivalent to imposing that its level set
have a �nite average length� but it does not impose geometrical regu
larity conditions on these level sets� The level sets and �edges� of many
images such as Lena are often curves with a regular geometry� which is
a prior information that the approximation scheme should be able to
use�

In two dimensions� wavelets cannot use the regularity of level sets
because they have a square support that is not adapted to the image
geometry� More e�cient nonlinear approximations may be constructed
using functions whose support has a shape that can be adapted to
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the regularity of the image contours� For example� one may construct
piecewise linear approximations with adapted triangulations ��
	� �����

�

Figure 
��� A piecewise linear approximation of f � �� is optimized
with a triangulation whose triangles are narrow in the direction where
f is discontinuous� along the border �#�

A function f � L���� ��� is approximated with a triangulation com
posed of M triangles by a function fM that is linear on each triangle
and which minimizes kf � fMk� This is a twodimensional extension
of the spline approximations studied in Section 
����� The di�culty
is to optimize the geometry of the triangulation to reduce the error
kf � fMk� Let us consider the case where f � ��� with a border �#
which is a di�erentiable curve of �nite length and bounded curvature�
The triangles inside and outside # may have a large support since f
is constant and therefore linear on these triangles� On the other hand�
the triangles that intersect �# must be narrow in order to minimize the
approximation error in the direction where f is discontinuous� One can
use M�� triangles for the inside and M�� for the outside of #� Since
�# has a �nite length� this border can be covered by M�� triangles
which have a length on the order of M�� in the direction of the tangent
�� of �#� Since the curvature of �# is bounded� one can verify that the
width of these triangles can be on the order of M�� in the direction
perpendicular to �� � The border triangles are thus very narrow� as il
lustrated by Figure 
��� One can now easily show that there exists a
function fM that is linear on each triangle of this triangulation and such
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that kf � fMk� � M��� This error thus decays more rapidly than the
nonlinear wavelet approximation error n�M � � M��� The adaptive
triangulation yields a smaller error because it follows the geometrical
regularity of the image contours�

Donoho studies the optimal approximation of particular classes of
indicator functions with elongated wavelets called wedglets ������ How
ever� at present there exists no algorithm for computing quasioptimal
approximations adapted to the geometry of complex images such as
Lena� Solving this problem would improve image compression and de
noising algorithms�

	�� Adaptive Basis Selection �

To optimize nonlinear signal approximations� one can adaptively choose
the basis depending on the signal� Section 
�	�� explains how to select
a �best� basis from a dictionary of bases� by minimizing a concave cost
function� Wavelet packet and local cosine bases are large families of
orthogonal bases that include di�erent types of timefrequency atoms�
A best wavelet packet basis or a best local cosine basis decomposes the
signal over atoms that are adapted to the signal timefrequency struc
tures� Section 
�	�� introduces a fast best basis selection algorithm�
The performance of a best basis approximation is evaluated in Section

�	�	 through particular examples�

	���� Best Basis and Schur Concavity

We consider a dictionary D that is a union of orthonormal bases in a
signal space of �nite dimension N �

D �
"
���

B��

Each orthonormal basis is a family of N vectors

B� � fg�mg��m�N �
Wavelet packets and local cosine trees are examples of dictionaries
where the bases share some common vectors�
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Comparison of Bases We want to optimize the nonlinear approx
imation of f by choosing a best basis in D� Let I�M be the index set
of the M vectors of B� that maximize jhf� g�mij� The best nonlinear
approximation of f in B� is

f�M �
X
m�I�M

hf� g�mi g�m�

The approximation error is

��M � �
X
m��I�M

jhf� g�mij� � kfk� �
X
m�I�M

jhf� g�mij�� �
����

De�nition �� We say that B� � fg�mg��m�N is a better basis than
B� � fg�mg��m�N for approximating f if for all M � �

��M � � � �M �� �
��
�

This basis comparison is a partial order relation between bases in D�
Neither B� nor B� is better if there exist M� and M� such that

��M�� 
 � �M�� and ��M�� 	 � �M��� �
����

Inserting �
���� proves that the better basis condition �
��
� is equiva
lent to�

M � � �
X
m�I�M

jhf� g�mij� �
X
m�I�M

jhf� g�mij�� �
����

The following theorem derives a criteria based on Schur concave cost
functions�

Theorem �
 A basis B� is a better basis than B� to approximate f
if and only if for all concave functions $�u�

NX
m��

$

� jhf� g�mij�
kfk�

�
�

NX
m��

$

� jhf� g�mij�
kfk�

�
� �
����

Proof �� The proof of this theorem is based on the following classical
result in the theory of majorization ����
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Lemma ��� �Hardy� Littlewood� P�olya	 Let xm� 
 � and ym� 

� be two positive sequences of size N � with

xm� 
 xm� �� and ym� 
 ym� �� for � � m � N � ������

and
PN

m�� xm� �
PN

m�� ym�� For all M � N these sequences satisfy

MX
m��

xm� 

MX
m��

ym� ������

if and only if for all concave functions ��u�

NX
m��

��xm�� �
NX

m��

��ym��� ������

We 	rst prove that ������ implies ������� Let � be a concave function�
We denote by H the set of vectors z of dimension N such that

z�� 
 � � � 
 zN ��

For any z � H
 we write the partial sum

SzM � �

MX
m��

zm��

We denote by $ the multivariable function

$�Sz��� Sz ��� � � � � SzN �� �
NX

m��

��zm��

� ��Sz��� �

NX
m��

��Szm�� Szm� ���

The sorting hypothesis ������ implies that x � H and y � H
 and we
know that they have the same sum SxN � � SyN �� Condition ������
can be rewritten SxM � 
 SyM � for � � M 	 N � To prove ������ is
thus equivalent to showing that $ is a decreasing function with respect
to each of its arguments Szk� as long as z remains inH� In other words

we must prove that for any � � k � N

$�Sz��� Sz ��� � � � � SzN �� 
 $�Sz��� � � � � Szk���� Szk���� Sz k���� � � � � SzN ���
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which means that

NX
m��

��zm�� 

k��X
m��

��zm�����zk�������zk�������
NX

m�k��

��zm���

������
To guarantee that we remain in H despite the addition of �
 its value
must satisfy

zk � �� 
 zk� � � 
 zk � ��� � 
 zk � ���

The inequality ������ amounts to proving that

� �zk�� � � �zk � ��� 
 ��zk� � �� � � �zk � ��� �� � ������

Let us show that this is a consequence of the concavity of ��

By de	nition
 � is concave if for any �x� y� and � � � � �

� ��x� ��� �� y� 
 ���x� � ��� ����y�� ������

Let us decompose

zk� � � �zk� � �� � ��� �� �zk � ��� ��

and
zk � �� � ��� �� �zk� � �� � � �zk � ��� ��

with

� � � �
zk� � zk � �� � �

zk�� zk � �� � ��
� ��

Computing ��zk�����zk���� and applying the concavity ������ yields
������� This 	nishes the proof of �������

We now verify that ������ is true if ������ is valid for a particular
family of concave thresholding functions de	ned by

�M�u� �

�
xM �� u if u 
 xM �
� otherwise

�

Let us evaluate

NX
m��

�M �xm�� � M xM ��
MX
m��

xm��
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The hypothesis ������ implies that
PN

m�� �M�xm�� �PN
m�� �M �ym���

Moreover ��u� � � and ��u� � xM �� u so

M xM ��
MX
m��

xm� �
NX

m��

�M �ym�� �
MX
m��

�M �ym�� �M xM ��
MX
m��

ym��

which proves ������ and thus Lemma ����

The statement of the theorem is a direct consequence of Lemma ����
For any basis B�
 we sort the inner products jhf� g�mij and denote

x�k� �
jhf� g�mk

ij�
kfk� 
 x�k � �� �

jhf� g�mk��
ij�

kfk� �

The energy conservation in an orthogonal basis implies
PN

k�� x
�k� � ��

Condition ������ proves that a basis B� is better than a basis B� if and
only if for all M 
 �

MX
k��

x�k� 

MX
k��

x� k��

Lemma ��� proves that this is equivalent to imposing that for all concave
functions �


NX
k��

��x�k�� �
NX
k��

��x� k���

which is identical to �������

In practice� two bases are compared using a single concave function
$�u�� The cost of approximating f in a basis B� is de�ned by the
Schur concave sum

C�f�B�� �
NX

m��

$

� jhf� g�mij�
kfk�

�
�

Theorem 
�� proves that if B� is a better basis than B� for approxi
mating f then

C�f�B�� � C�f�B�� �
��
�

This condition is necessary but not su�cient to guarantee that B� is
better than B� since we test a single concave function� Coifman and
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Wickerhauser ����� �nd a best basis B� in D by minimizing the cost of
f �

C�f�B�� � min
���

C�f�B���

There exists no better basis in D to approximate f � However� there
are often other bases in D that are equivalent in the sense of �
����� In
this case� the choice of the best basis depends on the particular concave
function $�

Ideal and Di�using Bases An ideal basis B for approximating f
has one of its vectors proportional to f � say gm � �f with � � C �
Clearly f can then be recovered with a single basis vector� If $��� � �
then the cost of f in this basis is C�f�B� � $���� In contrast� a worst
basis for approximating f is a basis B that di�uses uniformly the energy
of f across all vectors�

jhf� gmij� �
kfk�
N

for � � m 
 N �

The cost of f in a di�using basis is C�f�B� � N$�N����

Proposition �� Any basis B is worse than an ideal basis and better
than a di�using basis for approximating f � If $��� � � then

$��� � C�f�B� � N $
� �

N

�
� �
����

Proof �� An ideal basis is clearly better than any other basis in the sense
of De	nition ���
 since it produces a zero error for M 
 �� The approxi�
mation error from M vectors in a di�using basis is kfk��N �M��N � To
prove that any basis B is better than a di�using basis
 observe that if m
is not in the index set IM corresponding to the M largest inner products
then

jhf� g�mij� �
�

M

X
n�IM

jhf� g�nij� �
kfk�
M

� ������

The approximation error from M vectors thus satis	es


M � �
X
m��IM

jhf� g�mij� � kfk� N �M

M
�
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which proves that it is smaller than the approximation error in a di�using
basis� The costs of ideal and di�using bases are respectively ���� and
N��N���� We thus derive ������ from �������

Examples of Cost Functions As mentioned earlier� if there exists
no basis that is better than all other bases in D� the �best� basis that
minimizes C�f�B�� depends on the choice of $�

Entropy The entropy $�x� � �x loge x is concave for x � �� The
corresponding cost is called the entropy of the energy distribution

C�f�B� � �
NX

m��

jhf� gmij�
kfk� loge

� jhf� gmij�
kfk�

�
� �
����

Proposition 
�� proves that

� � C�f�B� � logeN� �
��	�

It reaches the upper bound logeN for a di�using basis�
Let us emphasize that this entropy is a priori not related to the

number of bits required to encode the inner products hf� gmi� The
Shannon Theorem ���� proves that a lower bound for the number of
bits to encode individually each hf� gmi is the entropy of the probability
distribution of the values taken by hf� gmi� This probability distri
bution might be very di�erent from the distribution of the normalized
energies jhf� gmij��kfk�� For example� if hf� gmi � A for � � m 
 N
then jhf� gmij��kfk� � N�� and the cost C�f�B� � logeN is maxi
mum� In contrast� the probability distribution of the inner product is
a discrete Dirac located at A and its entropy is therefore minimum and
equal to ��

lp Cost For p 
 �� $�x� � xp�� is concave for x � �� The resulting
cost is

C�f�B� �
NX

m��

jhf� gmijp
kfkp � �
����

Proposition 
�� proves that it is always bounded by

� � C�f�B� � N��p���
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This cost measures the lp norm of the coe�cients of f in B�

C��p�f�B� �
kfkB�p
kfk �

We derive from �
���� that the approximation error �M � is bounded
by

�M � � kfk�C��p�f�B�

��p� �

�

M��p�� �

The minimization of this lp cost can thus also be interpreted as a re
duction of the decay factor C such that

�M � � C

M��p�� �

	���� Fast Best Basis Search in Trees

A best wavelet packet or local cosine basis divides the timefrequency
plane into elementary atoms that are best adapted to approximate a
particular signal� The construction of dictionaries of wavelet packet
and local cosine bases is explained in Sections ��� and ���� For signals
of size N � these dictionaries include more than �N�� bases� The best
basis associated to f minimizes the cost

C�f�B�� �
N��X
m��

$

� jhf� g�mij�
kfk�

�
� �
����

Finding this minimum by a brute force comparison of the cost of all
wavelet packet or local cosine bases would require more than N�N��

operations� which is computationally prohibitive� The fast dynamic
programming algorithm of Coifman and Wickerhauser ����� �nds the
best basis with O�N log�N� operations� by taking advantage of the tree
structure of these dictionaries�

Dynamic Programming In wavelet packet and local cosine binary
trees� each node corresponds to a space Wp

j � which admits an orthonor
mal basis Bp

j of wavelet packets or local cosines� This space is divided
in two orthogonal subspaces located at the children nodes�

Wp
j � W�p

j�� �W�p��
j�� �
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In addition to Bp
j we can thus construct an orthogonal basis of Wp

j with

a union of orthogonal bases of W�p
j�� and W�p��

j�� � The root of the tree
corresponds to a space of dimension N � which is W�

� for local cosine
bases and W�

L with �L � N�� for wavelet packet bases�
The cost of f in a family of M � N orthonormal vectors B �

fgmg��m�M is de�ned by the partial sum

C�f�B� �
M��X
m��

$

� jhf� gmij�
kfk�

�
� �
����

This cost is additive in the sense that for any orthonormal bases B� and
B� of two orthogonal spaces

C�f�B� � B�� � C�f�B�� � C�f�B��� �
����

The best basis Op
j of Wp

j is the basis that minimizes the cost �
�����
among all the bases of Wp

j that can be constructed from the vectors
in the tree� The following proposition gives a recursive construction of
best bases� from bottom up along the tree branches�

Proposition �
 �Coifman� Wickerhauser� If C is an additive cost
function then

Op
j �

�O�p
j�� � O�p��

j�� if C�f�O�p
j��� � C�f�O�p��

j�� � 
 C�f�Bp
j �

Bp
j if C�f�O�p

j��� � C�f�O�p��
j�� � � C�f�Bp

j �
�
����

Proof �� The best basis Op
j is either equal to Bjp or to the union B� �B�

of two bases of W�p
j�� and W�p��

j�� � In this second case
 the additivity

property ������ implies that the cost of f in Op
j is minimum if B� and

B� minimize the cost of f in W�p
j�� and W�p��

j�� � Hence B� � O�p
j�� and

B� � O�p��
j�� � This proves that Op

j is either Bjp or O�p
j���O�p��

j�� � The best
basis is obtained by comparing the cost of these two possibilities�

The best basis of the space at the root of the tree is obtained by �nding
the best bases of all spaces Wp

j in the tree� with a bottomup progres
sion� At the bottom of the tree� each Wp

J is not subdecomposed� The
best basis of Wp

J is thus the only basis available� Op
J � Bp

J � The best
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bases of the spaces fWp
jgp are then recursively computed from the best

bases of the spaces fWp
j��gp with the aggregation relation �
����� Re

peating this for j 	 J until the root gives the best basis of f in W�
� for

local cosine bases and in W�
L for wavelet packet bases�

The fast wavelet packet or local cosine algorithms compute the
inner product of f with all the vectors in the tree with respectively
O�N log�N� and O�N�log�N��� operations� At a level of the tree in
dexed by j� there is a total of N vectors in the orthogonal bases fBp

jgp�
The costs fC�f�Bp

j �gp are thus calculated with O�N� operations by
summing �
����� The computation of the best basis of all the spaces
fWp

jgp from the best bases of fWp
j��gp via �
���� thus requires O�N�

operations� Since the depth of the tree is smaller than log�N � the best
basis of the space at the root is selected with O�N log�N� operations�

Best Bases of Images Wavelet packet and local cosine bases of
images are organized in quadtrees described in Sections ����� and ����	�
Each node of the quadtree is associated to a space Wp�q

j � which admits
a separable basis Bp�q

j of wavelet packet or local cosine vectors� This
space is divided into four subspaces located at the four children nodes�

Wp�q
j � W�p��q

j�� � W�p����q
j�� � W�p��q��

j�� � W�p����q��
j�� �

The union of orthogonal bases of the four children spaces thus de�nes
an orthogonal basis of Wp�q

j � At the root of the quadtree is a space of

dimension N�� which corresponds to W���
� for local cosine bases and to

W���
L with �L � N�� for wavelet packet bases�
Let Op�q

j be the best basis Wp�q
j for a signal f � Like Proposition


�� the following proposition relates the best basis of Wp�q
j to the best

bases of its children� It is proved with the same derivations�

Proposition � �Coifman� Wickerhauser� Suppose that C is an
additive cost function� If

C�f�Bp�q
j � 
 C�f�O�p��q

j�� � � C�f�O�p����q
j�� � �

C�f�O�p��q��
j�� � � C�f�O�p����q��

j�� �

then
Op�q
j � Bp�q

j
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otherwise

Op�q
j � O�p��q

j�� � O�p����q
j�� � O�p��q��

j�� � O�p����q��
j�� �

This recursive relation computes the best basis of fWp�q
j gp�q from the

best bases of the spaces fWp�q
j��gp�q� with O�N�� operations� Iterating

this procedure from the bottom of the tree to the top �nds the best
basis of f with O�N� log�N� calculations�

	���� Wavelet Packet and Local Cosine Best Bases

The performance of best wavelet packet and best local cosine approx
imations depends on the timefrequency properties of f � We evaluate
these approximations through examples that also reveal their limita
tions�

0 0.2 0.4 0.6 0.8 1

−1

0

1

t

f(t)

ω / 2π

t
0 0.2 0.4 0.6 0.8 1

0

50

100

150

200

250

Figure 
��� The top signal includes two hyperbolic chirps� The Heisen
berg boxes of the best wavelet packet basis are shown below� The dark
ness of each rectangle is proportional to the amplitude of the wavelet
packet coe�cient�

Best Wavelet Packet Bases A wavelet packet basis divides the
frequency axis into intervals of varying sizes� Each frequency interval
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is covered by a wavelet packet function that is translated uniformly in
time� A best wavelet packet basis can thus be interpreted as a �best�
frequency segmentation�

A signal is well approximated by a best wavelet packet basis if in
any frequency interval� the high energy structures have a similar time
frequency spread� The time translation of the wavelet packet that cov
ers this frequency interval is then well adapted to approximating all the
signal structures in this frequency range that appear at di�erent times�
Figure 
�� gives the best wavelet packet basis computed with the en
tropy $�u� � �u loge u� for a signal composed of two hyperbolic chirps�
The wavelet packet tree was calculated with the Symmlet � conjugate
mirror �lter� The timesupport of the wavelet packets is reduced at
high frequencies to adapt itself to the rapid modi�cation of the chirps%
frequency content� The energy distribution revealed by the wavelet
packet Heisenberg boxes is similar to the scalogram shown in Figure
����� Figure ��� gives another example of a best wavelet packet basis�
for a di�erent multichirp signal� Let us mention that the application
of best wavelet packet bases to pattern recognition remains di�cult be
cause they are not translation invariant� If the signal is translated� its
wavelet packet coe�cients are severely modi�ed and the minimization
of the cost function may yield a di�erent basis� This remark applies to
local cosine bases as well�

ξ 0

1

ξ
1

s 0

s1

s0

s1

u0 u

Figure 
�
� Timefrequency energy distribution of the four elementary
atoms in �
��
��
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If the signal includes di�erent types of high energy structures� lo
cated at di�erent times but in the same frequency interval� there is no
wavelet packet basis that is well adapted to all of them� Consider� for
example a sum of four transients centered respectively at u� and u�� at
two di�erent frequencies �� and ���

f�t� �
K�p
s�
g

�
t� u�
s�

�
exp�i��t� �

K�p
s�
g

�
t� u�
s�

�
exp�i��t��
��
�

�
K�p
s�
g

�
t� u�
s�

�
exp�i��t� �

K�p
s�
g

�
t� u�
s�

�
exp�i��t��

The smooth window g has a Fourier transform �g whose energy is concen
trated at low frequencies� The Fourier transform of the four transients
have their energy concentrated in frequency bands centered respectively
at �� and ���

�f��� � K�

p
s� �g

�
s��� � ���

�
exp��iu��� � ����

�K�

p
s� �g

�
s��� � ���

�
exp��iu��� � ����

� K�

p
s� �g

�
s��� � ���

�
exp��iu��� � ����

�K�

p
s� �g

�
s��� � ���

�
exp��iu��� � �����

If s� and s� have di�erent values� the time and frequency spread of these
transients is di�erent� which is illustrated in Figure 
�
� In the best
wavelet packet basis selection� the �rst transient K� s

����
� g�s��� �t� u��� exp�i��t�

�votes� for a wavelet packet whose scale �j is of the order s� at the fre
quency �� whereas K� s

����
� g�s��� �t� u��� exp�i��t� �votes� for a wavelet

packet whose scale �j is close to s� at the same frequency� The �best�
wavelet packet is adapted to the transient of highest energy� which
yields the strongest vote in the cost �
����� The energy of the smaller
transient is then spread across many �best� wavelet packets� The same
thing happens for the second pair of transients located in the frequency
neighborhood of ���

Speech recordings are examples of signals whose properties change
rapidly in time� At two di�erent instants� in the same frequency neigh
borhood� the signal may have a totally di�erent energy distributions�
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A best wavelet packet is not adapted to this time variation and gives
poor nonlinear approximations�

As in one dimension� an image is well approximated in a best wavelet
packet basis if its structures within a given frequency band have sim
ilar properties across the whole image� For natural scene images� the
best wavelet packet often does not provide much better nonlinear ap
proximations than the wavelet basis included in this wavelet packet
dictionary� For speci�c classes of images such as �ngerprints� one may
�nd wavelet packet bases that outperform signi�cantly the wavelet basis
���	��
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Figure 
���� Recording of bird song� The Heisenberg boxes of the best
local cosine basis are shown below� The darkness of each rectangle is
proportional to the amplitude of the local cosine coe�cient�

Best Local Cosine Bases A local cosine basis divides the time axis
into intervals of varying sizes� A best local cosine basis thus adapts the
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time segmentation to the variations of the signal timefrequency struc
tures� In comparison with wavelet packets� we gain time adaptation but
we lose frequency �exibility� A best local cosine basis is therefore well
adapted to approximating signals whose properties may vary in time�
but which do not include structures of very di�erent time and frequency
spread at any given time� Figure 
��� shows the Heisenberg boxes of
the best local cosine basis for the recording of a bird song� computed
with an entropy cost� Figure ���
 shows the best local cosine basis for
a speech recording�

The sum of four transients �
��
� is not e�ciently represented in a
wavelet packet basis but neither is it well approximated in a best local
cosine basis� Indeed� if the scales s� and s� are very di�erent� at u� and
u� this signal includes two transients at the frequency �� and �� that
have a very di�erent timefrequency spread� In each time neighborhood�
the size of the window is adapted to the transient of highest energy�
The energy of the second transient is spread across many local cosine
vectors� E�cient approximations of such signals require using larger
dictionaries of bases� which can simultaneously divide the time and
frequency axes in intervals of various sizes ������

Figure 
���� The grid shows the approximate support of square over
lapping windows in the best local cosine basis� computed with an l�

cost�



��� CHAPTER 	� AN APPROXIMATION TOUR

In two dimensions� a best local cosine basis divides an image into
square windows whose sizes are adapted to the spatial variations of
local image structures� Figure 
��� shows the best basis segmentation
of the Barbara image� computed with an l� cost calculated with $�u� �
u���� The squares are bigger in regions where the image structures
remain nearly the same� Figure ���� shows another example of image
segmentation with a best local cosine basis computed with the same cost
function� As in one dimension� a best local cosine basis is an e�cient
representation if the image does not include very di�erent frequency
structures in the same spatial region�

	�� Approximations with Pursuits �

A music recording often includes notes of di�erent durations at the
same time� which means that such a signal is not well represented in a
best local cosine basis� The same musical note may also have di�erent
durations when played at di�erent times� in which case a best wavelet
packet basis is also not well adapted to represent this sound� To approx
imate musical signals e�ciently� the decomposition must have the same
�exibility as the composer� who can freely choose the timefrequency
atoms �notes� that are best adapted to represent a sound�

Wavelet packet and local cosine dictionaries include P � N log�N
di�erent vectors� The set of orthogonal bases is much smaller than the
set of nonorthogonal bases that could be constructed by choosing N
linearly independent vectors from these P � To improve the approxi
mation of complex signals such as music recordings� we study general
nonorthogonal signal decompositions�

Consider the space of signals of size N � Let D � fgpg��p�P be
a redundant dictionary of P 	 N vectors� which includes at least N
linearly independent vectors� For any M � �� an approximation fM
of f may be calculated with a linear combination of any M dictionary
vectors�

fM �
M��X
m��

a�pm� gpm�

The freedom of choice opens the door to a considerable combinatorial
explosion� For general dictionaries of P 	 N vectors� computing the
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approximation fM that minimizes kf � fMk is an NP hard problem
������ This means that there is no known polynomial time algorithm
that can solve this optimization�

Pursuit algorithms reduce the computational complexity by search
ing for e�cient but nonoptimal approximations� A basis pursuit for
mulates the search as a linear programming problem� providing remark
ably good approximations with O�N��� log���� N� operations� For large
signals� this remains prohibitive� Matching pursuits are faster greedy
algorithms whose applications to large timefrequency dictionaries is
described in Section 
����� An orthogonalized pursuit is presented in
Section 
���	�

	���� Basis Pursuit

We study the construction of a �best� basis B� not necessarily orthog
onal� for e�ciently approximating a signal f � The N vectors of B �
fgpmg��m�N are selected from a redundant dictionary D � fgpg��p�P
with a pursuit elaborated by Chen and Donoho ���
�� Let us decompose
f in this basis�

f �
N��X
m��

a�pm� gpm� �
����

If we had restricted ourselves to orthogonal bases� Section 
�	�� explains
that the basis choice would be optimized by minimizing

C�f�B� �
N��X
m��

$

� ja�pm�j�
kfk�

�
� �
����

where $�u� is concave� For nonorthogonal bases� this result does not
hold in general�

Despite the absence of orthogonality� a basis pursuit searches for a
�best� basis that minimizes �
���� for $�u� � u����

C�f�B� �
�

kfk
N��X
m��

ja�pm�j� �
����

Minimizing the l� norm of the decomposition coe�cients avoids dif
fusing the energy of f among many vectors� It reduces cancellations
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between the vectors a�pm�gpm that decompose f � because such cancella
tions increase ja�pm�j and thus increase the cost �
����� The minimiza
tion of an l� norm is also related to linear programming� which leads
to fast computational algorithms�

Linear Programming Instead of immediately isolating subsets of
N vectors in the dictionary D� a linear system of size P is written with
all dictionary vectors

P��X
p��

a�p� gp�n� � f �n�� �
��	�

while trying to minimize
P��X
p��

ja�p�j� �
����

The system �
��	� can be expressed in matrix form with the P � N
matrix G � fgp�n�g��n�N���p�P

Ga � f� �
����

Although the minimization of �
���� is nonlinear� it can be reformulated
as a linear programming problem�

A standardform linear programming problem ���� is a constrained
optimization over positive vectors of size L� Let b�n� be a vector of size
N 
 L� c�p� a nonzero vector of size L and A�n� p� an L � N matrix�
We must �nd x�p� � RL such that x�p� � �� while minimizing

L��X
p��

x�p� c�p� �
����

subject to
Ax � b�

To reformulate the minimization of �
���� subject to �
���� as a
linear programming problem� we introduce �slack variables� u�p� � �
and v�p� � � such that

a�p� � u�p�� v�p��
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As a result

Ga � Gu�Gv � f �
����

and
P��X
p��

ja�p�j �
P��X
p��

u�p� �
P��X
p��

v�p�� �
����

We thus obtain a standard form linear programming of size L � �P
with

A � �G��G� � x �

�
u
v

�
� b � f � c � ��

The matrix A of size N � L has rank N because the dictionary D
includes N linearly independent vectors� A standard result of linear
programming ���� proves that the vector x has at most N nonzero
coe�cients� One can also verify that if a�p� 	 � then a�p� � u�p� and
v�p� � � whereas if a�p� � � then a�p� � v�p� and u�p� � �� In the
nondegenerate case� which is most often encountered� the nonzero
coe�cients of x�p� thus correspond to N indices fpmg��m�N such that
fgpmg��m�N are linearly independent� This is the best basis of RN that
minimizes the cost �
�����

Linear Programming Computations The collection of feasible
points fxjAx � b � x � �g is a convex polyhedron in RL � The ver
tices of this polyhedron are solutions x�p� having at most N nonzero
coe�cients� The linear cost �
���� can be minimum only at a vertex
of this polyhedron� In the nondegenerate case� the N nonzero coef
�cients correspond to N column vectors B � fgpmg��m�N that form a
basis�

One can also prove ���� that if the cost is not minimum at a given
vertex then there exists an adjacent vertex whose cost is smaller� The
simplex algorithm takes advantage of this property by jumping from
one vertex to an adjacent vertex while reducing the cost �
����� Going
to an adjacent vertex means that one of the zero coe�cients of x�p�
becomes nonzero while one nonzero coe�cient is set to zero� This is
equivalent to modifying the basis B by replacing one vector by another
vector of D� The simplex algorithm thus progressively improves the
basis by appropriate modi�cations of its vectors� one at a time� In the
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worst case� all vertices of the polyhedron will be visited before �nding
the solution� but the average case is much more favorable�

Since the �
��%s� more e�ective interior point procedures have been
developed� Karmarkar%s interior point algorithm ��	�� begins in the
middle of the polyhedron and converges by iterative steps towards the
vertex solution� while remaining inside the convex polyhedron� For
�nite precision calculations� when the algorithm has converged close
enough to a vertex� it jumps directly to the corresponding vertex� which
is guaranteed to be the solution� The middle of the polyhedron cor
responds to a decomposition of f over all vectors of D� typically with
P 	 N nonzero coe�cients� When moving towards a vertex some
coe�cients progressively decrease while others increase to improve the
cost �
����� If only N decomposition coe�cients are signi�cant� jump
ing to the vertex is equivalent to setting all other coe�cients to zero�
Each step requires computing the solution of a linear system� If A is
an N � L matrix then Karmarkar%s algorithm terminates with O�L����
operations� Mathematical work on interior point methods has led to
a large variety of approaches that are summarized in ������ The ba
sis pursuit of Chen and Donoho ���
� is implemented in WaveLab

with a �Logbarrier� method ������ which converges more quickly than
Karmarkar%s original algorithm

Wavelet Packet and Local Cosine Dictionaries These dictionar
ies have P � N log�N timefrequency atoms� A straightforward im
plementation of interior point algorithms thus requires O�N��� log���� N�
operations� By using the fast wavelet packet and local cosine transforms
together with heuristic computational rules� the number of operations
is considerably reduced ���
�� The algorithm still remains relatively
slow and the computations become prohibitive for N � �����

Figure 
��� decomposes a synthetic signal that has two high fre
quency transients followed by two lower frequency transients and two
Diracs for n 
 ���� The signal then includes two linear chirps that cross
each other and which are superimposed with localized sinusoidal waves�
In a dictionary of wavelet packet bases calculated with a Daubechies
� �lter� the best basis shown in Figure 
����c� optimizes the division
of the frequency axis� but it has no �exibility in time� It is therefore
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not adapted to the time evolution of the signal components� A basis
pursuit algorithm adapts the wavelet packet choice to the local signal
structures� Figure 
����d� shows that it better reveals its timefrequency
properties�

	���� Matching Pursuit

Despite the linear programming approach� a basis pursuit is compu
tationally expensive because it minimizes a global cost function over
all dictionary vectors� The matching pursuit introduced by Mallat
and Zhang ���
� reduces the computational complexity with a greedy
strategy� It is closely related to projection pursuit algorithms used in
statistics ����� and to shapegain vector quantizations ����� Vectors are
selected one by one from the dictionary� while optimizing the signal
approximation at each step�

Let D � fg�g��� be a dictionary of P 	 N vectors� having a unit
norm� This dictionary includes N linearly independent vectors that
de�ne a basis of the space C N of signals of size N � A matching pursuit
begins by projecting f on a vector g�� � D and computing the residue
Rf �

f � hf� g��i g�� � Rf� �
��
�

Since Rf is orthogonal to g��

kfk� � jhf� g��ij� � kRfk�� �
����

To minimize kRfk we must choose g�� � D such that jhf� g��ij is max
imum� In some cases� it is computationally more e�cient to �nd a
vector g�� that is almost optimal�

jhf� g��ij � � sup
���

jhf� g�ij� �
����

where � � ��� �� is an optimality factor� The pursuit iterates this
procedure by subdecomposing the residue� Let R�f � f � Suppose that
the mth order residue Rmf is already computed� for m � �� The next
iteration chooses g�m � D such that

jhRmf� g�mij � � sup
���

jhRmf� g�ij� �
����
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and projects Rmf on g�m �

Rmf � hRmf� g�mi g�m � Rm��f� �
��	�

The orthogonality of Rm��f and g�m implies

kRmfk� � jhRmf� g�mij� � kRm��fk�� �
����

Summing �
��	� from m between � and M � � yields

f �
M��X
m��

hRmf� g�mi g�m � RMf� �
����

Similarly� summing �
���� from m between � and M � � gives

kfk� �
M��X
m��

jhRmf� g�mij� � kRMfk�� �
����

The following theorem proves that kRmfk converges exponentially to
� when m tends to in�nity�

Theorem � There exists � 	 � such that for all m � �

kRmfk � ���m kfk� �
����

As a consequence

f �
��X
m��

hRmf� g�mi g�m � �
����

and

kfk� �
��X
m��

jhRmf� g�mij�� �
��
�

Proof �� Let us 	rst verify that there exists � � � such that for any
f � C N

sup
���

jhf� g�ij 
 � kfk� ������
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Figure 
���� �a�� Signal synthesized with a sum of chirps� truncated
sinusoids� short time transients and Diracs� The timefrequency images
display the atoms selected by di�erent adaptive timefrequency trans
forms� The darkness is proportional to the coe�cient amplitude� �b��
Gabor matching pursuit� Each dark blob is the WignerVille distribu
tion of a selected Gabor atom� �c�� Heisenberg boxes of a best wavelet
packet basis calculated with Daubechies � �lter� �d�� Wavelet packet
basis pursuit� �e�� Wavelet packet matching pursuit� �f�� Wavelet
packet orthogonal matching pursuit�
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Suppose that it is not possible to 	nd such a �� This means that we can
construct ffmgm�N with kfmk � � and

lim
m��� sup

���
jhfm� g�ij � �� ������

Since the unit sphere of C N is compact
 there exists a sub�sequence
ffmk

gk�N that converges to a unit vector f � C N � It follows that

sup
���

jhf� g�ij � lim
k���

sup
���

jhfmk
� g�ij � � ������

so hf� g�i � � for all g� � D� Since D contains a basis of C N 
 necessarily
f � � which is not possible because kfk � �� This proves that our initial
assumption is wrong
 and hence there exists � such that ������ holds�

The decay condition ������ is derived from the energy conservation

kRm��fk� � kRmfk� � jhRmf� gpmij��
The matching pursuit chooses g�m that satis	es

jhRmf� g�mij 
 � sup
���

jhRmf� g�ij� ������

and ������ implies that jhRmf� g�mij 
 ��kRmfk� So
kRm��fk � kRmfk ��� ��������� ������

which veri	es ������ for

��� � ��� �������� 	 ��

This also proves that limm��� kRmfk � �� Equation ������ and ������
are thus derived from ������ and �������

The convergence rate � decreases when the size N of the signal space
increases� In the limit of in�nite dimensional spaces� Jones% theorem
proves that the algorithm still converges but the convergence is not
exponential ��	�� ��
�� The asymptotic behavior of a matching pursuit
is further studied in Section ������� Observe that even in �nite dimen
sions� an in�nite number of iterations is necessary to completely reduce
the residue� In most signal processing applications� this is not an issue
because many fewer than N iterations are needed to obtain su�ciently
precise signal approximations� Section 
���	 describes an orthogonal
ized matching pursuit that converges in fewer than N iterations�
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Fast Network Calculations A matching pursuit is implemented
with a fast algorithm that computes hRm��f� g�i from hRmf� g�i with
a simple updating formula� Taking an inner product with g� on each
side of �
��	� yields

hRm��f� g�i � hRmf� g�i � hRmf� g�mi hg�m� g�i� �
�
��

In neural network language� this is an inhibition of hRmf� g�i by the se
lected pattern g�m with a weight hg�m� g�i that measures its correlation
with g�� To reduce the computational load� it is necessary to construct
dictionaries with vectors having a sparse interaction� This means that
each g� � D has nonzero inner products with only a small fraction of
all other dictionary vectors� It can also be viewed as a network that is
not fully connected� Dictionaries are designed so that nonzero weights
hg�� g�i can be retrieved from memory or computed with O��� opera
tions� A matching pursuit with a relative precision  is implemented
with the following steps�

�� Initialization Set m � � and compute fhf� g�ig����

�� Best match Find g�m � D such that

jhRmf� g�mij � � sup
���

jhRmf� g�ij� �
�
��

	� Update For all g� � D with hg�m � g�i 	� �

hRm��f� g�i � hRmf� g�i � hRmf� g�mi hg�m� g�i� �
�
��

�� Stopping rule If

kRm��fk� � kRmfk� � jhRmf� g�mij� � �kfk�

then stop� Otherwise m � m � � and go to ��

If D is very redundant� computations at steps � and 	 are reduced
by performing the calculations in a subdictionary Ds � fg�g���s � D�
The subdictionary Ds is constructed so that if g��m � Ds maximizes
jhf� g�ij inDs then there exists g�m � D which satis�es �
�
�� and whose
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index �m is �close� to ��m� The index �m is found with a local search�
This is done in timefrequency dictionaries where a subdictionary can
be su�cient to indicate a timefrequency region where an almost best
match is located� The updating �
�
�� is then restricted to vectors
g� � Ds�

The particular choice of a dictionary D depends upon the applica
tion� Speci�c dictionaries for inverse electromagnetic problems� face
recognition and data compression are constructed in ����� ��
� ��
��
In the following� we concentrate on dictionaries of local timefrequency
atoms�

Wavelet Packets and Local Cosines Wavelet packet and local co
sine trees constructed in Sections ����� and ����	 are dictionaries con
taining P � N log�N vectors� They have a sparse interaction and
nonzero inner products of dictionary vectors can be stored in tables�
Each matching pursuit iteration then requires O�N log�N� operations�

Figure 
����c� is an example of a matching pursuit decomposition
calculated in a wavelet packet dictionary� Compared to the best wavelet
packet basis shown in Figure 
����a�� it appears that the �exibility of
the matching pursuit selects wavelet packet vectors that give a more
compact approximation� which reveals better the signal timefrequency
structures� However� a matching pursuit requires more computations
than a best basis selection�

In this example� matching pursuit and basis pursuit algorithms give
similar results� In some cases� a matching pursuit does not perform
as well as a basis pursuit because the greedy strategy selects decom
position vectors one by one ���
�� Choosing decomposition vectors by
optimizing a correlation inner product can produce a partial loss of time
and frequency resolution ���
�� High resolution pursuits avoid the loss
of resolution in time by using nonlinear correlation measures ��
�� ��	�
but the greediness can still have adverse e�ects�

Translation Invariance Section ��� explains that decompositions
in orthogonal bases lack translation invariance and are thus di�cult to
use for pattern recognition� Matching pursuits are translation invariant
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if calculated in translation invariant dictionaries� A dictionary D is
translation invariant if for any g� � D then g��n�p� � D for � � p 
 N �
Suppose that the matching decomposition of f in D is

f �n� �
M��X
m��

hRmf� g�mi g�m �n� � RMf �n�� �
�
��

One can verify ����� that the matching pursuit of fp�n� � f �n�p� selects
a translation by p of the same vectors g�m with the same decomposition
coe�cients

fp�n� �
M��X
m��

hRmf� g�mi g�m�n� p� � RMfp�n��

Patterns can thus be characterized independently of their position� The
same translation invariance property is valid for a basis pursuit� How
ever� translation invariant dictionaries are necessarily very large� which
often leads to prohibitive calculations� Wavelet packet and local cosine
dictionaries are not translation invariant because at each scale �j the
waveforms are translated only by k �j with k � Z�

Translation invariance is generalized as an invariance with respect
to any group action ������ A frequency translation is another example
of a group operation� If the dictionary is invariant under the action
of a group then the pursuit remains invariant under the action of the
same group�

Gabor Dictionary A time and frequency translation invariant Ga
bor dictionary is constructed by Qian and Chen ����� as well as Mallat
and Zhong ���
�� by scaling� translating and modulating a Gaussian
window� Gaussian windows are used because of their optimal time and
frequency energy concentration� proved by the uncertainty Theorem
����

For each scale �j� a discrete window of period N is designed by
sampling and periodizing a Gaussian g�t� � ����e��t

�

�

gj�n� � Kj

��X
p���

g

�
n� pN

�j

�
�
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The constant Kj is adjusted so that kgjk � �� This window is then
translated in time and frequency� Let & be the set of indexes � �
�p� k� �j� for �p� k� � ��� N � ��� and j � ��� log�N �� A discrete Gabor
atom is

g��n� � gj�n� p� exp

�
i��kn

N

�
� �
�

�

The resulting Gabor dictionary D � fg�g��� is time and frequency
translation invariant modulo N � A matching pursuit decomposes real
signals in this dictionary by grouping atoms g�� and g�� with �	 �
�p�
k� �j�� At each iteration� instead of projecting Rmf over an atom
g�� the matching pursuit computes its projection on the plane generated
by �g��� g���� Since Rmf �n� is real� one can verify that this is equivalent
to projecting Rmf on a real vector that can be written

g�� �n� � Kj�� gj�n� p� cos

�
��kn

N
� �

�
�

The constant Kj�� sets the norm of this vector to � and the phase � is
optimized to maximize the inner product with Rmf � Matching pursuit
iterations yield

f �
��X
m��

hRmf� g�m�m i g�m�m � �
�����

This decomposition is represented by a timefrequency energy distribu
tion obtained by summing the WignerVille distribution PV g�m �n� k� of
the complex atoms g�m �

PMf �n� k� �
��X
m��

jhRmf� g�m�m ij� PV g�m �n� k�� �
�����

Since the window is Gaussian� if �m � �pm� km� �
jm� then PV g�m is a two

dimensional Gaussian blob centered at �pm� km� in the timefrequency
plane� It is scaled by �jm in time and N��jm in frequency�

Example �� Figure 
����b� gives the matching pursuit energy dis
tribution PMf �n� k� of a synthetic signal� The inner structures of this
signal appear more clearly than with a wavelet packet matching pursuit
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because Gabor atoms have a better timefrequency localization than
wavelet packets� and they are translated over a �ner timefrequency
grid�

Example �� Figure 
��	 shows the Gabor matching pursuit decom
position of the word �greasy�� sampled at �� kHz� The timefrequency
energy distribution shows the lowfrequency component of the �g� and
the quick burst transition to the �ea�� The �ea� has many harmon
ics that are lined up� The �s� is noise whose timefrequency energy
is spread over a highfrequency interval� Most of the signal energy is
characterized by a few timefrequency atoms� For m � ��� atoms�
kRmfk�kfk � ���
� although the signal has ���� samples� and the
sound recovered from these atoms is of excellent audioquality�
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Figure 
��	� Speech recording of the word �greasy� sampled at ��kHz�
In the timefrequency image� the dark blobs of various sizes are the
WignerVille distributions of a Gabor functions selected by the match
ing pursuit�

Matching pursuit calculations in a Gabor dictionary are performed
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with a subdictionary Ds� At each scale �j� the timefrequency indexes
�p� k� are subsampled at intervals a�j and aN��j where the sampling
factor a 
 � is small enough to detect the timefrequency regions where
the signal has high energy components� The step � of the matching
pursuit iteration �
�
�� �nds the Gabor atom in g��m � Ds which best
matches the signal residue� This match is then improved by search
ing for an atom g�m � D whose index �m is close to ��m and which
locally maximizes the correlation with the signal residue� The updat
ing formula �
�
�� is calculated for g� � Ds� Inner products between
two Gabor atoms are computed with an analytic formula ���
�� Since
Ds has O�N log�N� vectors� one can verify that each matching pursuit
iteration is implemented with O�N log�N� calculations�

	���� Orthogonal Matching Pursuit

The approximations of a matching pursuit are improved by orthogo
nalizing the directions of projection� with a GramSchmidt procedure
proposed by Pati et al� ����� and Davis et al� ������ The resulting
orthogonal pursuit converges with a �nite number of iterations� which
is not the case for a nonorthogonal pursuit� The price to be paid is the
important computational cost of the GramSchmidt orthogonalization�

The vector g�m selected by the matching algorithm is a priori not
orthogonal to the previously selected vectors fg�pg��p�m� When sub
tracting the projection of Rmf over g�m the algorithm reintroduces
new components in the directions of fg�pg��p�m� This is avoided by
projecting the residues on an orthogonal family fupg��p�m computed
from fg�pg��p�m�

Let us initialize u� � g�� � For m � �� an orthogonal matching
pursuit selects g�m that satis�es

jhRmf� g�mij � � sup
���

jhRmf� g�ij� �
�����

The GramSchmidt algorithm orthogonalizes g�m with respect to fg�pg��p�m
and de�nes

um � g�m �
m��X
p��

hg�m � upi
kupk� up� �
���	�
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The residue Rmf is projected on um instead of g�m �

Rmf �
hRmf� umi
kumk� um � Rm��f� �
�����

Summing this equation for � � m 
 k yields

f �
k��X
m��

hRmf� umi
kumk� um � Rkf �
�����

� PVk
f � Rkf�

where PVk
is the orthogonal projector on the space Vk generated by

fumg��m�k� The GramSchmidt algorithm ensures that fg�mg��m�k is
also a basis of Vk� For any k � � the residue Rkf is the component of
f that is orthogonal to Vk� For m � k �
���	� implies that

hRmf� umi � hRmf� g�mi� �
�����

Since Vk has dimension k there exists M � N such that f � VM � so
RMf � � and inserting �
����� in �
����� for k � M yields

f �
M��X
m��

hRmf� g�mi
kumk� um� �
�����

The convergence is obtained with a �nite number M of iterations� This
is a decomposition in a family of orthogonal vectors so

kfk� �
M��X
m��

jhRmf� g�mij�
kumk� � �
�����

To expand f over the original dictionary vectors fg�mg��m�M � we
must perform a change of basis� The triangular GramSchmidt relations
�
���	� are inverted to expand um in fg�pg��p�m�

um �
mX
p��

b�p�m� g�p� �
���
�
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Inserting this expression into �
����� gives

f �
M��X
p��

a��p� g�p �
�����

with

a��p� �
M��X
m�p

b�p�m�
hRmf� g�mi
kumk� �

During the �rst few iterations� the pursuit often selects nearly orthog
onal vectors� so the GramSchmidt orthogonalization is not needed�
The orthogonal and nonorthogonal pursuits are then nearly the same�
When the number of iterations increases and gets close to N � the
residues of an orthogonal pursuit have norms that decrease faster than
for a nonorthogonal pursuit�

Figure 
����f� displays the wavelet packets selected by an orthogo
nal matching pursuit� A comparison with Figure 
����e� shows that the
orthogonal and nonorthogonal pursuits selects nearly the same wavelet
packets having a high amplitude inner product� These wavelet packets
are selected during the �rst few iterations� and since they are nearly
orthogonal the GramSchmidt orthogonalization does not modify much
the pursuit� The di�erence between the two algorithms becomes sig
ni�cant when selected wavelet packet vectors have nonnegligible inner
products� which happens when the number of iterations is large�

The GramSchmidt summation �
���	� must be carefully imple
mented to avoid numerical instabilities ��
�� Orthogonalizing M vec
tors requires O�NM�� operations� In wavelet packet� local cosine and
Gabor dictionaries� M matching pursuit iterations are calculated with
O�MN log�N� operations� For M large� the GramSchmidt orthogo
nalization increases very signi�cantly the computational complexity of
the pursuit� The nonorthogonal pursuit is thus more often used for
large signals�

	�� Problems

���� � Prove that for any f � L��� ��
 if kfkV 	 �� then kfk� 	
��� Verify that one can 	nd an image f � L��� ��� such that
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kfkV 	 �� and kfk� � ���

���� � Prove that if f �Ws�R� with s � p� ��� then f � Cp�

���� � The family of discrete polynomials fpkn� � nkg��k�N is a basis
of C N �

�a� Implement in WaveLab a Gram�Schmidt algorithm that or�
thogonalizes fpkg��k�N �

�b� Let f be a signal of size N � Compute the polynomial fk of
degree k which minimizes kf � fkk� Perform numerical exper�
iments on signals f that are uniformly smooth and piecewise
smooth� Compare the approximation error with the error ob�
tained by approximating f with the k lower frequency Fourier
coe�cients�

���� � If f has bounded variation on �� ��
 prove that its linear ap�
proximation in a wavelet basis satis	es 
lM � � O�M��� �Hint�
use Theorem ����� Verify that 
lM � �M�� if f � �	�����
�

���� � Let �M � be a decreasing sequence such that limM��� �M � �
�� By using ������ prove that there exists a bounded variation
image f � L��� ��� such that 
lM � 
 �M ��

���� � Consider a wavelet basis of L��� �� constructed with wavelets
having q � s vanishing moments and which are Cq� Construct
functions f �Ws�� �� for which the linear and non�linear approx�
imation errors in this basis are identical� 
lM � � 
nM � for any
M 
 ��

���� � Color images A color pixel is represented by red
 green and
blue components �r� g� b�
 which are considered as orthogonal co�
ordinates in a three dimensional color space� The red rn�� n��

green gn�� n�� and blue bn�� n�� image pixels are modeled as val�
ues taken by respectively three random variables R
 G and B
 that
are the three coordinates of a color vector� Estimate numerically
the � by � covariance matrix of this color random vector from
several images and compute the Karhunen�Lo"eve basis that diag�
onalizes it� Compare the color images reconstructed from the two
Karhunen�Lo"eve color channels of highest variance with a recon�
struction from the red and green channels�

���� � Let us de	ne kxkp �
	P��

n��� jxn�jp
��p� Prove that kxkq �
kxkp if q 
 p�

���� � Let f�t� be a piecewise polynomial signal of degree � de	ned
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on �� ��
 with K discontinuities� We denote by fK and �fK re�
spectively the linear and non�linear approximations of f from K
vectors chosen from a Daubechies wavelet basis of L��� ��
 with
p� � vanishing moments�

�a� Give upper bounds as a function of K and p of kf � fKk and
kf � �fKk�

�b� The Piece�Polynomial signal f inWaveLab is piecewise poly�
nomial with degree �� Decompose it in a Daubechies wavelet
basis with four vanishing moments
 and compute kf�fKk and
kf � �fKk as a function of K� Verify your analytic formula�

����� � Let f n� be de	ned over �� N �� We denote by fp�kn� the signal
that is piecewise constant on �� k�
 takes at most p di�erent values

and minimizes


p�k � kf � fp�kk�	��k
 �
kX

n��

jf n�� fp�kn�j� �

�a� Compute as a function of f n� the value al�k that minimizes

cl�k �
Pk

n�l jf n�� al�kj��
�b� Prove that


p�k � min
l�	��k��


f
p���l � cl�kg�

Derive a bottom up algorithm that computes progressively fp�k
for � � k � N and � � p � K
 and obtains fK�N with
O�KN�� operations� Implement this algorithm inWaveLab�

�c� Compute the non�linear approximation of f with theK largest
amplitude Haar wavelet coe�cients
 and the resulting approx�
imation error� Compare this error with kf � fK�Nk as a func�
tion of K
 for the Lady and the Piece�Polynomial signals in
WaveLab� Explain your results�

����� � Approximation of oscillatory functions

�a� Let f�t� � a�t� expi��t��� If a�t� and ���t� remain nearly
constant on the support of �j�n then show with an approximate
calculation that

hf� �j�ni � a��jn�
p
�j ��

	
�j����jn�



� �������

�b� Let f�t� � sin t�� �	��������
�t�� Show that the lp norm of the
wavelet coe�cients of f is 	nite if and only if p 	 �� Use the
approximate formula ��������
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�c� Compute an upper bound of the non�linear approximation er�
ror 
M � of sin t�� from M wavelet coe�cients� Verify your
theoretical estimate with a numerical calculation in Wave�

Lab�

����� � Let f be a signal of size N and T a given threshold� Describe a
fast algorithm that searches in a wavelet packet or a local cosine
dictionary for the best basis B � fgmg��m�N that minimizes the
number of inner products such that jhf� gmij 
 T �

����� � Best translated basis Let f�j�mn�gj�m be a discrete wavelet
orthonormal basis of signals of period N 
 computed with a con�
jugate mirror 	lter h with K non�zero coe�cients� Let �kj�mn� �

�j�mn� k� and Bk � f�kj�mn�gj�m be the translated basis
 for any
� � k 	 N �

�a� Describe an algorithm that decomposes f over all wavelets
�kj�m with O�KN log�N� operations�

�b� Let C�f�Bk� �P
j�m�

�
jhf� �kj�mij��kfk�

�
� Describe an algo�

rithm that 	nds the best shift l such that C�f�Bl� � min
��k�N

C�f�Bk�

with O�N log�N� operations �����

����� � Best wavelet packet and local cosine approximations

�a� Synthesize a discrete signal that is well approximated by few
vectors in a best wavelet packet basis
 but which requires many
more vectors to obtain an equivalent approximation in a best
local cosine basis� Test your signal in WaveLab�

�b� Design a signal that is well approximated in a best local co�
sine basis but requires many more vectors to approximate it
e�cient in a best wavelet packet basis� Verify your result in
WaveLab�

����� � In two dimensions
 a wavelet packet quad�tree of an image of
size N� requires a storage of N� log�N numbers� Describe an
algorithm that 	nds the best wavelet packet basis with a storage
of �N���
 by constructing the wavelet packet tree and computing
the cost function in a depth�	rst preorder ����

����� � A double tree of block wavelet packet bases is de	ned in Problem
�����

�a� Describe a fast best basis algorithm which requiresO�N�log�N���
operations to 	nd the block wavelet packet basis that mini�
mizes an additive cost ������ �����
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�b� Implement the double tree decomposition and the best basis
search in WaveLab� Program a display that shows the time�
frequency tiling of the best basis and the amplitude of the
decomposition coe�cients� How does the best block wavelet
packet basis compare with a best local cosine basis for the
Greasy and Tweet signals�

����� � Let D � f�n � k� � exp �i��kn�N�g��k�N be a Dirac�Fourier
dictionary to decompose N periodic signals�

�a� Prove that a matching pursuit residue calculated with an op�
timality factor � � � satis	es kRmfk � kfk exp ��m���N���

�b� Implement the matching pursuit in this Dirac�Fourier dictio�
nary and decompose f n� � exp

	�i��n��N
� Compare the
decay rate of the residue with the upper bound that was cal�
culated� Suggest a better dictionary to decompose this signal�

����� � Let f be a piecewise constant image de	ned over �� N ��� Sup�
pose that f is constant over regions f#ig��k�K whose borders are
di�erentiable curves with a bounded curvature� It may be discon�
tinuous along the borders of the #i� Prove that there exists K � �
such that for any M � � one can construct fM which is constant
on the M triangles of a triangulation of �� N �� and which satis	es
kf �fMk � KM��� Design and implement inWaveLab an algo�
rithm which computes fM for any piecewise constant function f �
Compare the performance of your algorithm with an approxima�
tion withM vectors selected from a two�dimensional Haar wavelet
basis�

����� � Let ��t� be a cubic box spline centered at t � �� We de	ne a
dictionary of N periodic cubic splines�

D �
n
�j�n� k�modN �

o
��j�log�N � ��k�N

�

where �j n� � Kj ���
�jn� for j 
 �
 and ��n� � �n��

�a� Implement a matching pursuit in this dictionary�
�b� Show that if f n� � �j n� � �jn � k� where k is on the order

of �j 
 then the greediness of the matching pursuit may lead to
a highly non�optimal decomposition� Explain why� Would a
basis pursuit decomposition do better�

�c� If f n� 
 �
 explain how to improve the matching pursuit by
imposing that Rmf n� 
 � for any m 
 ��



Chapter ��

Estimations Are

Approximations

In a background noise of French conversations� it is easier to carry on
a personal discussion in English� The estimation of signals in additive
noise is similarly optimized by �nding a representation that discrimi
nates the signal from the noise�

An estimation is calculated by an operator that attenuates the noise
while preserving the signal� Linear operators have long predominated
because of their simplicity� despite their limited performance� It is
possible to keep the simplicity while improving the performance with
nonlinearities in a sparse representation� Thresholding estimators are
studied in wavelet and wavelet packet bases� where they are used to
suppress additive noises and restore signals degraded by lowpass �lters�
Nonlinear estimations from sparse representations are also studied for
operators� with an application to power spectrum estimation�

Optimizing an estimator requires taking advantage of prior informa
tion� Bayes theory uses a probabilistic signal model to derive estimators
that minimize the average risk� These models are often not available
for complex signals such as natural images� An alternative is o�ered
by the minimax approach� which only requires knowing a prior set
where the signal is guaranteed to be� The quasiminimax optimality of
wavelet thresholding estimators is proved for piecewise regular signals
and images�

���
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���� Bayes Versus Minimax �

A signal f �n� of size N is contaminated by the addition of a noise� This
noise is modeled as the realization of a random process W �n�� whose
probability distribution is known� The measured data are

X�n� � f �n� � W �n� �

The signal f is estimated by transforming the noisy data X with a
decision operator D� The resulting estimator is

�F � DX �

Our goal is to minimize the error of the estimation� which is measured
by a loss function� For speech or images� the loss function should mea
sure the audio and visual degradation� which is often di�cult to model�
A meansquare distance is certainly not a perfect model of perceptual
degradations� but it is mathematically simple and su�ciently precise
in most applications� Throughout this chapter� the loss function is
thus chosen to be a square Euclidean norm� The risk of the estimator
�F of f is the average loss� calculated with respect to the probability
distribution of the noise W �

r�D� f� � Efkf �DXk�g � ������

The optimization of the decision operator D depends on prior in
formation that is available about the signal� The Bayes framework
supposes that we know the probability distribution of the signal and
optimizes D to minimize the expected risk� The main di�culty is to
acquire enough information to de�ne this prior probability distribution�
which is often not possible for complex signals� The minimax frame
work uses a simpler model which says that signals remain in a prior
set '� The goal is then to minimize the maximum risk over '� Sec
tion ������ relates minimax and Bayes estimators through the minimax
theorem�

������ Bayes Estimation

The Bayes principle supposes that signals f are realizations of a ran
dom vector F whose probability distribution � is known a priori� This
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probability distribution is called the prior distribution� The noisy data
are thus rewritten

X�n� � F �n� � W �n� �

We suppose that the noise values W �k� are independent from the signal
F �n� for any � � k� n 
 N � The joint distribution of F and W is the
product of the distributions of F and W � It speci�es the conditional
probability distribution of F given the observed data X� also called
the posterior distribution� This posterior distribution can be used to
construct a decision operator D that computes an estimation �F � DX
of F from the data X�

The Bayes risk is the expected risk calculated with respect to the
prior probability distribution � of the signal�

r�D� �� � E�fr�F�D�g �

By inserting ������� it can be rewritten as an expected value relative to
the joint probability distribution of the signal and the noise�

r�D� �� � EfkF � �Fk�g �
N��X
n��

EfjF �n�� �F �n�j�g�

Let On be the set of all operators �linear and nonlinear� from C
N to

C
N � Optimizing D yields the minimum Bayes risk�

rn��� � inf
D�On

r�D� �� �

The following theorem proves that there exist a Bayes decision operator
D and a corresponding Bayes estimator �F that achieve this minimum
risk�

Theorem ���� The Bayes estimator �F that yields the minimum Bayes
risk rn��� is the conditional expectation

�F �n� � EfF �n� j X���� X���� ���� X�N � ��g� ������

Proof �� Let �n�y� be the probability distribution of the value y of F n��
The minimum risk is obtained by 	nding �F n� � Dn�X� that minimizes
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r�Dn� �n� � EfjF n�� �F n�j�g
 for each � � n 	 N � This risk depends on
the conditional distribution Pn�xjy� of the data X � x
 given F n� � y�

r�Dn� �n� �

Z Z
�Dn�x�� y�� dPn�xjy� d�n�y� �

Let P �x� �
R
Pn�xjy� d�n�y� be the marginal distribution of X and

�n�yjx� be the posterior distribution of F n� given X� The Bayes formula
gives

r�Dn� �n� �

Z �Z
�Dn�x�� y�� d�n�yjx�

�
dP �x� �

The double integral is minimized by minimizing the inside integral for
each x� This quadratic form is minimum when its derivative vanishes�

�

�Dn�x�

Z
�Dn�x�� y�� d�n�yjx� � �

Z
�Dn�x�� y� d�n�yjx� � �

which implies that

Dn�x� �

Z
y d�n�yjx� � EfF n� j X � xg �

so Dn�X� � EfF n� j Xg�

Linear Estimation The conditional expectation ������ is generally
a complicated nonlinear function of the data fX�k�g��k�N � and is dif
�cult to evaluate� To simplify this problem� we restrict the decision
operator D to be linear� Let Ol be the set of all linear operators from
C N to C N � The linear minimum Bayes risk is�

rl��� � inf
D�Ol

r�D� �� �

The linear estimator �F � DF that achieves this minimum risk is called
the Wiener estimator� The following proposition gives a necessary
and su�cient condition that speci�es this estimator� We suppose that
EfF �n�g � �� which can be enforced by subtracting EfF �n�g from X�n�
to obtain a zeromean signal�

Proposition ���� A linear estimator �F is a Wiener estimator if and
only if

Ef�F �n�� �F �n��X�k�g � � for � � k� n 
 N � ����	�
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Proof �� For each � � n 	 N 
 we must 	nd a linear estimation

�F n� � DnX �

N��X
k��

hn� k�Xk�

which minimizes

r�Dn� �n� � E

��
F n��

N��X
k��

hn� k�Xk�

��
F n��

N��X
k��

hn� k�Xk�

��
�

������
The minimum of this quadratic form is reached if and only if for each
� � k 	 N 


�r�Dn� �n�

�hn� k�
� ��E

��
F n��

N��X
l��

hn� l�Xl�

�
Xk�

�
� ��

which veri	es �������

If F and W are independent Gaussian random vectors� then the linear
optimal estimator is also optimal among nonlinear estimators� Indeed�
two jointly Gaussian random vectors are independent if they are non
correlated ����� Since F �n�� �F �n� is jointly Gaussian with X�k�� the non
correlation ����	� implies that F �n� � �F �n� and X�k� are independent
for any � � k� n 
 N � In this case� we can verify that �F is the Bayes
estimator ������� �F �n� � EfF �n� j Xg�

Estimation in a Karhunen�Lo�eve Basis The following theorem
proves that if the covariance matrices of the signal F and of the noise
W are diagonal in the same KarhunenLo!eve basis B � fgmg��m�N

then the optimal linear estimator is diagonal in this basis� We write

XB�m� � hX� gmi � �FB�m� � h �F � gmi �

FB�m� � hF� gmi � WB�m� � hW� gmi �
��
m � EfjFB�m�j�g � ��

m � EfjWB�m�j�g �
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Theorem ���� �Wiener� If there exists a Karhunen�Lo�eve basis B �
fgmg��m�N that diagonalizes the covariance matrices of both F and W �
then the Wiener estimator is

�F �
N��X
m��

��
m

��
m � ��

m

XB�m� gm ������

and the resulting minimum linear Bayes risk is

rl��� �
N��X
m��

��
m ��

m

��
m � ��

m

� ������

Proof �� Let �F n� be a linear estimator of F n��

�F n� �

N��X
l��

hn� l�Xl�� ������

This equation can be rewritten as a matrix multiplication by introducing
the N 	N matrix H � �hn� l����n�l�N �

�F � H X� ������

The non�correlation condition ������ implies that for � � n� k 	 N

EfF n�Xk�g � Ef �F n�Xk�g �

N��X
l��

hn� l�EfXl�Xk�g�

Since Xk� � F k� �W k� and EfF n�W k�g � �
 we derive that

EfF n�F k�g �
N��X
l��

hn� l�
�
EfF l�F k�g � EfW l�W k�g

�
� ������

Let RF and RW be the covariance matrices of F and W 
 whose entries
are respectively EfF n�F k�g and EfW n�W k�g� Equation ������ can
be rewritten as a matrix equation�

RF � H �RF �RW ��

Inverting this equation gives

H � RF �RF �RW ����
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Since RF and RW are diagonal in the basis B with diagonal values re�
spectively equal to ��m and ��m
 the matrix H is also diagonal in B with
diagonal values equal to ��m���m � ��m�

��� So ������ shows that the de�
composition coe�cients of �F and X in B satisfy

�FBm� �
��m

��m � ��m
XBm�� �������

which implies �������

The resulting risk is

EfkF � �Fk�g �
N��X
m��

E

n
jFBm�� �FBm�j�

o
� �������

Inserting ������� in ������� knowing that XBm� � FBm��WBm� where
FBm� and WBm� are independent yields �������

This theorem proves that the Wiener estimator is implemented with
a diagonal attenuation of each data coe�cient XB�m� by a factor that
depends on the signal to noise ratio ��

m��
�
m in the direction of gm� The

smaller the signal to noise ratio� the more attenuation is required� If F
and W are Gaussian processes� then the Wiener estimator is optimal
among linear and nonlinear estimators of F �

If W is a white noise then its coe�cients are uncorrelated with the
same variance

EfW �n�W �k�g � �� ��n� k� �

Its covariance matrix is therefore RW � �� Id� It is diagonal in all
orthonormal bases and in particular in the KarhunenLo!eve basis of F �
Theorem ���� can thus be applied and �m � � for � � m 
 N �

Frequency Filtering Suppose that F and W are zeromean� wide
sense circular stationary random vectors� The properties of such pro
cesses are reviewed in Appendix A��� Their covariance satis�es

E fF �n�F �k�g � RF �n� k� � E fW �n�W �k�g � RW �n� k� �

where RF �n� and RW �n� are N periodic� These matrices correspond to
circular convolution operators and are therefore diagonal in the discrete
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Fourier basis �
gm�n� �

�p
N

exp

�
i�m�n

N

��
��m�N

�

The eigenvalues ��
m and ��

m are the discrete Fourier transforms of RF �n�
and RW �n�� also called power spectra�

��
m �

N��X
n��

RF �n� exp

��i�m�n

N

�
� �RF �m� �

��
m �

N��X
n��

RW �n� exp

��i�m�n

N

�
� �RW �m��

The Wiener estimator ������ is a diagonal operator in the discrete
Fourier basis� computed with the frequency �lter�

�h�m� �
�RF �m�

�RF �m� � �RW �m�
� �������

It is therefore a circular convolution�

�F �n� � DX � X �� h�n��

The resulting risk is calculated with �������

rl��� � EfkF � �Fk�g �
N��X
m��

�RF �m� �RW �m�

�RF �m� � �RW �m�
� �����	�

The numerical value of the risk is often speci�ed by the Signal to Noise
Ratio� which is measured in decibels

SNRdb � �� log��

�
EfkFk�g

EfkF � �Fk�g

�
� �������
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Figure ����� �a�� Realization of a Gaussian process F � �b�� Noisy
signal obtained by adding a Gaussian white noise �SNR � ����� db��
�c�� Wiener estimation �F �SNR � ���� db��
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Example ���� Figure �����a� shows a realization of a Gaussian pro
cess F obtained as a convolution of a Gaussian white noise B of variance
�� with a lowpass �lter g�

F �n� � B �� g�n��

with
g�n� � C cos�

� �n
�K

�
�	�K�K
�n� �

Theorem A�� proves that

�RF �m� � �RB�m� j�g�m�j� � �� j�g�m�j��

The noisy signal X shown in Figure �����b� is contaminated by a Gaus
sian white noise W of variance ��� so �RW �m� � ��� The Wiener esti
mation �F is calculated with the frequency �lter �������

�h�m� �
�� j�g�m�j�

�� j�g�m�j� � ��
�

This linear estimator is also an optimal nonlinear estimator because F
and W are jointly Gaussian random vectors�

Piecewise Regular The limitations of linear estimators appear clearly
for processes whose realizations are piecewise regular signals� A sim
ple example is a random shift process F constructed by translating
randomly a piecewise regular signal f �n� of zero mean�

PN��
n�� f �n� � ��

F �n� � f ��n� P � modN � � �������

The shift P is an integer random variable whose probability distribution
is uniform on ��� N ���� It is proved in �
���� that F is a circular wide
sense stationary process whose power spectrum is calculated in �
�����

�RF �m� �
�

N
j �f �m�j�� �������

Figure ���� shows an example of a piecewise polynomial signal f of
degree d � 	 contaminated by a Gaussian white noise W of variance ���
Assuming that we know j �f �m�j�� the Wiener estimator �F is calculated as
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Figure ����� �a�� Piecewise polynomial of degree 	� �b�� Noisy signal
degraded by a Gaussian white noise �SNR � ���
 db�� �c�� Wiener
estimation �SNR� ���
 db��
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a circular convolution with the �lter whose transfer function is ��������
This Wiener �lter is a lowpass �lter that averages the noisy data to
attenuate the noise in regions where the realization of F is regular�
but this averaging is limited to avoid degrading the discontinuities too
much� As a result� some noise is left in the smooth regions and the
discontinuities are averaged a little� The risk calculated in �����	� is
normalized by the total noise energy EfkWk�g � N ���

rl���

N ��
�

N��X
m��

N�� j �f �m�j�
j �f �m�j� � N ��

� �������

Suppose that f has discontinuities of amplitude on the order of C � �
and that the noise energy is not negligible� N �� � C�� Using the fact
that j �f �m�j decays typically like C N m��� a direct calculation of the
risk ������� gives

rl���

N ��
� C

�N���
� �������

The equivalence � means that upper and lower bounds of the lefthand
side are obtained by multiplying the righthand side by two constants
A�B 	 � that are independent of C� � and N �

The estimation of F can be improved by nonlinear operators� which
average the data X over large domains where F is regular but do not
make any averaging where F is discontinuous� Many estimators have
been studied ���	� ���� that estimate the position of the discontinuities
of f in order to adapt the data averaging� These algorithms have
long remained ad hoc implementations of intuitively appealing ideas�
Wavelet thresholding estimators perform such an adaptive smoothing
and Section ���	�	 proves that the normalized risk decays like N�� as
opposed to N���� in ��������

������ Minimax Estimation

Although we may have some prior information� it is rare that we know
the probability distribution of complex signals� This prior information
often de�nes a set ' to which signals are guaranteed to belong� without
specifying their probability distribution in '� The more prior informa
tion� the smaller the set '� For example� we may know that a signal
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has at most K discontinuities� with bounded derivatives outside these
discontinuities� This de�nes a particular prior set '� Presently� there
exists no stochastic model that takes into account the diversity of natu
ral images� However� many images� such as the one in Figure ���� have
some form of piecewise regularity� with a bounded total variation� This
also speci�es a prior set '�

The problem is to estimate f � ' from the noisy data

X�n� � f �n� � W �n� �

The risk of an estimation �F � DX is r�D� f� � EfkDX � fk�g� The
expected risk over ' cannot be computed because we do not know the
probability distribution of signals in '� To control the risk for any
f � '� we thus try to minimize the maximum risk�

r�D�'� � sup
f��

EfkDX � fk�g�

The minimax risk is the lower bound computed over all linear and
nonlinear operators D�

rn�'� � inf
D�On

r�D�'��

In practice� we must �nd a decision operator D that is simple to im
plement and such that r�D�'� is close to the minimax risk rn�'��

As a �rst step� as for Wiener estimators in the Bayes framework�
we can simplify the problem by restricting D to be a linear operator�
The linear minimax risk over ' is the lower bound�

rl�'� � inf
D�Ol

r�D�'��

This strategy is e�cient only if rl�'� is of the same order as rn�'��

Bayes Priors A Bayes estimator supposes that we know the prior
probability distribution � of signals in '� If available� this supplement
of information can only improve the signal estimation� The central
result of game and decision theory shows that minimax estimations are
Bayes estimations for a �least favorable� prior distribution�
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Let F be the signal random vector� whose probability distribution
is given by the prior �� For a decision operator D� the expected risk
is r�D� �� � E�fr�D�F �g� The minimum Bayes risks for linear and
nonlinear operators are de�ned by�

rl��� � inf
D�Ol

r�D� �� and rn��� � inf
D�On

r�D� �� �

Let '� be the set of all probability distributions of random vectors
whose realizations are in '� The minimax theorem relates a minimax
risk and the maximum Bayes risk calculated for priors in '��

Theorem ���� �Minimax� For any subset ' of C N

rl�'� � sup
����

rl��� and rn�'� � sup
����

rn��� � �����
�

Proof �� For any � � $�

r�D��� � r�D�$� �������

because r�D��� is an average risk over realizations of F that are in $

whereas r�D�$� is the maximum risk over $� Let O be a convex set of
operators �either Ol or On�� The inequality ������� implies that

sup
����

r��� � sup
����

inf
D�O

r�D��� � inf
D�O

r�D�$� � r�$� � �������

The main di�culty is to prove the reverse inequality� r�$� � sup���� r����
When $ is a 	nite set
 the proof gives an important geometrical interpre�
tation of the minimum Bayes risk and the minimax risk� The extension
to an in	nite set $ is sketched�

Suppose that $ � ffig��i�p is a 	nite set of signals� We de	ne a
risk set�

R � f�y�� ���� yp� � C
p � �D � O with yi � r�D� fi� for � � i � pg �

This set is convex in C p because O is convex� We begin by giving geo�
metrical interpretations to the Bayes risk and the minimax risk�

A prior � � $� is a vector of discrete probabilities ���� ���� �p� and

r���D� �

pX
i��

�i r�D� fi� � �������
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The equation
Pp

i�� �i yi � b de	nes a hyperplane Pb in C
p � Computing

r��� � infD�O r�D��� is equivalent to 	nding the in	mum b� � r��� of
all b for which Pb intersects R� The plane Pb� is tangent to R as shown
in Figure �����

The minimax risk r�$� has a di�erent geometrical interpretation�
Let Qc � f�y�� ���� yp� � C

p � yi � cg One can verify that r�$� �
infD�O supfi�� r�D� fi� is the in	mum c� � r�$� of all c such that Qc

intersects R�

c0

c0

����

�
�
�
�

r(D,f  )

r(D,f  )

τ

π
RBayes

Minimax

Q

0c

2

1

Figure ���	� At the Bayes point� a hyperplane de�ned by the prior
� is tangent to the risk set R� The least favorable prior � de�nes a
hyperplane that is tangential to R at the minimax point�

To prove that r�$� � sup���� r��� we look for a prior distribution
 � $� such that r�� � r�$�� Let �Qc� be the interior of Qc� � Since

�Qc��
R � � and both �Qc� and R are convex sets
 the hyperplane separation
theorem says that there exists a hyperplane of equation

pX
i��

i yi �  � y � b � �������

with  � y � b for y � �Qc� and  � y 
 b for y � R� Each i 
 �
 for
if j 	 � then for y � �Qc� we obtain a contradiction by taking yj to
�� with the other coordinates being 	xed� Indeed
  � y goes to ��
and since y remains in �Qc� it contradicts the fact that  � y � b� We can
normalize

Pp
i�� i � � by dividing each side of ������� by

Pp
i�� i � �� So

 corresponds to a probability distribution� By letting y � �Qc� converge
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to the corner point �c�� ���� c��
 since y �  � b we derive that c� � b�
Moreover
 since  � y 
 b for all y � R


r�� � inf
D�O

pX
i��

i r�D� fi� 
 c 
 c� � r�$� �

So r�$� � sup���� r��� which
 together with �������
 proves that r�$� �
sup���� r����

The extension of this result to an in	nite set of signals $ is done with
a compacity argument� When O � Ol or O � On
 for any prior � � $�

we know from Theorem ���� and Proposition ���� that infD�O r�D���
is reached by some Bayes decision operator D � O� One can verify that
there exists a subset of operators C that includes the Bayes operator for
any prior � � $�
 and such that C is compact for an appropriate topology�
When O � Ol
 one can choose C to be the set of linear operators of
norm smaller than �
 which is compact because it belongs to a 	nite
dimensional space of linear operators� Moreover
 the risk r�f�D� can be
shown to be continuous in this topology with respect to D � C�

Let c 	 r�$�� For any f � $ we consider the set of operators
Sf � fD � C � r�D� f� � cg� The continuity of r implies that Sf is
an open set� For each D � C there exists f � $ such that D � Sf 

so C � �f��Sf � Since C is compact there exists a 	nite subcovering
C � ���i�pSfi � The minimax risk over $c � ffig��i�p satis	es

r�$c� � inf
D�O

sup
��i�p

r�D� fi� 
 c �

Since $c is a 	nite set
 we proved that there exists c � $�c � $�

such that r�c� � r�$c�� But r�$c� 
 c so letting c go to r�$� im�
plies that sup���� r��� 
 r�$�� Together with ������� this shows that
inf���� r�� � r�$��

A distribution � � '� such that r��� � inf���� r��� is called a least
favorable prior distribution� The minimax theorem proves that the
minimax risk is the minimum Bayes risk for a least favorable prior�

In signal processing� minimax calculations are often hidden behind
apparently orthodox Bayes estimations� Let us consider an example
involving images� It has been observed that histograms of the wavelet
coe�cients of �natural� images can be modeled with generalized Gaus
sian distributions ����� 	���� This means that natural images belong
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to a certain set '� but it does not specify a prior distribution over this
set� To compensate for the lack of knowledge about the dependency of
wavelet coe�cients spatially and across scales� one may be tempted to
create a �simple probabilistic model� where all wavelet coe�cients are
considered to be independent� This model is clearly wrong since im
ages have geometrical structures that create strong dependencies both
spatially and across scales �see Figure ������ However� calculating a
Bayes estimator with this inaccurate prior model may give valuable
results when estimating images� Why( Because this �simple� prior is
often close to a least favorable prior� The resulting estimator and risk
are thus good approximations of the minimax optimum� If not chosen
carefully� a �simple� prior may yield an optimistic risk evaluation that
is not valid for real signals� Understanding the robustness of uncertain
priors is what minimax calculations are often about�

���� Diagonal Estimation in a Basis �

It is generally not possible to compute the optimal Bayes or minimax
estimator that minimizes the risk among all possible operators� To
manage this complexity� the most classical strategy limits the choice of
operators among linear operators� This comes at a cost� because the
minimum risk among linear estimators may be well above the minimum
risk obtained with nonlinear estimators� Figure ���� is an example
where the linear Wiener estimation can be considerably improved with
a nonlinear averaging� This section studies a particular class of non
linear estimators that are diagonal in a basis B� If the basis B de�nes a
sparse signal representation� then such diagonal estimators are nearly
optimal among all nonlinear estimators�

Section ������ computes a lower bound for the risk when estimating
an arbitrary signal f with a diagonal operator� Donoho and Johnstone
����� made a fundamental breakthrough by showing that thresholding
estimators have a risk that is close to this lower bound� The general
properties of thresholding estimators are introduced in Sections ������
and �����	� Thresholding estimators in wavelet bases are studied in
Section ������� They implement an adaptive signal averaging that is
much more e�cient than linear operators to estimate piecewise regular
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signals� Section ������ ends this section by explaining how to search
for a best basis that minimizes the risk� The minimax optimality of
diagonal operators for estimating signals in a prior set ' is studied in
Section ���	�

������ Diagonal Estimation with Oracles

We consider estimators computed with a diagonal operator in an or
thonormal basis B � fgmg��m�N � Lower bounds for the risk are com
puted with �oracles�� which simplify the estimation by providing in
formation about the signal that is normally not available� These lower
bounds are closely related to errors when approximating signals from a
few vectors selected in B�

The noisy data
X � f � W �������

is decomposed in B� We write

XB�m� � hX� gmi � fB�m� � hf� gmi and WB�m� � hW� gmi �

The inner product of ������� with gm gives

XB�m� � fB�m� � WB�m��

We suppose that W is a zeromean white noise of variance ��� which
means

EfW �n�W �k�g � �� ��n� k� �

The noise coe�cients

WB�m� �
N��X
n��

W �n� g�m�n�

also de�ne a white noise of variance ��� Indeed�

EfWB�m�WB�p�g �
N��X
n��

N��X
k��

gm�n� gp�k�EfW �n�W �k�g

� �� hgp� gmi � �� ��p�m��
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Since the noise remains white in all bases� it does not in�uence the
choice of basis� When the noise is not white� which is the case for
the inverse problems of Section ����� the noise can have an important
impact on the basis choice�

A diagonal operator estimates independently each fB�m� fromXB�m�
with a function dm�x�� The resulting estimator is

�F � DX �
N��X
m��

dm�XB�m�� gm � �������

The class of signals that are considered is supposed to be centered at
�� so we set D � � � and hence dm��� � �� As a result� we can write

dm�XB�m�� � a�m�XB�m� for � � m 
 N �

where a�m� depends on XB�m�� The operator D is linear when a�m� is
a constant independent of XB�m�� We shall see that a smaller risk is
obtained with ja�m�j � �� which means that the diagonal operator D
attenuates the noisy coe�cients�

Attenuation With Oracle Let us �nd the a�m� that minimizes the
risk r�D� f� of the estimator ��������

r�D� f� � E

n
kf � �Fk�

o
�

N��X
m��

EfjfB�m��XB�m� a�m�j�g � �������

Since XB � fB � WB and EfjWB�m�j�g � �� it follows that

EfjfB�m��XB�m� a�m�j�g � jfB�m�j� ��� a�m��� � �� a�m��� �������

This risk is minimum for

a�m� �
jfB�m�j�

jfB�m�j� � ��
� �������

in which case

rinf�f� � Efkf � �Fk�g �
N��X
m��

jfB�m�j� ��

jfB�m�j� � ��
� �����
�
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In practice� the attenuation factor a�m� in ������� cannot be computed
since it depends on jfB�m�j� whose value is not known� The risk rinf�f�
is therefore a lower bound which is not reachable� This risk is obtained
with an oracle that provides information that is normally not available�
Section ������ shows that one can get close to rinf�f� with a simple
thresholding�

Linear Projection The analysis of diagonal estimators can be sim
pli�ed by restricting a�m� � f�� �g� When a�m� � �� the estimator
�F � DX selects the coe�cient XB�m�� and it removes it if a�m� � ��

If each a�m� is a constant� then D is a linear orthonormal projec
tion on the space generated by the M vectors gm such that a�m� � ��
Suppose that a�m� � � for � � m 
 M � The risk ������� becomes

r�D� f� �
N��X
m�M

jfB�m�j� � M �� � l�M � � M �� � ����	��

where l�M � is the linear approximation error computed in �
���� The
two terms l�M � and M �� are respectively the bias and the variance
components of the estimator� To minimize r�D� f�� the parameter M
is adjusted so that the bias is of the same order as the variance� When
the noise variance �� decreases� the following proposition proves that
the decay rate of r�D� f� depends on the decay rate of l�M � as M
increases�

Proposition ���� If l�M � � C�M���s with � � C�� � N s then

min
M

r�D� f� � C��s �����s � ����	��

Proof �� Let M� be de	ned by�

�M� � ���� 
 
lM�� 
M� �
� �

Since 
lM � � C�M���s we get M� � Cs��s� The condition � � C�� �
N s ensures that � �M� � N � The risk ������� satis	es

M� �
� � min

M
r�D� f� � ��M� � ���� � �������

and M� � Cs��s implies ��������
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Projection With Oracle The nonlinear projector that minimizes
the risk ������� is de�ned by

a�m� �

�
� if jfB�m�j � �
� if jfB�m�j 
 �

� ����		�

This projector cannot be implemented because a�m� depends on jfB�m�j
instead of XB�m�� It uses an �oracle� that keeps the coe�cients fB�m�
that are above the noise� The risk of this oracle projector is computed
with ��������

rp�f� � Efkf � �Fk�g �
N��X
m��

min�jfB�m�j�� ���� ����	��

Since for any x� y

min�x� y� � x y

x � y
� �

�
min�x� y�

the risk of the oracle projector ����	�� is of the same order as the risk
of an oracle attenuation �����
��

rp�f� � rinf�f� � �

�
rp�f� � ����	��

As in the linear case� the risk of an oracle projector can be related
to the approximation error of f in the basis B� Let M be the number
of coe�cients such that jfB�m�j � �� The optimal nonlinear approxi
mation of f by these M larger amplitude coe�cients is

fM �
X

jfB	m
j��
fB�m� gm �

The approximation error is studied in Section 
���

n�M � � kf � fMk� �
X

jfB	m
j��
jfB�m�j��

The risk ����	�� of an oracle projection can thus be rewritten

rp�f� �
N��X
m��

min�jfB�m�j�� ��� � n�M � � M ��� ����	��

The following proposition proves that when � decreases� the decay of
this risk depends on the decay of n�M � as M increases�
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Proposition ���� If n�M � � C�M���s with � � C�� � N s� then

rp�f� � C��s �����s � ����	��

Proof �� Let f rBk� � fBmk� be the coe�cient of rank k in decreasing
order� jf rBk�j 
 jf rBk � ��j� If 
nM � � C�M���s then Theorem ���
proves that jf rBk�j � C k�s�

Since jf rBM �j 
 � � jf rBM � ��j we derive that M � �C�����s�
The condition � � C�� � N s guarantees � � M 	 N � It follows that

nM � �M �� and ������� is derived from ��������

Propositions ���� and ���	 prove that the performance of linear and ora
cle projection estimators depends respectively on the precision of linear
and nonlinear approximations in the basis B� Having an approxima
tion error that decreases quickly means that one can then construct a
sparse and precise signal representation with only a few vectors in B�
Section 
�� shows that nonlinear approximations can be much more
precise� in which case the risk of a nonlinear oracle projection is much
smaller than the risk of a linear projection�

������ Thresholding Estimation

In a basis B � fgmg��m�N � a diagonal estimator of f from X � f �W
can be written

�F � DX �
N��X
m��

dm�XB�m�� gm � ����	��

We suppose that W is a Gaussian white noise of variance ��� When
dm are thresholding functions� the risk of this estimator is shown to be
close to the lower bounds obtained with oracle estimators�

Hard thresholding A hard thresholding estimator is implemented
with

dm�x� � �T �x� �

�
x if jxj 	 T
� if jxj � T

� ����	
�
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The operator D in ����	�� is then a nonlinear projector in the basis
B� The risk of this thresholding is

rt�f� � r�D� f� �
N��X
m��

EfjfB�m�� �T �XB�m��j�g �

Since XB�m� � fB�m� � WB�m��

jfB�m�� �T �XB�m��j� �

� jWB�m�j� if jXB�m�j 	 T
jfB�m�j� if jXB�m�j � T

�

A thresholding is a projector whose risk is therefore larger than the risk
����	�� of an oracle projector�

rt�f� � rp�f� �
N��X
m��

min�jfB�m�j�� ����

Soft Thresholding An oracle attenuation ������� yields a risk rinf�f�
that is smaller than the risk rp�f� of an oracle projection� by slightly
decreasing the amplitude of all coe�cients in order to reduce the added
noise� A similar attenuation� although nonoptimal� is implemented by
a soft thresholding� which decreases by T the amplitude of all noisy
coe�cients� The resulting diagonal estimator �F in ����	�� is calculated
with the soft thresholding function

dm�x� � �T �x� �

��
�

x� T if x � T
x � T if x � �T
� if jxj � T

� �������

This soft thresholding is the solution that minimizes a quadratic dis
tance to the data� penalized by an l� norm� Given the data x�m�� the
vector y�m� which minimizes

N��X
m��

jy�m�� x�m�j� � �T
N��X
m��

jy�m�j

is y�m� � �T �x�m���
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The threshold T is generally chosen so that there is a high proba
bility that it is just above the maximum level of the noise coe�cients
jWB�m�j� Reducing by T the amplitude of all noisy coe�cients thus
ensures that the amplitude of an estimated coe�cient is smaller than
the amplitude of the original one�

j�T �XB�m��j � jfB�m�j � �������

In a wavelet basis where large amplitude coe�cients correspond to tran
sient signal variations� this means that the estimation keeps only tran
sients coming from the original signal� without adding others due to
the noise�

Thresholding Risk The following theorem ����� proves that for an
appropriate choice of T � the risk of a thresholding is close to the risk of
an oracle projector rp�f� �

PN��
m�� min�jfB�m�j�� ���� We denote by Od

the set of all operators that are in B� and which can thus be written as
in ����	���

Theorem ���� �Donoho� Johnstone� Let T � �
p

� logeN � The
risk rt�f� of a hard or a soft thresholding estimator satis�es for all
N � �

rt�f� � �� logeN � ��
�
�� � rp�f�

�
� �������

The factor � logeN is optimal among diagonal estimators in B�

lim
N���

inf
D�Od

sup
f�CN

Efkf � �Fk�g
�� � rp�f�

�

� logeN
� � � �����	�

Proof �� The proof of ������� is given for a soft thresholding� For a hard
thresholding
 the proof is similar although slightly more complicated�
For a threshold �
 a soft thresholding is computed with

���x� � �x� � sign�x���jxj	� �

Let X be a Gaussian random variable of mean � and variance �� The
risk when estimating � with a soft thresholding of X is

r��� �� � Efj���X���j�g � Efj�X �� sign�X���jXj	���j�g � �������
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If X has a variance �� and a mean � then by considering �X � X
� we

verify that

Efj���X� � �j�g � �� r

�
�

�
�
�

�

�
�

Since fBm� is a constant
 XBm� � fBm� � WBm� is a Gaussian
random variable of mean fBm� and variance ��� The risk of the soft
thresholding estimator �F with a threshold T is thus

rt�f� � ��
N��X
m��

r

�
T

�
�
fBm�

�

�
� �������

An upper bound of this risk is calculated with the following lemma�

Lemma �
�� If � 
 � then

r��� �� � r��� �� � min���� � � ���� �������

To prove �������
 we 	rst verify that if � 
 � then

� � �r��� ��

��
� ��

Z ���

����
��x� dx � �� � �������

where ��x� is the normalized Gaussian probability density

��x� �
�p
��

exp

�
�x

�

�

�
�

Indeed ������� shows that

r��� �� � ��
Z ���

����
��x� dx�

Z ��

���
�x���� ��x� dx�

Z ����

��
�x���� ��x� dx�

�������
We obtain ������� by di�erentiating with respect to ��

Since
R ��
�� ��x� dx �

R ��
�� x� ��x� dx � � and �r�����

�� 
 �
 necessarily

r��� �� � lim
���� r��� �� � � � ��� �������

Moreover
 since �r���s�
�s � �s

r��� ��� r��� �� �

Z �

�

�r��� s�

�s
ds � ��� �������
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The inequality ������� of the lemma is 	nally derived from ������� and
��������

r��� �� � min�r��� �� � ��� � � ��� � r��� �� � min���� � � ����

By inserting the inequality ������� of the lemma in �������
 we get

rt�f� � N��r

�
T

�
� �

�
� ��

N��X
m��

min

�
T �

��
�
jfBm�j�

��

�
� �������

The expression ������� shows that r��� �� � �
R ��
� x� ��x � �� dx� For

T � �
p

� logeN and N 
 �
 one can verify that

N r

�
T

�
� �

�
� � logeN � � � �������

Moreover


�� min

�
T �

��
�
jfBm�j�

��

�
� min���� logeN� jfBm�j��

� �� logeN � �� min���� jfBm�j����������

Inserting ������� and ������� in ������� proves ��������

Since the soft and hard thresholding estimators are particular in�
stances of diagonal estimators
 the inequality ������� implies that

lim
N���

inf
D�Od

sup
f�CN

Efkf � �Fk�g
�� � rp�f�

�

� logeN
� � � �������

To prove that the limit is equal to �
 for N 	xed we compute a lower
bound by replacing the sup over all signals f by an expected value over
the distribution of a particular signal process F � The coe�cients FBm�
are chosen to de	ne a very sparse sequence� They are independent ran�
dom variables having a high probability � � �N to be equal to � and
a low probability �N to be equal to a value �N that is on the order of
�
p

� logeN 
 but smaller� By adjusting �N and �N 
 Donoho and John�

stone ���� prove that the Bayes estimator �F of F tends to zero as N
increases and they derive a lower bound of the left�hand side of �������
that tends to ��
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The upper bound ������� proves that the risk rt�f� of a thresholding
estimator is at most � logeN times larger than the risk rp�f� of an oracle
projector� Moreover� �����	� proves that the � logeN factor cannot
be improved by any other diagonal estimator� For rp�f� to be small�
����	�� shows that f must be well approximated by a few vectors in B�
One can verify 
���� that the theorem remains valid if rp�f� is replaced
by the risk rinf�f� of an oracle attenuation� which is smaller�

Choice of Threshold The threshold T must be chosen just above
the maximum level of the noise� Indeed� if f  � and thus XB  WB�
then to ensure that �F � � the noise coe�cients jWB
m�j must have a
high probability of being below T � However� if f � � then T must not
be too large� so that we do not set to zero too many coe�cients such
that jfB
m�j � �� Since WB is a vector of N independent Gaussian
random variables of variance ��� one can prove 
�� that the maximum
amplitude of the noise has a very high probability of being just below
T  �

p
� logeN �

lim
N���

Pr

�
T � � loge logeN

logeN
� max

��m�N
jWB
m�j � T

�
 �� �������

This explains why the theorem chooses this value� That the threshold
T increases with N may seem counterintuitive� This is due to the tail
of the Gaussian distribution� which creates larger and larger amplitude
noise coe�cients when the sample size increases� The threshold T 
�
p

� logeN is not optimal and in general a lower threshold reduces the
risk� One can however prove that when N tends to ��� the optimal
value of T grows like �

p
� logeN �

Upper�Bound Interpretation Despite the technicality of the proof�
the factor � logeN of the upper bound ������� can be easily explained�
The ideal coe�cient selection ����		� sets XB
m� to zero if and only
if jfB
m�j � �� whereas a hard thresholding sets XB
m� to zero when
jXB
m�j � T � If jfB
m�jj � � then it is very likely that jXB
m�j � T �
because T is above the noise level� In this case the hard thresholding
sets XB
m� to zero as the oracle projector ����		� does� If jfB
m�j � �T
then it is likely that jXB
m�j � T because jWB
m�j � T � In this case
the hard thresholding and the oracle projector retain XB
m��
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The hard thresholding may behave di�erently from the ideal co�
e�cient selection when jfB
m�j is on the order of T � The ideal se�
lection yields a risk� min���� jfB
m�j��  ��� If we are unlucky and
jXB
m�j � T � then the thresholding sets XB
m� to zero� which produces
a risk

jfB
m�j� � T �  � logeN ���

In this worst case� the thresholding risk is � logeN times larger than
the ideal selection risk� Since the proportion of coe�cients jfB
m�j on
the order of T is often small� the ratio between the hard thresholding
risk and the oracle projection risk is generally signi�cantly smaller than
� logeN �

Colored Noise Thresholding estimators can be adapted when the
noise W is not white� We suppose that EfW 
n�g  �� Since W is not
white� ��m  EfjWB
m�j�g depends on each vector gm of the basis� As
in ����		� and ����	��� we verify that an oracle projector which keeps
all coe�cients such that jfB
m�j � �m and sets to zero all others has a
risk

rp�f� 
N��X
m��

min�jfB
m�j�� ��m� �

Any linear or non�linear projector in the basis B has a risk larger than
rp�f��

Since the noise variance depends on m� a thresholding estimator
must vary the threshold Tm as a function of m� Such a hard or soft
thresholding estimator can be written

�F  DX 
N��X
m��

�Tm�XB
m�� gm � �������

The following proposition generalizes Theorem ���� to compute the
thresholding risk rt�f�  Efkf � �Fk�g�

Proposition ���� �Donoho� Johnstone� Let �F be a hard or soft
thresholding estimator with

Tm  �m
p

� logeN for � � m � N �
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Let ���  N��PN��
m�� �

�
m� For any N � �

rt�f� � �� logeN � ��
�

��� � rp�f�
�
� �������

The proof of ������� is identical to the proof of �������� The thresh�
olds Tm are chosen to be just above the amplitude of each noisy coef�
�cient WB
m�� Section ������ studies an application to the restoration
of blurred signals�

������ Thresholding Re�nements �

We mentioned that the thresholding risk can be reduced by choosing a
threshold smaller than �

p
� logeN � A threshold adapted to the data is

calculated by minimizing an estimation of the risk� This section �nishes
with an important improvement of thresholding estimators� obtained
with a translation invariant algorithm�

SURE Thresholds To study the impact of the threshold on the risk�
we denote by rt�f� T � the risk of a soft thresholding estimator calculated
with a threshold T � An estimate �rt�f� T � of rt�f� T � is calculated from
the noisy data X� and T is optimized by minimizing �rt�f� T ��

To estimate the risk rt�f� T �� observe that if jXB
m�j � T then the
soft thresholding sets this coe�cient to zero� which produces a risk
equal to jfB
m�j�� Since

EfjXB
m�j�g  jfB
m�j� � ���

one can estimate jfB
m�j� with jXB
m�j� � ��� If jXB
m�j � T � the soft
thresholding subtracts T from the amplitude of XB
m�� The expected
risk is the sum of the noise energy plus the bias introduced by the
reduction of the amplitude of XB
m� by T � It is estimated by �� � T ��
The resulting estimator of rt�f� T � is

�rt�f� T � 
N��X
m��

��jXB
m�j�� �������

with

��u� 

�
u� �� if u � T �

�� � T � if u � T
� �������
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The following theorem 
���� proves that �rt�f� T � is a Stein Unbiased
Risk Estimator �SURE� 
	����

Theorem ���� �Donoho� Johnstone� For a soft thresholding� the
risk estimator �rt�f� T � is unbiased�

Ef�rt�f� T �g  rt�f� T �� �������

Proof �� As in �������� we prove that the risk of a soft thresholding can
be written

rt�f� T � � Efkf � 	Fk�g � ��
N��X
m��

r�T� fB
m�� ���

with

r��� �� �� � Efj���X� � �j�g � Efj�X � � sign�X���jXj�� � �j�g �
�������

where X is a Gaussian random variable with mean � and variance ���
The equality ������� is proved by verifying that

r�T� �� �� � E

n
�jXj��

o
� ����T ��Ef�jXj�T g�E

n
�jXj������jXj�T

o
�

�������

Following the calculations of Stein 
����� we rewrite

r�T� �� �� � Ef�X � g�X� � ���g� �������

where g�x� � T sign�x���x�T sign�x���jxj�T is a di�erentiable function�
Developing ������� gives

r�T� �� �� � Ef�X � ���g� Efjg�X�j�g � �Ef�X � �� g�X�g� �������

The probability density of X is the Gaussian ���y � ��� The change of
variable x � y � � shows that

Ef�X � �� g�X�g �

Z ��

��
x g�x � �����x� dx�

Since x���x� � ��� ����x�� an integration by parts gives

Ef�X � ��g�X�g � ���
Z ��

��
g�x� ������x� dx

� ��
Z ��

��
g��x� �����x� dx �
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Since g��x� � �jxj�T �

Ef�X � �� g�X�g � �� Ef�jXj�T g�

Inserting this expression in ������� yields

r�T� �� �� � �� � Efjg�X�j�g � ��� Ef�jXj�T g�

But jg�x�j� � jxj��jxj�T � T ��jxj�T and Ef�jXj�T g� Ef�jXj�T g � �� so

r�T� �� �� � ��� � T ��Ef�jXj�T g� E

n
�jXj� � ����jXj�T

o
�

which proves ������� and hence ��������

To �nd the �T that minimizes the SURE estimator �rt�f� T �� the N
data coe�cients XB
m� are sorted in decreasing amplitude order with
O�N log�N� operations� Let Xr

B
k�  XB
mk� be the coe�cient of rank
k� jXr

B
k�j � jXr
B
k � ��j for � � k � N � Let l be the index such that

jXr
B
l�j � T � jXr

B
l � ��j� We can rewrite ��������

�rt�f� T � 
NX
k�l

jXr
B
k�j� � �N � l��� � l ��� � T �� � �������

To minimize �rt�f� T � we must choose T  jXr
B
l�j because rt�f� T � is

increasing in T � To �nd the �T that minimizes �rt�f� T � it is therefore suf�
�cient to compare the N possible values fjXr

B
k�jg��k�N � that requires
O�N� operations if we progressively recompute the formula ��������
The calculation of �T is thus performed with O�N log�N� operations�

Although the estimator �rt�f� T � of rt�f� T � is unbiased� its variance
may induce errors leading to a threshold �T that is too small� This hap�
pens if the signal energy is small relative to the noise energy� kfk� �
EfkWk�g  N��� In this case� one must impose T  �

p
� logeN in

order to remove all the noise� Since EfkXk�g  kfk� � N��� we esti�
mate kfk� with kXk� �N�� and compare this value with a minimum
energy level �N  ��N����logeN����� The resulting SURE threshold is

T 

�
�
p

� logeN if kXk� �N�� � �N
�T if kXk� �N�� � �N

� �������
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Let � be a signal set and minT rt��� be the minimax risk of a
soft thresholding obtained by optimizing the choice of T depending on
�� Donoho and Johnstone 
���� prove that the threshold computed
empirically with ������� yields a risk rt��� equal to minT rt��� plus
a corrective term that decreases rapidly when N increases� if �N 
��N����logeN�����

Problem ���� studies a similar risk estimator for hard thresholding�
However� this risk estimator is biased� We thus cannot guarantee that
the threshold that minimizes the estimated risk is nearly optimal for
hard thresholding estimations�

Translation Invariant Thresholding An improved thresholding
estimator is calculated by averaging estimators for translated versions
of the signal� Let us consider signals of period N � Section ��� explains
that the representation of f in a basis B is not translation invariant�
unless B is a Dirac or a Fourier basis� Let f p
n�  f 
n�p�� The vectors
of coe�cients fB and f pB are not simply translated or permuted� They
may be extremely di�erent� Indeed

f pB
m�  hf 
n� p�� gm
n�i  hf 
n�� gm
n � p�i�
and not all the vectors gm
n� p� belong to the basis B� for � � p � N �
As a consequence� the signal recovered by thresholding the coe�cients
f pB
m� is not a translation of the signal reconstructed after thresholding
fB
m��

The translation invariant algorithm of Coifman and Donoho 
�	��
estimates all translations of f and averages them after a reverse trans�
lation� For all � � p � N � the estimator �F p of f p is computed by
thresholding the translated data Xp
n�  X
n� p��

�F p 
N��X
m��

�T �Xp
B
m�� gm �

where �T �x� is a hard or soft thresholding function� The translation
invariant estimator is obtained by shifting back and averaging these
estimates�

�F 
n� 
�

N

N��X
p��

�F p
n � p�� �������
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In general� this requires N times more calculations than for a standard
thresholding estimator� In wavelet and wavelet packet bases� which
are partially translation invariant� the number of operations is only
multiplied by log�N � and the translation invariance reduces the risk
signi�cantly�

������ Wavelet Thresholding

A wavelet thresholding is equivalent to estimating the signal by averag�
ing it with a kernel that is locally adapted to the signal regularity 
���
This section justi�es the numerical results with heuristic arguments�
Section ���	�	 proves that the wavelet thresholding risk is nearly mini�
max for signals and images with bounded variation�

A �lter bank of conjugate mirror �lters decomposes a discrete sig�
nal in a discrete orthogonal wavelet basis de�ned in Section ��	�	� The
discrete wavelets �j�m
n�  �j
n�N�jm� are translated modulo modi�
�cations near the boundaries� which are explained in Section ���� The
support of the signal is normalized to 
�� �� and has N samples spaced
by N��� The scale parameter �j thus varies from �L  N�� up to
�J � ��

B 
h
f�j�m
n�gL�j�J � ��m���j � f�J�m
n�g��m���J

i
� �������

A thresholding estimator in this wavelet basis can be written

�F 
JX

j�L��

��jX
m��

�T

�
hX��j�mi

�
�j�m �

��JX
m��

�T

�
hX� �J�mi

�
�J�m � �������

where �T is a hard thresholding ����	�� or a soft thresholding ��������
The upper bound ������� proves that the estimation risk is small if the
energy of f is absorbed by a few wavelet coe�cients�

Adaptive Smoothing The thresholding sets to zero all coe�cients
jhX��j�mij � T � This performs an adaptive smoothing that depends on
the regularity of the signal f � Since T is above the maximum amplitude
of the noise coe�cients jhW��j�mij� if

jhX��j�mij  jhf� �j�mi� hW��j�mij � T�
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then jhf� �j�mij has a high probability of being at least of the order T � At
�ne scales �j� these coe�cients are in the neighborhood of sharp signal
transitions� as shown by Figure �����b�� By keeping them� we avoid
smoothing these sharp variations� In the regions where jhX��j�mij � T �
the coe�cients hf� �j�mi are likely to be small� which means that f
is locally regular� Setting wavelet coe�cients to zero is equivalent to
locally averaging the noisy data X� which is done only if the underlying
signal f appears to be regular�

Noise Variance Estimation To estimate the variance �� of the
noise W 
n� from the data X
n�  W 
n� � f 
n�� we need to suppress
the in�uence of f 
n�� When f is piecewise smooth� a robust estimator
is calculated from the median of the �nest scale wavelet coe�cients

�����

The signalX of size N has N	� wavelet coe�cients fhX��l�mig��m�N��
at the �nest scale �l  �N��� The coe�cient jhf� �l�mij is small if f is
smooth over the support of �l�m� in which case hX��l�mi � hW��l�mi�
In contrast� jhf� �l�mij is large if f has a sharp transition in the support
of �l�m� A piecewise regular signal has few sharp transitions� and hence
produces a number of large coe�cients that is small compared to N	��
At the �nest scale� the signal f thus in�uences the value of a small
portion of large amplitude coe�cients hX��l�mi that are considered to
be �outliers�� All others are approximately equal to hW��l�mi� which
are independent Gaussian random variables of variance ���

A robust estimator of �� is calculated from the median of fhX��l�mig��m�N���
The median of P coe�cients Med�
p���p�P is the value of the middle
coe�cient 
n� of rank P	�� As opposed to an average� it does not de�
pend on the speci�c values of coe�cients 
p � 
n� � If M is the median
of the absolute value of P independent Gaussian random variables of
zero�mean and variance ���� then one can show that

EfMg � ������ ���

The variance �� of the noise W is estimated from the median MX of
fjhX��l�mijg��m�N�� by neglecting the in�uence of f �

�� 
MX

������
� �������
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Indeed f is responsible for few large amplitude outliers� and these have
little impact on MX �

Hard or Soft Thresholding If we choose the threshold T  �
p

� logeN
of Theorem ����� we saw in ������� that a soft thresholding guarantees
with a high probability that

jh �F � �j�mij  j�T �hX��j�mi�j � jhf� �j�mij �

The estimator �F is at least as regular as f because its wavelet coe��
cients have a smaller amplitude� This is not true for the hard thresh�
olding estimator� which leaves unchanged the coe�cients above T � and
which can therefore be larger than those of f because of the additive
noise component�

Figure �����a� shows a piecewise polynomial signal of degree at most
	� whose wavelet coe�cients are calculated with a Symmlet �� Figure
�����c� gives an estimation computed with a hard thresholding of the
noisy wavelet coe�cients in Figure �����b�� An estimator ��� of the noise
variance �� is calculated with the median ������� and the threshold
is set to T  ��

p
� logeN � Thresholding wavelet coe�cients removes

the noise in the domain where f is regular but some traces of the
noise remain in the neighborhood of singularities� The resulting SNR is
	��� db� The soft thresholding estimation of Figure �����d� attenuates
the noise e�ect at the discontinuities but the reduction by T of the
coe�cient amplitude is much too strong� which reduces the SNR to
�	�� db� As already explained� to obtain comparable SNR values� the
threshold of the soft thresholding must be about half the size of the
hard thresholding one� In this example� reducing by two the threshold
increases the SNR of the soft thresholding to ���� db�

Multiscale SURE Thresholds Piecewise regular signals have a
proportion of large coe�cients jhf� �j�mij that increases when the scale
�j increases� Indeed� a singularity creates the same number of large
coe�cients at each scale� whereas the total number of wavelet coe��
cients increases when the scale decreases� To use this prior information�
one can adapt the threshold choice to the scale �j� At large scale �j

the threshold Tj should be smaller in order to avoid setting to zero too
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Figure ����� �a�� Piecewise polynomial signal and its wavelet transform
on the right� �b�� Noisy signal �SNR  ���� db� and its wavelet trans�
form� �c�� Estimation reconstructed from the wavelet coe�cients above
threshold� shown on the right �SNR  	��� db�� �d�� Estimation with
a wavelet soft thresholding �SNR  �	�� db�� �e�� Estimation with a
translation invariant hard thresholding �SNR  		�� db��
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many large amplitude signal coe�cients� which would increase the risk�
Section �����	 explains how to compute the threshold value for a soft
thresholding� from the coe�cients of the noisy data� We �rst compute
an estimate ��� of the noise variance �� with the median formula �������
at the �nest scale� At each scale �j� a di�erent threshold is calculated
from the ��j noisy coe�cients fhX��j�mig��m���j with the algorithm
of Section �����	� A SURE threshold Tj is calculated by minimizing
an estimation ������� of the risk at the scale �j� The soft threshold�
ing is then performed at each scale �j with the threshold Tj� For a
hard thresholding� we have no reliable formula with which to estimate
the risk and hence compute the adapted threshold with a minimiza�
tion� One possibility is simply to multiply by � the SURE threshold
calculated for a soft thresholding�

Figure �����c� is a hard thresholding estimation calculated with the
same threshold T  ��

p
� logeN at all scales �j� The SNR is �	�	 db�

Figure �����d� is obtained by a soft thresholding with SURE thresholds
Tj adapted at each scale �j� The SNR is ����db� A soft thresholding
with the threshold T  ��	�

p
� logeN at all scales gives a smaller SNR

equal to ���� db� The adaptive calculation of thresholds clearly im�
proves the estimation�

Translation Invariance Thresholding noisy wavelet coe�cients cre�
ates small ripples near discontinuities� as seen in Figures �����c�d�
and �����c�d�� Indeed� setting to zero a coe�cient hf� �j�mi subtracts
hf� �j�mi�j�m from f � which introduces oscillations whenever hf� �j�mi is
non�negligible� Figure �����e� and Figures �����e�f� show that these os�
cillations are attenuated by a translation invariant estimation ��������
signi�cantly improving the SNR� Thresholding wavelet coe�cients of
translated signals and translating back the reconstructed signals yields
shifted oscillations created by shifted wavelets that are set to zero� The
averaging partially cancels these oscillations� reducing their amplitude�

When computing the translation invariant estimation� instead of
shifting the signal� one can shift the wavelets in the opposite direction�

hf 
n� p�� �j�m
n�i  hf 
n�� �j�m
n � p�i  hf 
n�� �j
n�N�jm � p�i�

If f and all wavelets �j are N periodic then all these inner products
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Figure ����� �a�� Original signal� �b�� Noisy signal �SNR  �	�� db��
�c�� Estimation by a hard thresholding in a wavelet basis �Symm�
let ��� with T  ��

p
� logeN �SNR  �	�	 db�� �d�� Soft thresh�

olding calculated with SURE thresholds Tj adapted to each scale �j

�SNR  ���� db�� �e�� Translation invariant hard thresholding with
T  ��

p
� logeN �SNR  ���� db�� �f�� Translation invariant soft

thresholding with SURE thresholds �SNR  ���� db��



����� DIAGONAL ESTIMATION IN A BASIS � ��	

are provided by the dyadic wavelet transform de�ned in Section ����

Wf 
�j� p�  hf 
n�� �j
n� p�i for � � p � N�

The �algorithme �a trous� of Section ����� computes these N log�N
coe�cients for L � j � � with O�N log�N� operations� One can
verify �Problem ������ that the translation invariant wavelet estimator
������� can be calculated by thresholding the dyadic wavelet coe�cients
hX
n�� �j
n�p�i and by reconstructing a signal with the inverse dyadic
wavelet transform�

Image Estimation in Wavelet Bases Piecewise regular images
are particularly well estimated by thresholding their wavelet coe��
cients� The image f 
n�� n�� contaminated by a white noise is decom�
posed in a separable two�dimensional wavelet basis� Figure �����c� is
computed with a hard thresholding in a Symmlet � wavelet basis� For
images of N�  ���� pixels� the threshold is set to T  	� instead of
T  �

p
� logeN

�� because this improves the SNR signi�cantly� This
estimation restores smooth image components and discontinuities� but
the visual quality of edges is a�ected by the Gibbs�like oscillations that
also appear in the one�dimensional estimations in Figure �����c� and
Figure �����c�� Figure �����c� is obtained with a wavelet soft threshold�
ing calculated with a threshold half as large T  		� �� When using a
di�erent SURE threshold Tj calculated with ������� at each scale �j� the
SNR increases to 		�� db but the visual image quality is not improved�
As in one sdimension� the Figures �����e�f� calculated with translation
invariant thresholdings have a higher SNR and better visual quality� A
translation invariant soft thresholding� with SURE thresholds� gives an
SNR of 	��� db�

Section ���	�	 proves that a thresholding in a wavelet basis has a
nearly minimax risk for bounded variation images� Irregular textures
are badly estimated because they produce many coe�cients whose am�
plitudes are at the same level as the noise� To restore these textures�
it is necessary to adapt the basis in order to better concentrate the
texture energy over a few large amplitude coe�cients�
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�c� �d�

�e� �f�

Figure ����� �a�� Original image� �b�� Noisy image �SNR  ���� db��
�c�� Estimation with a hard thresholding in a separable wavelet ba�
sis �Symmlet ��� �SNR  	��� db�� �d�� Soft thresholding �SNR 
	��� db�� �e�� Translation invariant hard thresholding �SNR  	��	 db��
�f�� Translation invariant soft thresholding �SNR  	��� db��
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Figure ����� The �rst row shows the wavelet modulus maxima of the
noisy image �����b�� The scale increases from left to right� from ���

to ���� The chains of modulus maxima selected by the thresholding
procedure are shown below� The bottom image is reconstructed from
the selected modulus maxima at all scales�
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Multiscale Edge Estimation Section ����� explains that wavelet
bases are not optimal for approximating images because they do not
take advantage of the geometrical regularity of edges� Understanding
how to use the geometrical image regularity to enhance wavelet esti�
mations is a di�cult open issue� One approach implemented by Hwang
and Mallat 
���� is to regularize the multiscale edge representation of
Section ��	� In many images� discontinuities belong to regular geomet�
rical curves that are the edges of important structures� Along an edge�
the wavelet coe�cients change slowly and their estimation can thus be
improved with an averaging�

The image is decomposed with a two�dimensional dyadic wavelet
transform� whose modulus maxima locate the multiscale edges� At
each scale �j� the chaining algorithm of Section ��	�� links the wavelet
maxima to build edge curves� Instead of thresholding each wavelet
maxima independently� the thresholding is performed over contours�
An edge curve is removed if the average wavelet maxima amplitude
is below T  	�� Prior geometrical information can also be used to
re�ne the edge selection� Important image structures may generate long
contours� which suggests removing short edge curves that are likely to
be created by noise� The �rst line of Figure ���� shows the modulus
maxima of the noisy image� The edges selected by the thresholding are
shown below� At the �nest scale shown on the left� the noise is masking
the image structures� Edges are therefore selected by using the position
of contours at the previous scale�

The thresholded wavelet maxima are regularized along the edges
with an averaging� A restored image is recovered from the resulting
wavelet maxima� using the reconstruction algorithm of Section ������
Figure ���� shows an example of an image restored from regularized
multiscale edges� Edges are visually well recovered but textures and
�ne structures are removed by the thresholding based on the amplitude
and length of the maxima chains� This produces a cartoon�like image�

������ Best Basis Thresholding �

When the additive noise W is white� the performance of a thresholding
estimation depends on its ability to e�ciently approximate the signal
f with few basis vectors� Section ��	 explains that a single basis is
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often not able to approximate well all signals of a large class� It is then
necessary to adapt the basis to the signal 
����� We study applications
of adaptive signal decompositions to thresholding estimation�

Best Orthogonal Basis Sections ��� and ��� construct dictionaries
D  ����B� where each B�  fg�mg��m�N is a wavelet packet or a
local cosine orthogonal basis� These dictionaries have P  N log�N
distinct vectors but include more than �N�� di�erent orthogonal bases
by recombining these vectors�

An estimation of f from the noisy measurements X  f � W is
obtained by thresholding the decomposition of X in B��

�F � 
N��X
m��

�T �hX� g�mi� g�m�

The ideal basis B� is the one that minimizes the average estimation
error

Efkf � �F �k�g  min
���

Efkf � �F �k�g� �������

In practice� we cannot �nd this ideal basis since we do not know f �
Instead� we estimate the risk Efkf� �F �k�g in each basis B�� and choose
the best empirical basis that minimizes the estimated risk�

Threshold Value If we wish to choose a basis adaptively� we must
use a higher threshold T than the threshold value �

p
� logeN used

when the basis is set in advance� Indeed� an adaptive basis choice may
also �nd vectors that better correlate the noise components� Let us
consider the particular case f  �� To ensure that the estimated signal
is close to zero� since X  W � we must choose a threshold T that
has a high probability of being above all the inner products jhW� g�mij
with all vectors in the dictionary D� For a dictionary including P
distinct vectors� for P large there is a negligible probability for the
noise coe�cients to be above

T  �
p

� loge P � �������

This threshold is however not optimal and smaller values can improve
the risk�
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Basis Choice For a soft thresholding� ������� de�nes an estimator
�r�t �f� T � of the risk r�t �f� T �  Efkf � �F �k�g�

�r�t �T� f� 
N��X
m��

��jhX� g�mij�� � �����	�

with

��u� 

�
u� �� if u � T �

�� � T � if u � T � � �������

Theorem ���� proves that this estimator is unbiased�
The empirical best basis B	� for estimating f is obtained by mini�

mizing the estimated risk

�r	�t �T� f�  min
���

�r�t �T� f� � �������

The estimated risk is calculated in �����	� as an additive cost function
over the noisy coe�cients� The fast algorithm of Section ��	�� can thus
�nd the best basis B	� in wavelet packet or local cosine dictionaries�
with O�N log�N� operations� Figure �����d� shows the estimation of
a sound recording �grea� in the presence of a white noise with an SNR
of ���db� A best empirical local cosine basis is chosen by the mini�
mization ������� and is used to decompose the noisy signal� This best
basis is composed of local cosine vectors having a time and a frequency
resolution adapted to the transients and harmonic structures of the sig�
nal� A hard thresholding is performed and the Heisenberg boxes of the
remaining coe�cients are shown in Figure �����c��

Donoho and Johnstone 
���� prove that for T  �
p

� loge P the risk

Efkf � �F 	�k�g in the empirical best basis B	� is within a logeN factor
of the minimum risk Efkf � �F �k�g in the ideal best basis B�� In that
sense� the best basis algorithm is guaranteed to �nd a nearly optimal
basis�

Cost of Adaptivity An approximation in a basis that is adaptively
selected is necessarily more precise than an approximation in a ba�
sis chosen a priori� However� in the presence of noise� estimations by
thresholding may not be improved by an adaptive basis choice� In�
deed� using a dictionary of several orthonormal bases requires raising
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Figure ����� �a�� Speech recording of �grea�� �b�� Noisy signal
�SNR  ��� db�� �c�� Heisenberg boxes of the local coe�cients above
the threshold in the best basis� �d�� Estimated signal recovered from
the thresholded local cosine coe�cients �SNR  ���� db��



��� CHAPTER ��� ESTIMATIONS ARE APPROXIMATIONS

the threshold� because the larger number of dictionary vectors produces
a higher correlation peak with the noise� The higher threshold removes
more signal components� unless it is compensated by the adaptivity�
which can better concentrate the signal energy over few coe�cients�
The same issue appears in parametrized estimations� where increas�
ing the number of parameters may �t the noise and thus degrade the
estimation�

For example� if the original signal is piecewise smooth� then a best
wavelet packet basis does not concentrate the signal energy much more
e�ciently than a wavelet basis� In the presence of noise� in regions
where the noise dominates the signal� the best basis algorithm may
optimize the basis to �t the noise� This is why the threshold value
must be increased� Hence� the resulting best basis estimation is not as
precise as a thresholding in a �xed wavelet basis with a lower threshold�
However� for oscillatory signals such as the speech recording in Figure
�����a�� a best local cosine basis concentrates the signal energy over
much fewer coe�cients than a wavelet basis� and thus provides a better
estimation�

���� Minimax Optimality 	

We consider the noisy data X  f �W � where W is a Gaussian white
noise of variance ��� An estimation �F  DX of f has a risk r�D� f� 
EfkDX � fk�g� If some prior information tells us that the signal we
estimate is in a set �� then we must construct estimators whose maxi�
mum risk over � is as small as possible� Let r�D���  supf�
 r�D� f�
be the maximum risk over �� The linear minimax risk and non�linear
minimax risk are respectively de�ned by

rl���  inf
D�Ol

r�D��� and rn���  inf
D�On

r�D��� �

where Ol is the set of all linear operators from C N to C N and On is
the set of all linear and non�linear operators from C N to C N � We study
operators D that are diagonal in an orthonormal basis B  fgmg��m�N �

�F  DX 
N��X
m��

dm�XB
m�� gm �
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and �nd conditions to achieve a maximum risk over � that is close to
the minimax risk� The values of rl��� and rn��� are compared� so that
we can judge whether it is worthwhile using non�linear operators�

Section ���	�� begins by studying linear diagonal operators� For
orthosymmetric sets� Section ���	�� proves that the linear and non�
linear minimax risks are nearly achieved by diagonal operators� As a
consequence� thresholding estimators in a wavelet basis are proved to
be nearly optimal for signals and images having a bounded variation�
Readers more interested by algorithms and numerical applications may
skip this section� which is mathematically more involved�

������ Linear Diagonal Minimax Estimation

An estimator that is linear and diagonal in the basis B can be written

�F  DX 
N��X
m��

a
m�XB
m� gm � �������

where each a
m� is a constant� Let Ol�d be the set of all such linear
diagonal operators D� Since Ol�d 	 Ol� the linear diagonal minimax
risk is larger than the linear minimax risk

rl�d���  inf
D�Ol�d

r�D��� � rl��� �

We characterize diagonal estimators that achieve the minimax risk
rl�d���� If � is translation invariant� we prove that rl�d���  rl���
in a discrete Fourier basis� This risk is computed for bounded variation
signals�

Quadratic Convex Hull The �square� of a set � in the basis B is
de�ned by

����B  f �f � �f 
N��X
m��

jfB
m�j� gm with f 
 �g � �������

We say that � is quadratically convex in B if ����B is a convex set�
A hyperrectangle Rx in B of vertex x 
 C N is a simple example of
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quadratically convex set de�ned by

Rx 
n
f � jfB
m�j � jxB
m�j for � � m � N

o
�

The quadratic convex hull QH
�� of � in the basis B is de�ned by

QH
�� 
n
f �

N��X
m��

jfB
m�j� is in the convex hull of ����B
o
� �������

It is the largest set whose square �QH
����B is equal to the convex hull
of ����B�

The risk of an oracle attenuation ������� gives a lower bound of the
minimax linear diagonal risk rl�d����

rl�d��� � rinf���  sup
f�


N��X
m��

�� jfB
m�j�
�� � jfB
m�j� � �������

The following theorem proves that this inequality is an equality if and
only if � is quadratically convex�

Theorem ���
 If � is a bounded and closed set� then there exists x 

QH
�� such that rinf�x�  rinf�QH
��� in the basis B� Moreover� the
linear diagonal operator D de�ned by

a
m� 
jxB
m�j�

�� � jxB
m�j� � �������

achieves the linear diagonal minimax risk

r�D���  rl�d���  rinf �QH
��� � �������

Proof �� The risk r�D� f� of the diagonal operator ������� is

r�D� f� �
N��X
m��

�
�� ja
m�j� � j�� a
m�j� jfB
m�j�

�
� �������

Since it is a linear function of jfB
m�j�� it reaches the same maximum in
� and in QH
��� This proves that r�D��� � r �D�QH
��� and hence
that rl�d��� � rl�d �QH
����
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To verify that rl�d��� � rinf �QH
��� we prove that rl�d�QH
��� �
rinf�QH
���� Since ������� shows that rinf�QH
��� � rl�d�QH
��� to get
the reverse inequality� it is su�cient to prove that the linear estimator de�
�ned by ������� satis�es r�D�QH
��� � rinf�QH
���� Since � is bounded
and closed� QH
�� is also bounded and closed and thus compact� which
guarantees the existence of x � QH
�� such that rinf�x� � rinf�QH
����
The risk of this estimator is calculated with ��������

r�D� f� �

N��X
m��

jfB
m�j��� � ��jxB
m�j�

��� � jxB
m�j���

�
N��X
m��

��jxB
m�j�

�� � jxB
m�j�
� ��

N��X
m��

jfB
m�j� � jxB
m�j�

��� � jxB
m�j���
�

To show that r�D� f� � rinf�QH
���� we verify that the second summa�
tion is negative� Let � � � � � and y be a vector whose decomposition
coe�cients in B satisfy

jyB
m�j� � ��� �� jxB
m�j� � � jfB
m�j� �

Since QH
�� is quadratically convex� necessarily y � QH
�� so

J��� �

N��X
m��

�� jyB
m�j�

�� � jyB
m�j�
�

N��X
m��

�� jxB
m�j�

�� � jxB
m�j�
� J����

Since the maximum of J��� is at � � ��

J ���� �
N��X
m��

jfB
m�j� � jxB
m�j�

��� � jxB
m�j���
� � �

which �nishes the proof�

This theorem implies that rl�d���  rl�d�QH
���� To take advantage of
the fact that � may be much smaller than its quadratic convex hull� it
is necessary to use non�linear diagonal estimators�

Translation Invariant Set Signals such as sounds or images are of�
ten arbitrarily translated in time or in space� depending on the begin�
ning of the recording or the position of the camera� To simplify border
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e�ects� we consider signals of period N � We say that � is translation
invariant if for any f 
n� 
 � then f 
n� p� 
 � for all � � p � N �

If the set is translation invariant and the noise is stationary� then
we show that the best linear estimator is also translation invariant�
which means that it is a convolution� Such an operator is diagonal in
the discrete Fourier basis B  fgm
n�  �p

N
exp �i��mn	N�g��m�N �

The decomposition coe�cients of f in this basis are proportional to its
discrete Fourier transform�

fB
m� 
�p
N

N��X
n��

f 
n� exp

��i��mn
N

�


�f 
m�p
N

�

For a set �� the lower bound rinf��� in ������� becomes

rinf���  sup
f�


N��X
m��

��N�� j �f 
m�j�
�� � N�� j �f 
m�j� �

The following theorem proves that diagonal operators in the discrete
Fourier basis achieve the linear minimax risk�

Theorem ���� Let � be a closed and bounded set� Let x 
 QH
�� be
such that rinf�x�  rinf�QH
��� and

�h
m� 
j�x
m�j�

N �� � j�x
m�j� � �����	�

If � is translation invariant then �F  DX  X ��h achieves the linear
minimax risk

rl���  r�D���  rinf �QH
��� � �������

Proof �� Since rl��� � rl�d��� Theorem ���� proves in ������� that

rl��� � rinf �QH
��� �

Moreover� the risk rinf �QH
��� is achieved by the diagonal estimator
�������� In the discrete Fourier basis it corresponds to a circular convo�
lution whose transfer function is given by ��������
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We show that rl��� � rinf �QH
��� by using particular Bayes priors�
If f � QH
�� then there exists a family ffigi of elements in � such that
for any � � m � N �

j �f 
m�j� �
X
i

pi j �fi
m�j
� with

X
i

pi � � �

To each fi � � we associate a random shift vector Fi
n� � fi
n� Pi� as
in ������� Each Fi
n� is circular stationary� and its power spectrum is
computed in ������� �RFi 
m� � N��j �fi
m�j�� Let F be a random vector
that has a probability pi to be equal to Fi� It is circular stationary
and its power spectrum is �RF 
m� � N��j �f 
m�j�� We denote by 	f the
probability distribution of F � The risk rl�	f � of the Wiener �lter is
calculated in ��������

rl�	f � �
N��X
m��

�RF 
m� �RW 
m�

�RF 
m� � �RW 
m�
�

N��X
m��

N�� j �f 
m�j� ��

N�� j �f 
m�j� � ��
� �������

Since � is translation invariant� the realizations of F are in �� so 	f �
��� The minimax Theorem ���� proves in ������� that rl�	f � � rl����
Since this is true for any f � QH
��� taking a sup with respect to f in
������� proves that rl �QH
��� � rl���� which �nishes the proof�

Bounded Variation Signals The total variation de�ned in ������
measures the amplitude of all signal oscillations� Bounded variation
signals may include sharp transitions such as discontinuities� A set �V

of bounded variation signals of period N is de�ned by

�V  ff � kfkV 
N��X
n��

jf 
n�� f 
n� ��j � Cg � �������

Since �V is translation invariant� the linear minimax estimator is diag�
onal in the discrete Fourier basis� The following proposition computes
the minimax linear risk� which is renormalized by the noise energy
EfkWk�g  N���

Proposition ���� If � � C	� � N��� then

rl��V �

N��
� C

�N���
� �������
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Proof �� The set �V is translation invariant but it is not bounded be�
cause we do not control the average of a bounded variation signal� How�
ever� one can verify with a limit argument that the equality rl��V � �
rinf�QH
�V �� of Theorem ���� is still valid� To compute rinf�QH
�V ��
we show that �V is included in a hyperrectangle Rx � ff � j �f 
m�j �
j�x
m�jg� by computing an upper bound of j �f 
m�j for each f � �V �Let
g
n� � f 
n�� f 
n� ��� Its discrete Fourier transform satis�es

j�g
m�j � j �f 
m�j

������ exp
�
�i�	m

N

����� � � j �f 
m�j
���sin 	m

N

��� � �������

Since
PN��

n�� jg
n�j � C� necessarily j�g
m�j � C so

j �f 
m�j� �
C�

� j sin�	m
N�j�
� j�x
m�j� � �������

which proves that �V � Rx� The value j�x
��j � � is formally treated
like all others� Since Rx is quadratically convex� QH
�V � � Rx� Hence

rinf�QH
�V �� � rinf�Rx� �

N��X
m��

��N�� j�x
m�j�

�� �N�� j�x
m�j�
�

with ��N�� j�x
��j���� �N�� j�x
��j���� � ��� Since j�x
m�j � C N jmj��

and � � C
� � N���� a direct calculation shows that

rinf�QH
�V �� � rinf�Rx� � C N��� � � �������

To compute a lower bound for rinf�QH
�V �� we consider the two
signals in �V de�ned by

f� �
C

�
����N���� �

C

�
and f� �

C

�
����N���� �

C

�
��N���N�� �

Let f � QH
�V � such that

j �f 
m�j� �
�

�
�j �f�
m�j

� � j �f�
m�j
���

A simple calculation shows that for m �� �

j �f 
m�j� �
C�

� j sin�	m
N�j�
� C�N� jmj��

so
rinf�QH
�V �� � rinf�f� � C N��� � �

Together with ������� this proves ��������
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This theorem proves that a linear estimator reduces the energy of the
noise by a factor that increases like N���� The minimax �lter averages
the noisy data to remove part of the white noise� without degrading too
much the potential discontinuities of f � Figure �����c� shows a linear
Wiener estimation calculated by supposing that j �f 
m�j� is known� The
resulting risk ������� is in fact the minimax risk over the translation
invariant set �f  fg � g
n�  f 
n � p� with p 
 Zg� If f has a
discontinuity whose amplitude is on the order of C then although the
set �f is much smaller than �V � the minimax linear risks rl��f� and
rl��V � are of the same order�

������ Orthosymmetric Sets

We study geometrical conditions on � that allow us to nearly reach
the non�linear minimax risk rn��� with estimators that are diagonal
in a basis B  fgmg��m�N � The maximum risk on � of any linear or
non�linear diagonal estimator has a lower bound calculated with the
oracle diagonal attenuation ��������

rinf���  sup
f�


N��X
m��

�� jfB
m�j�
�� � jfB
m�j� �

Thresholding estimators have a maximum risk that is close to this lower
bound� We thus need to understand under what conditions rn��� is on
the order of rinf��� and how it compares with rl����

Hyperrectangle The study begins with hyperrectangles which are
building blocks for computing the minimax risk over any set �� A
hyperrectangle

Rx  ff � jfB
m�j � jxB
m�j for � � m � Ng

is a separable set along the basis directions gm� The risk lower bound
for diagonal estimators is

rinf�Rx� 
N��X
m��

�� jxB
m�j�
�� � jxB
m�j� �
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The following theorem proves that for a hyperrectangle� the non�linear
minimax risk is very close to the linear minimax risk�

Theorem ���� On a hyperrectangle Rx the linear and non�linear min�
imax risks are reached by diagonal estimators� They satisfy

rl�Rx�  rinf�Rx� � �������

and

 rinf�Rx� � rn�Rx� � rinf�Rx� with  � �	���� � �������

Proof �� We �rst show that a linear minimax estimator is necessarily
diagonal in B� Let 	F � DX be the estimator obtained with a linear
operator D represented by the matrix A in B�

	FB � AXB �

Let trA be the trace of A� and A� be its complex transpose� Since
X � f�W whereW is a white noise of variance �� � a direct calculation
shows that

r�D� f� � Efk 	F � fk�g � �� trAA� � �AfB � fB�� �AfB � fB�� �������

If Dd is the diagonal operator whose coe�cients are a
m� � am�m the
risk is then

r�Dd� f� �

N��X
m��

�
�� jam�mj

� � j�� am�mj
� jfB
m�j�

�
� �������

To prove that the maximum risk over Rx is minimized when A is
diagonal� we show that r�Dd�Rx� � r�D�Rx�� For this purpose� we
use a prior probability distribution 	 � R�x corresponding to a random
vector F whose realizations are in Rx�

FB
m� � S
m�xB
m� � �������

The random variables S
m� are independent and equal to � or �� with
probability �
�� The expected risk r�D�	� � EfkF � 	Fk�g is derived
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from ������� by replacing f by F and taking the expected value with re�
spect to the probability distribution 	 of F � Ifm �� p then EfFB 
m�FB
p�g �
� so we get

r�D�	� � ��
N��X
m��

jam�mj
� �

N��X
m��

jxB
m�j�

�
��jam�m � �j� �

N��X
p��
p��m

jam�pj
�

�
	


� ��
N��X
m��

jam�mj
� �

N��X
m��

j�� am�mj
�jxB
m�j� � r�Dd� x���������

Since the realizations of F are in Rx� ������� implies that r�D�Rx� �
r�D�	�� so r�D�Rx� � r�Dd� x�� To prove that r�D�Rx� � r�Dd�Rx�
it is now su�cient to verify that r�Dd�Rx� � r�Dd� x�� To minimize
r�Dd� f�� ������� proves that necessarily am�m � 
�� ��� In this case
������� implies

r�Dd�Rx� � sup
f�Rx

r�Dd� f� � r�Dd� x� �

Now that we know that the minimax risk is achieved by a diagonal oper�
ator� we apply Theorem ���� which proves in ������� that the minimax
risk among linear diagonal operator is rinf�Rx� because Rx is quadrati�
cally convex� So rl�Rx� � rinf�Rx��

To prove that the non�linear minimax risk is also obtained with a
diagonal operator we use the minimax Theorem ���� which proves that

rn�Rx� � sup
��R�

x

inf
D�On

r�D�	� � �������

The set Rx can be written as a product of intervals along each direc�
tion gm� As a consequence� to any prior 	 � R�x corresponding to a
random vector F we associate a prior 	� � R�x corresponding to F � such
that F �B
m� has the same distribution as FB
m� but with F

�
B
m� indepen�

dent from F �B
p� for p �� m� We then verify that for any operator D�
r�D�	� � r�D�	��� The sup over R�x in ������� can thus be restricted
to processes that have independent coordinates� This independence also
implies that the Bayes estimator that minimizes r�D�	� is diagonal in
B� The minimax theorem proves that the minimax risk is reached by
diagonal estimators�

Since rn�Rx� � rl�Rx� we derive the upper bound in ������� from
the fact that rl�Rx� � Rinf�Rx�� The lower bound ������� is obtained by
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computing the Bayes risk rn�	� � infD�On r�D�	� for the prior 	 corre�
sponding to F de�ned in �������� and verifying that rn�	� � � rinf�Rx��
We see from ������� that rn�Rx� � rn�	�� which implies ��������

The bound  � � was proved by Ibragimov and Khas minskii 
����
but the essentially sharp bound �	���� was obtained by Donoho� Liu
and MacGibbon 
����� They showed that  depends on the variance
�� of the noise and that if �� tends to � or to �� then  tends to ��
Linear estimators are thus asymptotically optimal compared to non�
linear estimators�

Orthosymmetric set To di�erentiate the properties of linear and
non�linear estimators� we consider more complex sets that can be writ�
ten as unions of hyperrectangles� We say that � is orthosymmetric in
B if for any f 
 � and for any a
m� with ja
m�j � � then

N��X
m��

a
m� fB
m� gm 
 � �

Such a set can be written as a union of hyperrectangles�

� 
�
f�


Rf � �������

An upper bound of rn��� is obtained with the maximum risk rt��� 
supf�
 rt�f� of a hard or soft thresholding estimator in the basis B�

with a threshold T  �
p

� logeN �

Proposition ���
 If � is orthosymmetric in B then the linear mini�
max estimator is reached by linear diagonal estimators and

rl���  rinf�QH
��� � �������

The non�linear minimax risk satis�es

�

����
rinf��� � rn��� � rt��� � �� logeN���

�
���rinf���

�
� ��������
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Proof �� Since � is orthosymmetric� � � �f�
Rf � On each hyper�
rectangle Rf � we showed in ������� that the maximum risk of a linear
estimator is reduced by letting it be diagonal in B� The minimax linear
estimation in � is therefore diagonal� rl��� � rl�d���� Theorem ����
proves in ������� that rl�d��� � rinf�QH
��� which implies ��������

Since � � �f�
Rf we also derive that rn��� � supf�
 rn�Rf �� So
������� implies that

rn��� �
�

����
rinf��� �

Theorem ����� proves in ������ that the thresholding risk satis�es

rt�f� � �� logeN � ��
�
�� � rp�f�

�
�

A modi�cation of the proof shows that this upper bound remains valid
if rp�f� is replaced by rinf�f� 
����� Taking a sup over all f � � proves
the upper bound ��������� given that rn��� � rt����

This proposition shows that rn��� always remains within a factor � logeN
of the lower bound rinf��� and that the thresholding risk rt��� is at
most � logeN times larger than rn���� In some cases� the factor � logeN
can even be reduced to a constant independent of N �

Unlike the nonlinear risk rn���� the linear minimax risk rl��� may
be much larger than rinf���� This depends on the convexity of �� If
� is quadratically convex then �  QH
�� so ������� implies that
rl���  rinf���� Since rn��� � rinf���	����� the risk of linear and non�
linear minimax estimators are of the same order� In this case� there is
no reason for working with non�linear as opposed to linear estimators�
When � is an orthosymmetric ellipsoid� Problem ����� computes the
minimax linear estimator of Pinsker 
���� and the resulting risk�

If � is not quadratically convex then its hull QH
�� may be much
bigger than �� This is the case when � has a star shape that is elon�
gated in the directions of the basis vectors gm� as illustrated in Figure
����� The linear risk rl���  rinf �QH
��� may then be much larger
than rinf���� Since rn��� and rt��� are on the order of rinf���� they
are then much smaller than rl���� A thresholding estimator thus brings
an important improvement over any linear estimator�
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��

��

��

�a� �b�

Figure ����� �a�� Example of orthosymmetric set � in three dimensions�
�b�� The quadratically convex hull QH
�� is a larger ellipsoid including
��

Example ��� Let � be an lp ball de�ned by

�  ff �
N��X
m��

�pm jfB
m�jp � Cpg� ��������

It is an orthosymmetric set� Its square is

����B  ff �
N��X
m��

�pm jfB
m�jp�� � Cpg�

If p � � then ����B is convex so � is quadratically convex� If p � �� the
convex hull of ����B is ff �

PN��
m�� �

�
m jfB
m�j � C�g so the quadratic

convex hull of � is

QH
��  ff �
N��X
m��

��
m jfB
m�j� � C�g� ��������

The smaller p� the larger the di�erence between � and QH
���

Risk calculation The value of rinf��� depends on the error when
approximating signals in � with few vectors selected from the basis B�
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Theorem ��� proves that the non�linear approximation error of f 
 �
depends on the decay rate of its sorted coe�cients f rB
k�  fB
mk�� with
jf rB
k�j � jf rB
k���j for � � k � N � The following proposition computes
rinf��� for two orthosymmetric sets�

Proposition ���� Let s � �	� and C be such that � � C	� � N s� If

�C�s 
n
f � jf rB
k�j � C k�s for � � k � N

o
������	�

and

��C�s 
n
f �

�N��X
m��

jfB
m�j��s
�s
� C

o
��������

then

rinf��C�s� � rinf� ��C�s� � C��s �����s � ��������

Proof �� We �rst prove that if the sorted coe�cients of f satisfy jf rB
k�j �
C k�s then

rinf�f� � C��s �����s � ��������

Remember from ������� that rinf�f� � rp�f�� Since jf
r
B
k�j � C k�s

Theorem ��� proves that the non�linear approximation error of f in B
satis�es �n
M � � C�M���s and Proposition ���� implies that rp�f� �
�����s C��s� which veri�es ��������� If the coe�cients satisfy only the
upper bound jf rB
k�j � O�C k�s� the same proof shows that rinf�f� �
O�C��s �����s�� The set �C�s includes f such that jf

r
B
k�j � C k�s� and

all f � �C�s satisfy jf
r
B
k�j � O�C k�s�� We thus derive that rinf��C�s� �

supf�
C�s
rinf�f� � �����s C��s�

Let us now consider the set ��C�s de�ned in ��������� If f � ��C�s

then ������ proves that jf rB
k�j � C k�s� So ��C�s � �C�s and hence
rinf� ��C�s� � rinf��C�s�� To get a reverse inequality we consider f � ��C�s

such that jfB
m�j � � for � � m � b�C
����sc and fB
m� � � for
m � b�C
����sc� In this case

rp�f� � b�C
����sc�� � C��s �����s �

Since rinf� ��C�s� �
�
�rp�f� and rinf�

��C�s� � rinf��C�s�� we get rinf� ��C�s� �

�����s C��s�
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The hypothesis C	� � � guarantees that the largest signal coe�cient
is not dominated by the noise� whereas C	� � N s indicates that the
smallest coe�cient has an amplitude smaller than the noise� This is
typically the domain of application for noise removal algorithms�

The larger s� the faster the decay of rinf��� when the noise variance
�� tends to �� The exponent s is large if signals in � have sorted
decomposition coe�cients with a fast decay� in which case rinf��� is
almost on the order of ��� This risk is much smaller than the noise
energy EfkWk�g  N���

������ Nearly Minimax with Wavelets

A thresholding estimator in a wavelet basis has a nearly minimax risk
for sets of piecewise regular signals�This result is proved for piecewise
polynomial signals� which have key characteristics that explain the ef�
�ciency of wavelet thresholding estimators� The more general case of
bounded variation signals and images is studied�

Piecewise Polynomials Piecewise polynomials are among the most
di�cult bounded signals to estimate with a linear operator� Indeed� the
proof of Proposition ���� shows that the maximum risk of an optimal
linear estimator is nearly reached by piecewise constant signals�

The estimation of a piecewise polynomial f is improved by non�
linear operators that average the noisy data X  f � W over large
domains where f is regular� but which avoid averaging X across the
discontinuities of f � These adaptive smoothing algorithms require es�
timating the positions of the discontinuities of f from X� Let �K�d be
the set of piecewise polynomial signals on 
�� N � ��� with at most K
polynomial components of degree d or smaller� Figure ���� gives an
example with d  	 and K  �� The following proposition computes a
lower bound of the minimax risk rn��K�d��

Proposition ���� If �K�d is a set of piecewise polynomial signals then

rn��K�d�

N ��
� K�d � ��N�� � ��������
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Proof �� We consider f � �K�d which is equal to polynomials of degree
d on a partition of 
�� N � �� composed of K sub�intervals f
�k� �k�� �
��g��k�K � To compute a lower bound of rn��K�d�� we create an oracle
estimator that knows in advance the position of each interval 
�k� �k���
��� On 
�k� �k�� � ��� f is equal to a polynomial pk of degree d� which is
characterized by d�� parameters� Problem ���� shows that the minimum
risk when estimating pk on 
�k� �k�� � �� from X � f �W is obtained
with an orthogonal projection on the space of polynomials of degree d
over 
�k� �k�� � ��� The resulting risk is �d � ���

�� Since rn��K�d� is
larger than the sum of these risks on the K intervals�

rn��K�d� � K �d� �����

The lower bound �������� is calculated with an oracle estimator that
knows in advance the positions of the signal discontinuities� One can
prove 
���� that the need to estimate the position of the signal discon�
tinuities introduces another log�N factor in the non�linear minimax
risk�

rn��K�d�

N��
� K �d � ��

logeN

N
�

It is much smaller than the normalized linear minimax risk ��������
which decays like N�����

The inner product of a wavelet with d � � vanishing moments and
a polynomial of degree d is equal to zero� A wavelet basis thus gives
a sparse representation of piecewise polynomials� with non�zero coef�
�cients located in the neighborhood of their discontinuities� Figure
�����a� gives an example� The following theorem derives that a thresh�
olding estimator in a wavelet basis has a risk that is close to the non�
linear minimax�

Proposition ���� Let T  �
p

� logeN � The risk of a hard or a soft
thresholding in a Daubechies wavelet basis with d�� vanishing moments
satis�es

rt��K�d�

N��
� �K�d� ��

loge �

log�e N

N
�� � o���� ��������

when N tends to ���
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Proof �� On 
�� N���� the discrete wavelets j�m
n� of a Daubechies basis
with d � � vanishing moments have a support of size N�j��d � ��� Let
f � �K�d� If the support of j�m is included inside one of the polynomial
components of f � then hf� j�mi � �� At each scale �j � there are at
most K��d � �� wavelets j�m whose support includes one of the K
transition points of f � On at most log�N scales� the number M of non�
zero coe�cients thus satis�es

M � K ��d� �� log�N� ��������

Since min�jhf� j�mij
�� ��� � �� and min�jhf� j�mij

�� ��� � � if hf� j�mi �
�� we derive from ������� that the thresholding risk satis�es

rt�f� � �� logeN � �� �M � ���� �

Inserting �������� yields

rt��� � �� � �K�d� �� log�N� �� logeN � ���
��

Extracting the dominating term for N large gives ���������

The wavelet thresholding risk rt��K�d� is thus larger than rn��K�d� by
at most a logeN factor� This loss comes from a non�optimal choice of
the threshold T  �

p
� logeN � If a di�erent threshold Tj is used to

threshold the wavelet coe�cients at each scale �j� then one can prove

���� that the logeN factor disappears�

min�Tj�j rt��K�d�

N��
� K �d � ��

logeN

N
� ��������

For a soft thresholding� nearly optimal values Tj are calculated from
the noisy data with the SURE estimator �������� and the resulting risk
rt��K�d� has an asymptotic decay equivalent to �������� 
�����

Bounded Variation Let �V be the set of signals having a total
variation bounded by C�

�V 
n
f � kfkV 

N��X
n��

jf 
n�� f 
n� ��j � C
o
�
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To prove that a thresholding estimator in a wavelet basis has nearly a
minimax risk� we show that �V can be embedded in two sets that are
orthosymmetric in the wavelet basis� This embedding is derived from
the following proposition that computes an upper bound and a lower
bound of kfkV from the wavelet coe�cients of f � To simplify notations
we write the scaling vectors of the wavelet basis� �J�m  �J���m� Recall
that the minimum scale is �L  N���

Proposition ����� There exist A�B � � such that for all N � �

kfkV � BN����
J��X

j�L��

��j��X
n��

��j�� jhf� �j�mij  B kfk����� � ��������

and

kfkV � AN���� sup
j�J

����j��X
n��

��j�� jhf� �j�mij
�A  A kfk����� � ��������

The proof is identical to the proof of Theorem ���� replacing inte�
grals by discrete sums� The factor N���� ��j�� comes from the fact that
k�j�mkV � N���� ��j��� The indices of the norms kfk����� and kfk�����
correspond to the indices of two Besov norms ���	��� calculated at scales
�j � N��� The two Besov balls

������ 
	
f � kfk����� � C B��


and

������ 
	
f � kfk����� � C A��



are clearly orthosymmetric in the wavelet basis� Proposition �����
proves that

������ 	 �V 	 ������ � ������	�

Proposition ���� shows that a thresholding risk is nearly minimax over
orthosymmetric sets� The following theorem derives a similar result
over �V by using the orthosymmetric embedding ������	��
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Theorem ���� �Donoho� Johnstone� Let T  �
p

� logeN � There
exist A�� B� � � such that if � � C	� � N then

A�

�
C

�

����
�

N���
� rn��V �

N��
� rt��V �

N��
� B�

�
C

�

����
logeN

N���
�

��������

Proof �� Since ������ and ������ are orthosymmetric� Proposition ����
proves that

�

����
rinf�������� � rn��������

and

rt�������� � �� logeN � ��
�
�� � rinf��������

�
�

But ������ � �V � ������ so

�

����
rinf�������� � rn��V � � rt��V � � �� logeN���

�
���rinf��������

�
�

The double inequality �������� is proved by verifying that

rinf��������

N ��
�
rinf��������

N ��
�

�
C

�

���� �

N���
� ��������

Let us �rst compute an upper bound of rinf��������� If f � ������
then �������� shows that

��j��X
n��

��j�� jhf� j�mij �
C

A
N��� �

As in ������� we derive that there exists A� such that the sorted wavelet
coe�cients f rB
k� of f satisfy

jf rB
k�j � A� C N��� k���� �

Let �C��s � ff � jf rB
k�j � C � k�sg with s � �
� and C � � A� C N����
Since ������ � �C��s Proposition ���� shows that

rinf�������� � rinf��C��s� � �C N������� ������ � ��������
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To compute a lower bound of rinf��������� we de�ne a subset �l �
������ of signals f such that hf� j�mi � � for j �� l and when j � l

��lX
m��

jhf� l�mij �
C N��� �l��

B
� Cl �

Over these ��l non�zero wavelet coe�cients� this set �l is identical to a
set ��C���s de�ned in ��������� for s � � and C

�� � Cl� Proposition ����
proves that

rinf�������� � rinf��l� � C N��� �l�� � � ��������

Since � � C
� � N one can choose � log�N � l � � such that

��l �

�
C N���

�

����

� ��l���

So

rinf�������� � rinf��l� � �C N������������� � ��������

Since rinf�������� � rinf��������� we derive �������� from �������� and
���������

This theorem proves that for bounded variation signals� the threshold�
ing risk in a wavelet basis is close to the minimax risk rn��V �� The
theorem proof can be re�ned 
���� to show that

rn��V �

N��
�
�
C

�

����
�

N���
and

rt��V �

N��
�
�
C

�

����
logeN

N���
�

The loss of a factor logeN in the thresholding risk is due to a threshold
choice T  �

p
� logeN that is too high at large scales� If the wavelet

coe�cients are thresholded with di�erent thresholds Tj that are op�
timized for scale �j then the logeN factor disappears 
���� ����� In
this case� when N increases� rt��V � and rn��V � have equivalent decay�
For a soft thresholding� the thresholds Tj can be calculated with the
SURE estimator �������� We restrict the study to bounded variation
signals because they have a simple characterization� but the minimax
and thresholding risks can also be calculated in balls of any Besov space�
leading to similar near�optimality results 
�����
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Bounded Variation Images We now study the estimation of bounded
variation images of N� pixels� which we will assume to be periodic to
avoid border problems� The total variation is de�ned in �������

kfkV 
�

N

N��X
n��n���

����f 
n�� n���f 
n���� n��
��������f 
n�� n���f 
n��� n����

���������
Let �V be the set of images that have a total variation bounded by C�

�V 
n
f � kfkV � C

o
�

In one dimension� Theorem ���� proves that if � is translation in�
variant� then the linear minimax risk rl��� is reached by an estimator
that is diagonal in the discrete Fourier basis� and thus corresponds to
a circular convolution� This result remains valid for images� and is
proved similarly� Since �V is translation invariant� the minimax linear
estimator can be written as a circular convolution� The next theorem
computes the linear minimax risk rl��V �� It is compared with rn��V �
and with the maximum risk rt��V � obtained with a thresholding esti�
mator in a separable wavelet basis�

Theorem ����� �Donoho� Johnstone� There exists A � � such that
if � � C	� � N then

A � rl��V �

N���
� �� ��������

Let T  �
p

� logeN
�� There exist A�� B� � � such that if N�� �

C	� � N then

A�
C

�

�

N
� rn��V �

N���
� rt��V �

N���
� B�

C

�

logeN

N
� ��������

Proof �� The linear and non�linear minimax risk are calculated by show�
ing that �V can be embedded in two sets that are orthosymmetric in a
separable wavelet basis� For this purpose� we establish upper and lower
bounds of kfkV from the wavelet coe�cients of f �

To simplify notation� we denote by B � fgmg��m�N� the orthonor�
mal wavelet basis� Let fB
m� be the wavelet coe�cients of f � and f rB
k�
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be the sorted coe�cients in decreasing amplitude order� This sorting
excludes the large scale �scaling coe�cients� that carry the low frequen�
cies of the signal� The discrete version of Theorem ��� proves that there
exist A�B � � such that for all N � �

kfkV � BN��
N���X
m��

jfB
m�j ��������

and
kfkV � AN�� k jf rB
k�j � ��������

The factors N�� of these inequalities comes from the fact that the total
variation of a two�dimensional wavelet gm satis�es kgmkV � N���

Let �� and �� be the two sets de�ned by

�� �
n
f �

N���X
m��

jfB
m�j � C N B��
o

and
�� �


f � jf rB
k�j � C N Ak��

�
�

These sets are clearly orthosymmetric in the wavelet basis B� The upper
bound �������� and lower bound �������� prove that

�� � �V � �� � ��������

Let us now compute upper and lower bounds for the linear minimax
risk rl��V �� The trivial estimator 	F � X has a risk equal to EfkWk�g �
N��� so rl��V � � N���� To get a lower bound� we use the fact that
�� � �V so rl��V � � rl����� Since �� is orthosymmetric in the wavelet
basis B� Proposition ���� proves in ������� that

rl���� � rinf �QH
���� �

We also derive from �������� that

QH
��� �
n
f �

N���X
m��

jfB
m�j� � C�N�B��
o
�

Since C
� � � we can choose fB
m� � �
B and f � QH
���� Hence

rl��V � � rinf �QH
����� � rinf�f� � N� ��
B�

B� � �
�
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This proves the lower bound of ���������

The non�linear minimax and thresholding risk are calculated by ap�
plying Proposition ���� to the orthosymmetric sets �� and ��� Since
�� � �V � ���

�

����
rinf���� � rn��V � � rt��V � � �� logeN � ��

�
�� � rinf����

�
�

��������
Proposition ���� allows us to compute rinf���� and rinf���� since

�� � ��C��s and �� � �C��s � ��������

with s � �� C� � C N B�� and C� � C N A��� Since N�� � C
� � N
the calculation �������� applies and proves that

rinf���� � rinf���� � C N � � ��������

We thus derive �������� from �������� and ���������

This theorem proves that the linear minimax risk reduces the noise
energy by at most a constant that is independent of �� C and N � The
normalized risk of a thresholding estimator decays like N�� logeN and
is thus much smaller than the linear minimax risk when N is large�
As in one dimension� if the threshold T  �

p
� logeN is replaced by

thresholds Tj that are optimized at each scale� then the logeN term
disappears 
���� ���� and

rt���

N��
� rn���

N��
� C

�

�

N
� ��������

For a soft thresholding� the thresholds Tj can be calculated with the
SURE estimator ��������

���� Restoration 	

Measurement devices can introduce important distortions and add noise
to the original signal� Inverting the degradation is often numerically
unstable and thus ampli�es the noise considerably� The signal estima�
tion must be performed with a high amplitude noise that is not white�
Deconvolutions are generic examples of such unstable inverse problems�
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Section ������ studies the estimation of signals contaminated by non
white Gaussian noises� It shows that thresholding estimators are quasi�
minimax optimal if the basis nearly diagonalizes the covariance of the
noise and provides sparse signal representations� Inverse problems and
deconvolutions are studied in Section ������� with an application to the
removal of blur in satellite images�

������ Estimation in Arbitrary Gaussian Noise

The signal f is contaminated by an additive Gaussian noise Z�

X  f � Z �

The random vector Z is characterized by its covariance operator K�
and we suppose that EfZ
n�g  �� When this noise is white� Section
���	�� proves that diagonal estimators in an orthonormal basis B 
fgmg��m�N are nearly minimax optimal if the basis provides a sparse
signal representation� When the noise is not white� the coe�cients of
the noise have a variance that depends on each gm�

��m  EfjZB
m�j�g  hKgm� gmi �

The basis choice must therefore depend on the covariance K�

Diagonal Estimation We study the risk of estimators that are di�
agonal in B�

�F  DX 
N��X
m��

dm�XB
m�� gm � ��������

If dm�XB
m��  a
m�XB
m�� we verify as in ������� that the minimum
risk Efk �F � fk�g is achieved by an oracle attenuation�

a
m� 
jfB
m�j�

jfB
m�j� � ��m
� ��������

and

Efk �F � fk�g  rinf�f� 
N��X
m��

��m jfB
m�j�
��m � jfB
m�j� � �����	��
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Over a signal set �� the maximum risk of an oracle attenuation is
rinf���  supf�
 rinf�f�� An oracle attenuation cannot be implemented
because a
m� depends on jfB
m�j which is not known� so rinf��� is only
a lower bound for the minimax risk of diagonal estimators� However�
a simple thresholding estimator has a maximum risk that is close to
rinf���� We begin by studying linear diagonal estimators D� where
each a
m� is a constant� The following proposition computes an upper
bound of the minimax linear risk� The quadratic convex hull QH
�� of
� is de�ned in ��������

Proposition ����� Let � be a closed and bounded set� There exists
x 
 QH
�� such that rinf�x�  rinf�QH
���� If D is the linear operator
de�ned by

a
m� 
jxB
m�j�

��m � jxB
m�j� � �����	��

then
rl��� � r�D���  rinf�QH
��� � �����	��

Proof �� Let rl�d��� be the minimax risk obtained over linear operators
that are diagonal in B� Clearly rl��� � rl�d���� The same derivations
as in Theorem ���� prove that the diagonal operator de�ned by ��������
satis�es

r�D��� � rl�d��� � rinf �QH
��� �

Hence ���������

Among non�linear diagonal estimators� we concentrate on thresholding
estimators�

�F 
N��X
m��

�Tm�XB
m�� gm � �����		�

where �T �x� is a hard or soft thresholding function� The threshold Tm
is adapted to the noise variance ��m in the direction of gm� Propo�
sition ���� computes an upper bound of the risk rt�f� when Tm 
�m
p

� logeN � If the signals belong to a set �� the threshold values are
improved by considering the maximum of signal coe�cients�

sB
m�  sup
f�


jfB
m�j �



����� RESTORATION � ���

If sB
m� � �m then setting XB
m� to zero yields a risk jfB
m�j� that is
always smaller than the risk ��m of keeping it� This is done by choosing
Tm  � to guarantee that �Tm�XB
m��  �� Thresholds are therefore
de�ned by

Tm 

�
�m
p

� logeN if �m � sB
m�
� if �m � sB
m�

� �����	��

Proposition ���� For the thresholds ������	
� the risk of a thresh�
olding estimator satis�es for N � �

rt��� � �� logeN � ��
�

��� � rinf���
�

�����	��

with ���  �
N

P
�m�sB�m �

�
m �

Proof �� The thresholding risk rt�f� is calculated by considering sepa�
rately the case Tm ��� which produces a risk of jfB
m�j�� from the case
Tm ��

rt�f� �
X

�m�sB�m

jfB
m�j� �
X

�m�sB�m

EfjfB
m�� �Tm�XB
m��j
�g �

��������
A slight modi�cation 
���� of the proof of Theorem ���� shows that

EfjfB
m�� �Tm�XB
m��j
�g � �� logeN � ��

���m
N
�

��m jfB
m�j�

��m � jfB
m�j�
�
�

��������
If �m � sB
m� then jfB
m�j� � ���m jfB
m�j� ���m � jfB
m�j����� so in�
serting �������� in �������� proves ���������

This proposition proves that the risk of a thresholding estimator is
not much above rinf���� It now remains to understand under what
conditions the minimax risk rn��� is also on the order of rinf����

Nearly Diagonal Covariance To estimate e�ciently a signal with
a diagonal operator� the basis B must provide a sparse representation of
signals in � but it must also transform the noise into �nearly� indepen�
dent coe�cients� Since the noise Z is Gaussian� it is su�cient to have
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�nearly� uncorrelated coe�cients� which means that the covariance K
of Z is �nearly� diagonal in B� This approximate diagonalization is
measured by preconditioning K with its diagonal� We denote by Kd

the diagonal operator in the basis B� whose diagonal coe�cients are
equal to the diagonal coe�cients ��m of K� We suppose that K has no
eigenvalue equal to zero� because the noise would then be zero in this
direction� in which case the estimation is trivial� Let K�� be the in�
verse of K� and K

���
d be the diagonal matrix whose coe�cients are the

square root of the diagonal coe�cients of Kd� The following theorem
computes lower bounds of the minimax risks with a preconditioning
factor de�ned with the operator sup norm k � kS introduced in �A�����

Theorem ����� �Donoho� Kalifa� Mallat� The preconditioning fac�
tor satis�es

�B  kK���
d K��K���

d kS � � � �����	��

If � is orthosymmetric in B then

rl��� � �

�B
rinf�QH
��� �����	��

and

rn��� � �

�����B
rinf��� � ��������

Proof �� The proof considers �rst the particular case where K is diago�
nal� If K is diagonal in B then the coe�cients ZB
m� are independent
Gaussian random variables of variance ��m� Estimating f � � from
X � f � Z is equivalent to estimating f� from X� � f� � Z� where

Z� �

N��X
m��

ZB
m�
�m

gm � X� �

N��X
m��

XB
m�
�m

gm � f� �

N��X
m��

fB
m�
�m

gm �

��������
The signal f� belongs to an orthosymmetric set �� and the renormalized
noise Z� is a Gaussian white noise of variance �� Proposition ���� applies
to the estimation problem X� � f��Z�� By reinserting the value of the
renormalized noise and signal coe�cients� we derive that

rn��� �
�

����
rinf��� and rl��� � rinf�QH
��� � ��������



����� RESTORATION � ���

To prove the general case we use inequalities over symmetrical ma�
trices� If A and B are two symmetric matrices� we write A � B if the
eigenvalues of A � B are positive� which means that hAf� fi � hBf� fi

for all f � C
N � Since �B is the largest eigenvalue of K

���
d K��K���

d � the

inverse ���B is the smallest eigenvalue of the inverse K
����
d KK

����
d � It

follows that hK
����
d KK

����
d f� fi � ���B hf� fi� By setting g � K

����
d f

we get hKg� gi � ���B hK
���
d g�K

���
d gi� Since this is valid for all g � C

N �
we derive that

K � ���B Kd � ��������

Observe that �B � � because hKgm� gmi � hKdgm� gmi� Lower bounds
for the minimax risks are proved as a consequence of the following lemma�

Lemma ���� Consider the two estimation problems Xi � f � Zi for

i � �� �� where Ki is the covariance of the Gaussian noise Zi� We denote

by ri�n��� and ri�l��� the non�linear and linear minimax risks for each

estimation problem i � �� �� If K� � K� then

r��n��� � r��n��� and r��l��� � r��l��� � ��������

Since K� � K� one can write Z� � Z��Z� where Z� and Z� are two
independent Gaussian random vectors and the covariance of Z� is K� �
K� � K� � �� We denote by 	i the Gaussian probability distribution
of Zi� To any estimator 	F� � D�X� of f from X� we can associate an
estimator 	F�� calculated by augmenting the noise with Z� and computing
the average with respect to its probability distribution�

	F� � D�X� � E��fD��X� � Z��g � E��fD�X�g �

The risk is

E��fjD�X� � f j�g � E��fjE��fD�X�g � f j�g

� E��fE��fjD�X� � f j�gg � E��fjD�X� � f j�g �

To any estimator 	F� � D�X� we can thus associate an estimator 	F� �
D�X� of lower risk for all f � �� Taking a sup over all f � � and the
in�mum over linear or non�linear operators proves ���������

Since K � ���B Kd� Lemma ���� proves that the estimation problem
with the noise Z of covariance K has a minimax risk that is larger than
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the minimax risk of the estimation problem with a noise of covariance
���B Kd� But since this covariances is diagonal we can apply ���������
The de�nition of rinf��� is the same for a noise of covariance K and for
a noise of covariance Kd because �

�
m � hKgm� gmi � hKdgm� gmi� When

multiplying Kd by a constant �
��
B � �� the value rinf��� that appears

in �������� is modi�ed into r�inf��� with r
�
inf��� � ���B rinf���� We thus

derive �������� and ���������

One can verify that �B  � if and only if K  Kd and hence that K is
diagonal in B� The closer �B is to � the more diagonal K� The main
di�culty is to �nd a basis B that nearly diagonalizes the covariance
of the noise and provides sparse signal representations so that � is
orthosymmetric or can be embedded in two close orthosymmetric sets�

An upper bound of rl��� is computed in �����	�� with a linear
diagonal operator� and together with �����	�� we get

�

�B
rinf�QH
��� � rl��� � rinf�QH
��� � ��������

Similarly� an upper bound of rn��� is calculated with the thresholding
risk calculated by Proposition ������ With the lower bound ��������
we obtain

�

�����B
rinf��� � rn��� � rt��� � �� logeN � ��

�
��� � rinf���

�
�

��������
If the basis B nearly diagonalizes K so that �B is on the order of � then
rl��� is on the order of rinf�QH
���� whereas rn��� and rt��� are on the
order of rinf���� If � is quadratically convex then �  QH
�� so the
linear and non�linear minimax risks are close� If � is not quadratically
convex then a thresholding estimation in B may signi�cantly outper�
form an optimal linear estimation�

������ Inverse Problems and Deconvolution

The measurement of a discrete signal f of size N is degraded by a linear
operator U and a Gaussian white noise W of variance �� is added�

Y  Uf � W � ��������



����� RESTORATION � ���

We suppose that U and �� have been calculated through a calibration
procedure� The restoration problem is transformed into a denoising
problem by inverting the degradation� We can then apply linear or
non�linear diagonal estimators studied in the previous section� When
the inverse U�� is not bounded� the noise is ampli�ed by a factor that
tends to in�nity� This is called an ill�posed inverse problem 
��� 	�	�
The case where U is a convolution operator is studied in more detail
with an application to satellite images�

Pseudo Inverse The degradation U is inverted with the pseudo�
inverse de�ned in Section ������ Let V  ImU be the image of U and
V� be its orthogonal complement� The pseudo�inverse �U�� of U is the
left inverse whose restriction to V� is zero� The restoration is said to
be unstable if

lim
N���

k �U��k�S  �� �

Estimating f from Y is equivalent to estimating it from

X  �U��Y  �U��Uf � �U��W� ��������

The operator �U��U  PV is an orthogonal projection on V so

X  PVf � Z with Z  �U��W � ��������

The noise Z is not white but remains Gaussian because �U�� is linear� It
is considerably ampli�ed when the problem is unstable� The covariance
operator K of Z is

K  �� �U�� �U�� � � ��������

where A� is the adjoint of an operator A�
To simplify notation� we formally rewrite �������� as a standard

denoising problem�
X  f � Z � ��������

while considering that the projection of Z in V� is a noise of in�nite
energy to express the loss of all information concerning the projection
of f in V�� It is equivalent to write formally Z  U��W �

Let B  fgmg��m�N be an orthonormal basis such that a subset of
its vectors de�nes a basis of V  ImU� The coe�cients of the noise



��� CHAPTER ��� ESTIMATIONS ARE APPROXIMATIONS

have a variance ��m  EfjZB
m�j�g� and we set �m  � if gm 
 V��
An oracle attenuation �������� yields a lower bound for the risk

rinf�f� 
N��X
m��

��m jfB
m�j�
��m � jfB
m�j� � ��������

The loss of the projection of f in V� appears in the terms

��m jfB
m�j�
��m � jfB
m�j�  jfB
m�j� if �m  � �

Proposition ����� proves that a thresholding estimator in B yields
a risk that is above rinf��� by a factor � logeN � Theorem ����� relates
linear and non�linear minimax risk to rinf���� Let Kd be the diagonal
operator in B� equal to the diagonal of the covariance K de�ned in
��������� The inverse of K is replaced by its pseudo inverse K�� 
��� U� U and the preconditioning number is

�B  kK���
d K��K���

d kS  ��� kK���
d Uk�S �

Thresholding estimators have a risk rt��� that is close to rn��� if � is
nearly orthosymmetric in B and if �B is on the order of �� The main
di�culty is to �nd such a basis B�

The thresholds �����	�� de�ne a projector that is non�zero only in
the space V� 	 V generated by the vectors fgmg�m�sB�m� This means

that the calculation of X  �U�� Y in �������� can be replaced by a
regularized inverse X  PV�

�U�� Y � to avoid numerical instabilities�

Deconvolution The restoration of signals degraded by a convolution
operator U is a generic inverse problem that is often encountered in
signal processing� The convolution is supposed to be circular to avoid
border problems� The goal is to estimate f from

Y  f �� u� W �

The circular convolution is diagonal in the discrete Fourier basis

B 
n
gm
n�  �p

N
exp �i��m	N�

o
��m�N

� The eigenvalues are equal to
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the discrete Fourier transform �u
m�� so V  ImU is the space generated
by the sinusoids gm such that �u
m� � �� The pseudo inverse of U is
�U��f  f �� �u�� where the discrete Fourier transform of �u�� is

d�u��
m� 

� �
bu�m

if �u
m� � �

� if �u
m�  �
�

The deconvolved data are

X  �U��Y  Y �� �u�� �

The noise Z  �U��W is circular stationary� Its covariance K is a cir�

cular convolution with �� �u�� �� �u
��

� where �u
��


n�  �u��
�n�� The
Karhunen�Lo�eve basis that diagonalizes K is therefore the discrete
Fourier basis B� The eigenvalues of K are ��m  �� j�u
m�j��� When
�u
m�  � we formally set ��m  ��

When the convolution �lter is a low�pass �lter with a zero at a high
frequency� the deconvolution problem is highly unstable� Suppose that
�u
m� has a zero of order p � � at the highest frequency m  �N	��

j�u
m�j �
�����mN � �

����p � ������	�

The noise variance ��m has a hyperbolic growth when the frequency m is
in the neighborhood of �N	�� This is called a hyperbolic deconvolution
problem of degree p�

Linear Estimation In many deconvolution problems the set � is
translation invariant� which means that if g 
 � then any translation
of g modulo N also belongs to �� Since the ampli�ed noise Z is circular
stationary the whole estimation problem is translation invariant� In
this case� the following theorem proves that the linear estimator that
achieves the minimax linear risk is diagonal in the discrete Fourier basis�
It is therefore a circular convolution� In the discrete Fourier basis�

rinf�f� 
N��X
m��

��mN�� j �f 
m�j�
��m � N�� j �f 
m�j� � ��������

We denote by QH
�� the quadratic convex hull of � in the discrete
Fourier basis�
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Theorem ���� Let � be a translation invariant set� The minimax
linear risk is reached by circular convolutions and

rl���  rinf�QH
��� � ��������

Proof �� Proposition ����� proves that the linear minimax risk when
estimating f � � from the deconvolved noisy data X satis�es rl��� �
rinf�QH
���� The reverse inequality is obtained with the same derivations
as in the proof of Theorem ����� The risk rinf�QH
��� is reached by
estimators that are diagonal in the discrete Fourier basis�

If � is closed and bounded� then there exists x 
 QH
�� such that
rinf�x�  rinf�QH
���� The minimax risk is then achieved by a �lter
whose transfer function �d�
m� is speci�ed by �����	��� The resulting
estimator is

�F  D�X  d� ��X  d� �� �u�� �� Y �

So �F  DY  d �� Y � and one can verify �Problem ������ that

�d
m� 
N�� j�x
m�j� �u�
m�

�� � N�� j�x
m�j� j�u
m�j� � ��������

If ��m  �� j�u
m�j�� � N�� j�x
m�j� then �d
m� � �u��
m�� but if ��m 
N�� j�x
m�j� then �d
m� � �� The �lter �d is thus a regularized inverse of
u�

Theorem ����� can be applied to a set of signals with bounded total
variation

�V 

�
f � kfkV 

N��X
n��

���f 
n�� f 
n� ��
��� � C


�

The set �V is indeed translation invariant�

Proposition ����	 For a hyperbolic deconvolution of degree p� if � �
C	� � N then

rl��V �

N��
�
�

C

N��� �

���p����p
� ��������
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Proof �� Since �V is translation invariant� Theorem ����� proves that
rl��V � � rinf�QH
�V ��� Proposition ���� shows in ������� that all f �
�V have a discrete Fourier transform that satis�es

j �f 
m�j� �
C�

� j sin �m
N j�

� j�x
m�j� � ��������

Hence �V is included in the hyperrectangleRx� The convex hull QH
�V �
is thus also included in Rx which is quadratically convex� and one can
verify that

rinf�QH
��V � � rinf�Rx� � � rinf�QH
��V � � ��������

The value rinf�Rx� is calculated by inserting �������� with �
��
m � ��� j�u
m�j�

in ���������

rinf�Rx� �

N��X
m��

N��C� ��

��� j sin �m
N j� �N�� C� j�u
m�j�

� ��������

For j�u
m�j �
���mN�� � �

��p� if � � C
� � N then an algebraic calcula�

tion gives rinf�Rx� � �C N���� ������p����p� So rl��V � � rinf�QH
�V ��
satis�es ���������

For a constant signal to noise ratio C�	�N ��� � �� �������� implies
that

rl��V �

N��
� � � ��������

Despite the fact that � decreases and N increases� the normalized linear
minimax risk remains on the order of ��

Example ���	 Figure ������a� is a signal Y obtained by smoothing
a signal f with the low�pass �lter

�u
m�  cos�
��m
N

�
� ��������

This �lter has a zero of order p  � at �N	�� Figure ������b� shows
the estimation �F  Y �� d calculated with the transfer function �d
m�
obtained by inserting �������� in ��������� The maximum risk over �V

of this estimator is within a factor � of the linear minimax risk rl��V ��
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�a� �b�

Figure ������ �a�� Degraded data Y � blurred with the �lter ��������
and contaminated by a Gaussian white noise �SNR  ���� db�� �b�
Deconvolution calculated with a circular convolution estimator whose
risk is close to the linear minimax risk over bounded variation signals
�SNR  ���� db��

Thresholding Deconvolution An e�cient thresholding estimator
is implemented in a basis B that de�nes a sparse representation of
signals in �V and which nearly diagonalizes K� This approach was
introduced by Donoho 
��	� to study inverse problems such as inverse
Radon transforms� We concentrate on more unstable hyperbolic de�
convolutions�

The covariance operator K is diagonalized in the discrete Fourier
basis and its eigenvalues are

��k 
��

j�u
k�j� � ��
�����kN � �

������p � ������	�

Yet the discrete Fourier basis is not appropriate for the thresholding al�
gorithm because it does not provide e�cient approximations of bounded
variation signals� In contrast� periodic wavelet bases provide e�cient
approximations of such signals� We denote by ����
n�  N����� A
discrete and periodic orthonormal wavelet basis can be written

B  f�j�mgL�j�� � ��m���j � ��������

However� we shall see that this basis fails to approximately diagonalize
K�
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The discrete Fourier transform ��j�m
k� of a wavelet has an energy
mostly concentrated in the interval 
��j��� ��j�� as illustrated by Figure
������ If �j � �N�� then over this frequency interval ������	� shows
that the eigenvalues ��k remain on the order of ��� These wavelets are
therefore approximate eigenvectors of K� At the �nest scale �l  �N���
j ��l�m
k�j has an energy mainly concentrated in the higher frequency
band 
N	�� N	��� where ��k varies by a huge factor on the order of N�r�
These �ne scale wavelets are thus far from approximating eigenvectors
of K�
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Figure ������ Wavelets and mirror wavelets are computed with a
wavelet packet �lter bank tree� where each branch corresponds to a
convolution with a �lter �h or �g followed by a subsampling� The graphs

of the discrete Fourier transforms j ��j�n
k� and jb!�j�n
k� are shown below
the tree� The variance ��k of the noise has a hyperbolic growth but
varies by a bounded factor on the frequency support of each mirror
wavelet�

To construct a basis of approximate eigenvectors of K� the �nest
scale wavelets must be replaced by wavelet packets that have a Fourier
transform concentrated in subintervals of 
N	�� N	�� where ��k varies
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by a factor that does not grow with N � In order to e�ciently approx�
imate piecewise regular signals� these wavelet packets must also have
the smallest possible spatial support� and hence the largest possible fre�
quency support� The optimal trade�o� is obtained with wavelet packets

that we denote !�j�m� which have a discrete Fourier transform b!�j�m
k�
mostly concentrated in 
N	�� ��j� N	�� ��j���� as illustrated by Fig�
ure ������ This basis is constructed with a wavelet packet �ltering tree
that subdecomposes the space of the �nest scale wavelets� These par�
ticular wavelet packets introduced by Kalifa and Mallat 
�	�� �		� are
called mirror wavelets because

jb!�j�m
k�j  j ��j�m
N	�� k�j �
Let L  � log�N � A mirror wavelet basis is a wavelet packet basis
composed of wavelets �j�m at scales �j � �L�� and mirror wavelets to
replace the �nest scale wavelets �L���

B 
n
�j�m � !�j�m

o
��m���j � L���j��

�

To prove that the covariance K is �almost diagonalized� in B for all
N � the asymptotic behavior of the discrete wavelets and mirror wavelets
must be controlled� The following theorem thus supposes that these
wavelets and wavelet packets are constructed with a conjugate mirror
�lter that yields a continuous time wavelet ��t� with q � p vanishing
moments and which is Cq� The near diagonalization is veri�ed to prove
that a thresholding estimator in a mirror wavelet basis has a risk whose
decay is equivalent to the non�linear minimax risk�

Theorem ����	 �Kalifa� Mallat� Let B be a mirror wavelet basis
constructed with a conjugate mirror �lter that de�nes a wavelet that is
Cq with q vanishing moments� For a hyperbolic deconvolution of degree
p � q� if � � C	� � Np���� then

rn��V �

N��
� rt��V �

N��
�
�
C

�

��p���p���
�logeN�����p���

N
� ��������

Proof �� The main ideas of the proof are outlined� We must �rst verify
that there exists � such that for all N � �

kK
���
d K��K���

d kS � � � ��������
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The operator K�� � ��� U� U is a circular convolution whose transfer
function is ��� j�u
m�j� � �� j�m
N��j�p� The matrix of this operator in
the mirror wavelet basis is identical to the matrix in the discrete wavelet
basis of a di�erent circular convolution whose transfer function satis�es
��� j�u
m�N
��j� � ��� j�m
N j�p� This last operator is a discretized and
periodized version of a convolution operator in L��R� of transfer function
�u��� � ���N��p j�j�p� One can prove 
��� ���� that this operator is
preconditioned by its diagonal in a wavelet basis of L��R� if the wavelet
has q � p vanishing moments and is Cq� We can thus derive that in the

�nite case� when N grows� kK
���
d K��K���

d kS remains bounded�

The minimax and thresholding risk cannot be calculated directly with
the inequalities �������� because the set of bounded variation signals �V

is not orthosymmetric in the mirror wavelet basis B� The proof proceeds
as in Theorem ����� We �rst show that we can compute an upper bound
and a lower bound of kfkV from the absolute value of the decomposition
coe�cients of f in the mirror wavelet basis B� The resulting inequalities
are similar to the wavelet ones in Proposition ������ This constructs two
orthosymmetric sets �� and �� such that �� � �V � ��� A re�nement
of the inequalities �������� shows that over these sets the minimax and
thresholding risks are equivalent� with no loss of a logeN factor� The
risk over �� and �� is calculated by evaluating rinf���� and rinf�����
from which we derive ���������

This theorem proves that a thresholding estimator in a mirror wavelet
basis yields a quasi�minimax deconvolution estimator for bounded vari�
ation signals� If we suppose that the signal to noise ratio C�	�N��� � �
then

rn��V �

N��
� rt��V �

N��
�
�

logeN

N

�����p���

� ��������

As opposed to the normalized linear minimax risk �������� which re�
mains on the order of �� the thresholding risk in a mirror wavelet basis
converges to zero as N increases� The larger the number p of zeroes of
the low�pass �lter �u
k� at k  �N	�� the slower the risk decay�

Example ���� Figure ������a� shows a signal Y degraded by a con�

volution with a low�pass �lter �u
k�  cos�
�
� k
N

�
� The result of the

deconvolution and denoising with a thresholding in the mirror wavelet
basis is shown in Figure ������ A translation invariant thresholding is
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Figure ������ Deconvolution of the signal in Figure ������a� with a
thresholding in a mirror wavelet basis �SNR  ���� db��

performed to reduce the risk� The SNR is ���� db� whereas it was ����
db in the linear restoration of Figure ������b��

Deconvolution of Satellite Images Nearly optimal deconvolution
of bounded variation images can be calculated with a separable exten�
sion of the deconvolution estimator in a mirror wavelet basis� Such a
restoration algorithm is used by the French Spatial Agency �CNES� for
the production of satellite images�

The exposition time of the satellite photoreceptors cannot be re�
duced too much because the light intensity reaching the satellite is
small and must not be dominated by electronic noises� The satellite
movement thus produces a blur� which is aggravated by the imperfec�
tion of the optics� The electronics of the photoreceptors adds a Gaus�
sian white noise� When the satellite is in orbit� a calibration procedure
measures the impulse response u of the blur and the noise variance ���
The image ������b�� provided by the CNES �French spatial agency�� is
a simulated satellite image calculated from an airplane image shown in
Figure ������a�� The impulse response is a separable low�pass �lter�

Uf 
n�� n��  f �� u
n�� n�� with u
n�� n��  u�
n�� u�
n�� �

The discrete Fourier transform of u� and u� have respectively a zero of
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order p� and p� at �N	��

�u�
k�� �
�����k�N � �

����p� and �u�
k�� �
�����k�N � �

����p� �

The deconvolved noise has a covariance K that is diagonalized in a
two�dimensional discrete Fourier basis� The eigenvalues are

��k��k� 
��

j�u�
k��j� j�u�
k��j� � ��
�����k�N � �

������p� �����k�N � �

������p� � ��������

Most satellite images are well modeled by bounded variation images�
The main di�culty is again to �nd an orthonormal basis that provides
a sparse representation of bounded variation images and which nearly
diagonalizes the noise covariance K� Each vector of such a basis should
have a Fourier transform whose energy is concentrated in a frequency
domain where the eigenvectors ��k��k� vary at most by a constant factor�
Roug"e 
���� 	��� has demonstrated numerically that e�cient deconvo�
lution estimations can be performed with a thresholding in a wavelet
packet basis�

At low frequencies �k�� k�� 
 
�� N	��� the eigenvalues remain ap�
proximately constant� ��k��k� � ��� This frequency square can thus be

covered with two�dimensional wavelets �l
j�m� The remaining high fre�

quency annulus is covered by two�dimensional mirror wavelets that are
separable products of two one�dimensional mirror wavelets� One can
verify that the union of these two families de�nes an orthonormal basis
of images of N� pixels�

B 

�n
�l
j�m
n�� n��

o
j�m�l

�
n

!�j�m
n�� !�j��m� 
n��
o
j�j��m�m�

�
� ��������

This two�dimensional mirror wavelet basis segments the Fourier plane
as illustrated in Figure ����	� It is an anisotropic wavelet packet basis
as de�ned in Problem ���� Decomposing a signal in this basis with a
�lter bank requires O�N�� operations�

To formally prove that a thresholding estimator in B has a risk
rt��V � that is close to the non�linear minimax risk rn��V �� one must

prove that there exists � such that kK���
d K��K���

d kS � � and that �V
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Figure ����	� The mirror wavelet basis �������� segments the frequency
plane �k�� k�� into rectangles over which the noise variance ��k��k� 
��k� �

�
k�

varies by a bounded factor� The lower frequencies are covered
by separable wavelets �k

j � and the higher frequencies are covered by

separable mirror wavelets !�j !�j��
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�a� �b�

�c� �d�

Figure ������ �a�� Original airplane image� �b�� Simulation of a satellite
image provided by the CNES �SNR  	���db�� �c�� Deconvolution with
a translation invariant thresholding in a mirror wavelet basis �SNR 
	���db�� �d�� Deconvolution calculated with a circular convolution�
which yields a nearly minimax risk for bounded variation images �SNR
 	���db��
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can be embedded in two close sets that are orthosymmetric in B� The
following theorem computes the risk in a particular con�guration of the
signal to noise ratio� to simplify the formula� More general results can
be found in 
�	���

Theorem ����� �Kalifa� Mallat� For a separable hyperbolic decon�
volution of degree p  max�p�� p�� � 		�� if C�	�N� ��� � � then

rl��V �

N���
� � ��������

and
rn��V �

N���
� rt��V �

N���
�
�

logeN

N�

�����p���

� ��������

The theorem proves that the linear minimax estimator does not
reduce the original noise energy N��� by more than a constant� In
contrast� the thresholding estimator in a separable mirror wavelet basis
has a quasi�minimax risk that converges to zero as N increases�

Figure ������c� shows an example of deconvolution calculated in the
mirror wavelet basis� The thresholding is performed with a translation
invariant algorithm� This can be compared with the linear estimation in
Figure ������d�� calculated with a circular convolution estimator whose
maximum risk over bounded variation images is close to the minimax
linear risk� As in one dimension� the linear deconvolution sharpens the
image but leaves a visible noise in the regular parts of the image� The
thresholding algorithm completely removes the noise in these regions
while improving the restoration of edges and oscillatory parts�

���� Coherent Estimation 	

If we cannot interpret the information carried by a signal component� it
is often misconstrued as noise� In a crowd speaking a foreign language�
we perceive surrounding conversations as background noise� In con�
trast� our attention is easily attracted by a remote conversation spoken
in a known language� What is important here is not the information
content but whether this information is in a coherent format with re�
spect to our system of interpretation� The decomposition of a signal in
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a dictionary of vectors can similarly be considered as a signal interpre�
tation 
����� Noises are then de�ned as signal components that do not
have strong correlation with any vector of the dictionary� In the absence
of any knowledge concerning the noise� a signal is estimated by isolating
the coherent structures which have a high correlation with vectors in
the dictionary� If the noise is not Gaussian� computing the estimation
risk is much more di�cult� This section introduces algorithms that can
be justi�ed intuitively� but which lack a �rm mathematical foundation�

������ Coherent Basis Thresholding

Let B  fgmg��m�N be an orthonormal basis� If W 
n� is a Gaussian
white process of size N and variance ��� then EfkWk�g  N�� and the
coe�cients hW� gmi are independent Gaussian random variables� When
N increases there is a probability converging towards � that 
��

max��m�N jhW� gmij
kWk �

p
� logeN �p

N �


p
� logeNp

N
 CN � ��������

The factor CN is the maximum normalized correlation of a Gaussian
white noise of size N �

The correlation of a signal f with the basis B is de�ned by

C�f� 
sup��m�N jhf� gmij

kfk �

We say that f is a noise with respect to B if it does not correlate vectors
in B any better than a Gaussian white noise� C�f� � CN � For example�
f 
n�  ei�n is a noise in a basis of discrete Diracs gm
n�  �
n � m��
because

sup��m�N jf 
m�j
kfk 

�p
N

� CN �

Coherent Structures Let Z be an unknown noise� To estimate a
signal f from X  f �Z� we progressively extract the vectors of B that
best correlate X� Let us sort the inner products hX� gmi�

jhX� gmk
ij � jhX� gmk��

ij for � � k � N � ��
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The data X is not reduced to a noise if

C�X� 
jhX� gm�

ij
kXk � CN �

The vector gm�
is then interpreted as a coherent structure�

For any k � �� we consider

RkX  X �
kX

p��

hX� gmpi gmp 

NX
p�k��

hX� gmpi gmp�

The residue RkX is the orthogonal projection of X in a space of di�
mension N �k� The normalized correlation of this residue with vectors
in B is compared with the normalized correlation of a Gaussian white
noise of size N � k� This residue is not a noise if

C��RkX� 
jhX� gmk

ij�PN
p�k�� jhX� gmpij�

� C�N�k 
� loge�N � k�

N � k
�

The vector gmk
is then also a coherent structure�

Let M be the minimum index such that

C�RMX� � CN�M � ������	�

Observe that M is a random variable whose values depend on each
realization of X� The signal f is estimated by the sum of the M � �
coherent structures�

�F 
M��X
p��

hX� gmpi gmp �

This estimator is also obtained by thresholding the coe�cients hX� gmi
with the threshold value

T  CN�M
�

N��X
p�M

jhX� gmpij�
����

� ��������

The extraction of coherent structures can thus be interpreted as a cal�
culation of an appropriate threshold for estimating f � in the absence of
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any knowledge about the noise� This algorithm estimates f e�ciently
only if most of its energy is concentrated in the direction of few vec�
tors gm in B� For example� f 

PN��
m�� gm has no coherent structures

because C�f�  N���� � CN � Even though Z  �� the extraction of
coherent structures applied to X  f yields �F  �� This indicates that
the basis representation is not well adapted to the signal�
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Figure ������ �a�� The same signal as in Figure ���� to which is added
a noisy musical signal �SNR  ���	 db�� �b�� Estimation by extracting
coherent structures in a Daubechies � wavelet basis �SNR  �	�� db��

Figure ������a� shows a piecewise regular signal contaminated by
the addition of a complex noise� which happens to be an old musi�
cal recording of Enrico Caruso� Suppose that we want to remove this
�musical noise�� The coherent structures are extracted using a wavelet
basis� which approximates piecewise smooth functions e�ciently but
does not correlate well with high frequency oscillations� The estima�
tion in Figure ������b� shows that few elements of the musical noise
are coherent structures relative to the wavelet basis� If instead of this
musical noise a Gaussian white noise of variance � is added to this
piecewise smooth signal� then the coherent structure algorithm com�
putes an estimated threshold �������� that is within ��# of the thresh�
old T  �

p
� logeN used for white noises� The estimation is therefore

very similar to the hard thresholding estimation in Figure �����c��
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Pursuit of Bases No single basis can provide a �coherent� interpre�
tation of complex signals such as music recordings� To remove noise
from historical recordings� Berger� Coifman and Goldberg 
��� intro�
duced an orthogonal basis pursuit algorithm that searches a succession
of �best bases�� Excellent results have been obtained on the restora�
tion the recording of Enrico Caruso� In this case� we must extract
coherent structures corresponding to the original musical sound as op�
posed to the degradations of the recording� The coherent extraction
shown in Figure ������b� demonstrates that hardly any component of
this recording is highly coherent in the Daubechies � wavelet basis� It
is therefore necessary to search for other bases that match the signal
properties�

Let D  ����B� be a dictionary of orthonormal bases� To �nd a
basis in D that approximates a signal f e�ciently� Section ��	�� selects
a best basis B� that minimizes a Schur concave cost function

C�f�B�� 
N��X
m��

�

� jhf� g�mij�
kfk�

�
�

where ��x� is a concave function� possibly an entropy ������ or an lp

norm ������� A pursuit of orthogonal bases extracts coherent structures
from noisy data X with an iterative procedure that computes successive
residues that we denote Xp�

�� Initialization X�  X�
�� Basis search A best basis B�p is selected in D by minimizing a

cost�
C�Xp�B�p�  min

���
C�Xp�B�� �

	� Coherent calculation Coherent structures are extracted as long
as C�RkXp� � CN�k in B�p � Let Mp be the number of coherent
structures de�ned by C�RMpXp� � CN�Mp � The remainder is

Xp��  RMpXp�

�� Stopping rule If Mp  �� stop� Otherwise� go to step ��

For musical signals 
���� the pursuit of bases is performed in a gen�
eral dictionary that is the union of a dictionary of local cosine bases
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and a dictionary of wavelet packet bases� introduced respectively in
Sections ��� and ���� In each dictionary� a best basis is calculated with
an entropy function ��x� and is selected by the fast algorithm of Sec�
tion ��	��� The best of these two �best� bases is retained� To take into
account some prior knowledge about the noise and the properties of
musical recordings� the correlation C�f� used to extract coherent struc�
tures can be modi�ed� and further ad�hoc re�nements can be added

����

������ Coherent Matching Pursuit

A matching pursuit o�ers the �exibility of searching for coherent struc�
tures in arbitrarily large dictionaries of patterns D  fg	g	��� which
can be designed depending on the properties of the signal� No orthog�
onal condition is imposed� The notions of coherent structure and noise
are rede�ned by analyzing the asymptotic properties of the matching
pursuit residues�

Dictionary Noise A matching pursuit decomposes f over selected
dictionary vectors with the greedy strategy described in Section ������
Theorem ��� proves that the residue Rmf calculated after m iterations
of the pursuit satis�es limm��� kRmfk  ��

The matching pursuit behaves like a non�linear chaotic map� and it
has been proved by Davis� Mallat and Avelaneda 
���� that for particu�
lar dictionaries� the normalized residues Rmf kRmfk�� converge to an
attractor� This attractor is a set of signals h that do not correlate well
with any g	 
 D because all coherent structures of f in D are removed
by the pursuit� The correlation of a signal f with the dictionary D is
de�ned by

C�f� 
sup	�� jhf� g	ij

kfk �

For signals in the attractor� this correlation has a small amplitude that
remains nearly equal to a constant CD� which depends on the dictionary
D 
����� Such signals do not correlate well with any dictionary vector
and are thus considered as noise with respect to D�
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The convergence of the pursuit to the attractor implies that after a
su�ciently large number M of iterations the residue RMf has a corre�
lation C�RMf� that is nearly equal to CD� Figure ����� gives the decay
of C�Rmf� as a function of m� for two signals decomposed in a Gabor
dictionary� After respectively M  ���� and M  �� iterations� both
curves reach the attractor level CD  �����
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Figure ������ Decay of the correlation C�Rmf� as a function of the
number of iterations m� for two signals decomposed in a Gabor dictio�
nary� �a�� f is the recording of �greasy� shown in Figure ������a�� �b��
f is the noisy �greasy� signal shown in Figure ������b��

Coherent Pursuit Coherent structures are progressively extracted
to estimate f from X  f�Z� These coherent structures are dictionary
vectors selected by the pursuit� and which are above the noise level CD�
For any m � �� the matching pursuit projects the residue RkX on a
vector g	k 
 D such that

jhRkX� g	kij  sup
	��

jhRkX� g	ij�

The vector g	k is a coherent structure of RkX if

C�Rkf� 
jhRkX� g	kij
kRkXk � CD�

Let M be the minimum integer such that C�RMf� � CD� The residue
RMX has reached the noise level and is therefore not further decom�
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posed� The signal is estimated from the M coherent structures�

�F 
M��X
p��

hRpX� g	pi g	p �

This estimator can also be interpreted as a thresholding of the matching
pursuit of X with a threshold that is adaptively adjusted to

T  CD kRMXk�
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Figure ������ �a�� Speech recording of �greasy�� �b�� Recording of
�greasy� plus a Gaussian white noise �SNR  ��� db�� �c�� Time�
frequency distribution of the M  �� coherent Gabor structures� �d��
Estimation �F reconstructed from the �� coherent structures �SNR 
��� db��
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Example ���� Figure ������b� from 
���� shows the speech recording
of �greasy� contaminated with a Gaussian white noise� with an SNR
of ��� db� The curve �b� of Figure ����� shows that the correlation
C�Rmf� reaches CD after m  M  �� iterations� The time�frequency
energy distribution of these �� Gabor atoms is shown in Figure ������c��
The estimation �F calculated from the �� coherent structures is shown
in Figure ������d�� The SNR of this estimation is ��� db� The white
noise has been removed and the restored speech signal has a good in�
telligibility because its main time�frequency components are retained�

���� Spectrum Estimation 

A zero�mean Gaussian process X of size N is characterized by its co�
variance matrix� For example� unvoiced speech sounds such as �ch�
or �s� can be considered as realizations of Gaussian processes� which
allows one to reproduce intelligible sounds if the covariance is known�
The estimation of covariance matrices is di�cult because we generally
have few realizations� and hence few data points� compared to the N�

covariance coe�cients that must be estimated� If parametrized models
are available� which is the case for speech recordings 
���� then a direct
estimation of the parameters can give an accurate estimation of the co�
variance 
���� This is however not the case for complex processes such
as general sounds or seismic and underwater signals� We thus follow a
non�parametrized approach that applies to non�stationary processes�

When the Karhunen�Lo�eve basis is known in advance� one can re�
duce the estimation to the N diagonal coe�cients in this basis� which
de�ne the power spectrum� This is the case for stationary processes�
where the Karhunen�Lo�eve basis is known to be the Fourier basis� For
non�stationary processes� the Karhunen�Lo�eve basis is not known� but
it can be approximated by searching for a �best basis� in a large dic�
tionary of orthogonal bases� This approach is illustrated with locally
stationary processes� where the basis search is performed in a dictionary
of local cosine bases�
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������ Power Spectrum

We want to estimate the covariance matrix of a zero�mean random vec�
tor X of size N from L realizations fXlg��l�L� Let B  fgmg��m�N be
an orthonormal basis� The N� covariance coe�cients of the covariance
operator K are

a
l� m�  hKgl� gmi  EfhX� gli hX� gmi�g�

When L is much smaller than N � which is most often the case� a naive
estimation of these N� covariances gives disastrous results� In signal
processing� the estimation must often be done with only L  � realiza�
tion�

Naive Estimation Let us try to estimate the covariance coe�cients
with sample mean estimators

�A
l� m� 
�

L

LX
l��

hXl� gli hXl� gmi�� ��������

We denote by �K the estimated covariance matrix whose coe�cients are
the �A
l� m�� The estimation error is measured with a Hilbert�Schmidt
norm� The squared Hilbert�Schmidt norm of an operator K is the sum
of its squared matrix coe�cients� which is also equal to the trace of the
product of K and its complex transpose K��

kKk�H 
N��X
l�m��

ja
l� m�j�  tr�KK�� �

The Hilbert�Schmidt error of the covariance estimation is

kK � �Kk�H 
N��X
l�m��

ja
l� m�� �A
l� m�j��

The following proposition computes its expected value when X is a
Gaussian random vector�
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Proposition ����� If X is a Gaussian random vector then

E
	j �A
l� m�� a
l� m�j�
 

�

L

�
ja
l� m�j� � a
l� l� a
m�m�

�
� ��������

and

Efk �K �Kk�Hg 
kKk�H
L

�
E
�fkXk�g

L
� ��������

Proof �� The sample mean�estimator �������� is unbiased�

E

�A
l�m�

�
� a
l�m��

so

E

j �A
l�m�� a
l�m�j�

�
� E


j �A
l�m�j�

�
� ja
l�m�j�� ��������

Let us compute Efj �A
l�m�j�g�

Efj �A
l�m�j�g � E

���� �
L

LX
k��

hXk� gli hX
k� gmi

�
����
�

�
�

L�

LX
k��

E

n
jhXk� glij

� jhXk� gmij
�
o
� ��������

�

L�

LX
k�j��
k ��j

E

n
hXk� gli hX

k� gmi
�
o
E

hXj � gli

� hXj � gmi
�
�

Each hXk� gli is a Gaussian random variable and for all k

E

n
hXk� gli hX

k� gmi
�
o
� a
l�m��

If A�� A�� A�� A� are jointly Gaussian random variables� one can verify
that

EfA�A�A�A�g � EfA�A�gEfA�A�g�EfA�A�gEfA�A�g�EfA�A�gEfA�A�g�

Applying this result to �������� yields

E

j �A
l�m�j�

�
�
�

L�
L
�
a
l� l� a
m�m� � �ja
l�m�j�

�
�
�

L�
�L��L� ja
l�m�j��
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so

E

j �A
l�m�j�

�
�

�
� �

�

L

�
ja
l�m�j� �

�

L
a
l� l� a
m�m��

We thus derive �������� from ���������

The Hilbert�Schmidt norm is

Efk �K �Kk�Hg �

N��X
l�m��

Efja
l�m� � �A
l�m�j�g

�
�

L

N��X
l�m��

ja
l�m�j� �
�

L

N��X
l�m��

a
l� l� a
m�m��

Observe that

EfkXk�g �

N��X
m��

EfjhX� gmij
�g �

N��X
m��

a
m�m��

Inserting this in the previous equation gives ���������

The error calculation �������� proves that Efj �A
l� m� � a
l� m�j�g de�
pends not only on ja
l� m�j� but also on the amplitude of the diagonal
coe�cients a
l� l� and a
m�m�� Even though a
l� m� may be small� the
error of the sample mean estimator is large if the diagonal coe�cients
are large�

E
	j �A
l� m�� a
l� m�j�
 � a
l� l� a
m�m�

L
� ��������

The error produced by estimating small amplitude covariance coe��
cients accumulates and produces a large Hilbert�Schmidt error ���������

Example ���
 Suppose thatX is a random vector such that EfjX
n�j�g
is on the order of �� but that EfX
n�X
m�g decreases quickly when
jn � mj increases� The Hilbert�Schmidt norm of K can be calculated
in a Dirac basis gm
n�  �
n�m�� which gives

kKk�H 
N��X
l�m��

jEfX
l�X
m�gj� � N���
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and

EfkXk�g 
N��X
n��

E
	jX
n�j�
 � N���

As a consequence� for N  L�

E
	kK � �Kk�H


 � E
�fkXk�g

L
� ��N�

L
 kKk�H �

The estimation error is huge$ a better result is obtained by simply
setting �K  ��

Power Spectrum If we know in advance the Karhunen�Lo�eve ba�
sis that diagonalizes the covariance operator� we can avoid estimating
o��diagonal covariance coe�cients by working in this basis� The N
diagonal coe�cients p
m�  a
m�m� are the eigenvalues of K� and are
called its power spectrum�

We denote by �P 
m�  �A
m�m� the sample mean estimator along
the diagonal� The sample mean error is computed with ���������

E
	j �P 
m�� p
m�j�
 

�jp
m�j�
L

� ��������

Since the covariance is diagonal�

kKk�H 
N��X
m��

jp
m�j�  kpk�� ��������

The estimated diagonal operator �K with diagonal coe�cients �P 
m� has
therefore an expected error

Efk �K �Kk�Hg  Efk �P � pk�g 
N��X
m��

� jp
m�j�
L


� kKk�H

L
� ������	�

The relative error Efk �K �Kk�Hg	kKk�H decreases when L increases
but it is independent of N � To improve this result� we must regularize
the estimation of the power spectrum p
m��
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Regularization Sample mean estimations �P 
m� can be regularized
if p
m� varies slowly when m varies along the diagonal� These random
coe�cients can be interpreted as �noisy� measurements of p
m��

�P 
m�  p
m� �� � W 
m���

Since �P 
m� is unbiased� EfW 
m�g  �� To transform the multiplicative
noise into an additive noise� we compute

loge �P 
m�  loge p
m� � loge�� � W 
m��� ��������

If X
n� is Gaussian� then W 
m� has a ��
� distribution 
���� and

�������� proves that

EfjW 
m�j�g 
�

L
�

The coe�cients fhX� gmig��m�N of a Gaussian process in a Karhunen�
Lo�eve basis are independent variables� so �P 
m� and �P 
l� and hence
W 
m� and W 
l� are independent for l � m� As a consequence� W 
m�
and loge�� � W 
m�� are non�Gaussian white noises�

In the Gaussian case� computing a regularized estimate �P 
m� of p
m�
from �������� is a white noise removal problem� Let �K be the diagonal
matrix whose diagonal coe�cients are �P 
m�� This matrix is said to be
a consistent estimator of K if

lim
N���

EfkK � �Kk�Hg
kKk�H

 lim
N���

Efkp� �Pk�g
kpk�  ��

Linear estimations and Wiener type �lters perform a weighted av�
erage with a kernel whose support covers a domain where loge p
m� is
expected to have small variations� This is particularly e�ective if p
m�
is uniformly regular�

If p
m� is piecewise regular� then wavelet thresholding estimators
improve the regularization of linear smoothings 
����� Following the
algorithm of Section ������� the wavelet coe�cients of loge �P 
m� are
thresholded� Despite the fact that loge�� � W 
m�� is not Gaussian�
if X
n� is Gaussian then results similar to Theorem ���� are proved

	��� by verifying that wavelet coe�cients have asymptotic Gaussian
properties�
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Stationary Processes If X is circular wide�sense stationary� then
its covariance operator is a circular convolution that is diagonalized in
the discrete Fourier basis�

gm
n� 
�p
N

exp

�
i��mn

N

��
��m�N

�

The power spectrum is the discrete Fourier transform of the covariance
RX 
l�  EfX
n�X
n� l�g�

�RX 
m� 
N��X
l��

RX 
l� exp

��i�m�l
N

�
 EfjhX� gmij�g �

It is estimated with only L  � realization by computing �P 
m�� which
is called a periodogram 
����

�P 
m�  jhX� gmij� 
�

N

�����
N��X
n��

X
n� exp

��i��mn
N

������
�

� ��������

Most often� the stationarity of X is not circular and we only know
the restriction of its realizations to 
�� N � ��� The discrete Fourier
basis is thus only an approximation of the true Karhunen�Lo�eve basis�
and this approximation introduces a bias in the spectrum estimation�
This bias is reduced by pre�multiplying X
n� with a smooth window
g
n� of size N � which removes the discontinuities introduced by the
Fourier periodization� Such discrete windows are obtained by scaling
and sampling one of the continuous time windows g�t� studied in Sec�
tion ������ This windowing technique can be improved by introducing
several orthogonal windows whose design is optimized in 
		���

To obtain a consistent estimator from the periodogram �P 
m�� it
is necessary to perform a regularization� as previously explained� If
the spectrum is uniformly regular� then a linear �ltering can yield a
consistent estimator 
���� Figure ������c� shows a regularized log pe�
riodogram calculated with such a linear �ltering� The random �uctu�
ations are attenuated but the power spectrum peaks are smoothed� A
linear �ltering of the spectra is more often implemented with a time win�
dowing procedure� described in Problem ������ The interval 
�� N��� is
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divided in M subintervals with windows of size N	M � A periodogram is
computed over each interval and a regularized estimator of the power
spectrum is obtained by averaging these M periodograms� Wavelet
thresholdings can also be used to regularize piecewise smooth spectra

	����
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Figure ������ �a�� Log power spectrum loge �RX 
m� of a stationary pro�
cess X
n�� �b�� Log periodogram loge �P 
m� computed from L  �
realization� �c�� Linearly regularized estimator loge �P 
m��

������ Approximate Karhunen	Lo
eve Search �

If X is non�stationary� we generally do not know in advance its Karhunen�
Lo�eve basis� But we may have prior information that makes it possi�
ble to design a dictionary of orthonormal bases guaranteed to contain
at least one basis that closely approximates the Karhunen�Lo�eve ba�
sis� Locally stationary processes are examples where an approximate
Karhunen�Lo�eve basis can be found in a dictionary of local cosine bases�
The algorithm of Mallat� Papanicolaou and Zhang 
���� estimates this
best basis by minimizing a negative quadratic sum� This is generalized
to other Schur concave cost functions� including the entropy used by
Wickerhauser 
����

Diagonal Estimation Proposition ����� proves that an estimation
of all covariance coe�cients produces a tremendous estimation error�
Even though a basis B is not a Karhunen�Lo�eve basis� it is often prefer�
able to estimate the covariance K with a diagonal matrix �K� which
is equivalent to setting the o��diagonal coe�cients to zero� The N
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diagonal coe�cients �P 
m� are computed by regularizing the sample
mean�estimators ��������� They approximate the spectrum of K�

The Hilbert�Schmidt error is the sum of the diagonal estimation
errors plus the energy of the o��diagonal coe�cients�

k �K �Kk�H 
N��X
m��

j �P 
m�� p
m�j� �
N��X
l�m��

l��m

ja
l� m�j��

Since

kKk�H 
N��X
l�m��

ja
l� m�j� 
N��X
m��

jp
m�j� �
N��X
l�m��

l��m

ja
l� m�j��

we have

k �K �Kk�H 
N��X
m��

j �P 
m�� p
m�j� � kKk�H �
N��X
m��

jp
m�j�� ��������

Let us denote

C�K�B�  �
N��X
m��

jp
m�j�� ��������

Clearly C�K�B� � �kKkH and this sum is minimum in a Karhunen�
Lo�eve basis BKL where C�K�BKL�  �kKk�H � The error �������� can
thus be rewritten

k �K �Kk�H  k �P � pk� � C�K�B�� C�K�BKL�� ��������

Best Basis Let D  fB	g	�� be a dictionary of orthonormal bases
B	  fg	mg��m�N � The error formulation �������� suggests de�ning
a �best� Karhunen�Lo�eve approximation as the basis that minimizes
C�K�B�� Since we do not know the true diagonal coe�cients p
m�� this
cost is estimated with the regularized sample mean coe�cients�

�C�K�B�  �
N��X
m��

j �P 
m�j�� ��������

The covariance estimation thus proceeds as follows�
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�� Sample means For each vector g	m 
 D� we compute the sample
mean estimator of the variance in the direction of each g	m 
 D�

�P 	
m� 
�

L

LX
k��

jhXk� g	mij�� ��������

�� Regularization Regularized estimators �P 	
m� are calculated with
a local averaging or a wavelet thresholding among a particular
group of dictionary vectors�

	� Basis choice The cost of K is estimated in each basis B	 by

�C�K�B	�  �
N��X
m��

j �P 	
m�j�� ��������

and we search for the best basis B� that minimizes these costs�

�C�K�B��  inf
	��

�C�K�B	�� ��������

�� Estimation The covariance K is estimated by the operator �K�

that is diagonal in B�� with diagonal coe�cients equal to �P �
m��

Since C�K�BKL�  �kKk�H and kKk�H � kp�k�� to evaluate the con�
sistency of this algorithm� we derive from �������� that

k �K� �Kk�H
kKk�H

� k �P � � p�k�
kp�k� �

C�K�BKL�� C�K�B��

C�K�BKL�
�

This covariance estimator is therefore consistent if there is a probability
converging to � that

C�K�BKL�� C�K�B��

C�K�BKL�
� � when N � �� ������	�

and
k �P � � p�k�
kp�k� � � when N � �� � ��������

This means that the estimated best basis tends to the Karhunen�Lo�eve
basis and the estimated diagonal coe�cients converge to the power
spectrum� The next section establishes such a result for locally station�
ary processes in a dictionary of local cosine bases�
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Generalized Basis Search The quadratic cost C�K�B� de�ned in
�������� yields a positive pseudo�distance between any B and BKL�

d�B�BKL�  C�K�B�� C�K�BKL�� ��������

which is zero if and only if B is a Karhunen�Lo�eve basis� The follow�
ing theorem proves that any Schur concave cost function satis�es this
property�

Theorem ����� Let K be a covariance operator and B  fgmg��m�N
be an orthonormal basis� If ��x� is strictly concave then

C�K�B� 
N��X
m��

��hKgm� gmi�

is minimum if and only if K is diagonal in B�

Proof �� Let fhmg��m�N be a Karhunen�Lo�eve basis that diagonalizes
K� As in ������� by decomposing gm in the basis fhig��i�N we obtain

hKgm� gmi �

N��X
i��

jhgm� hiij
� hKhi� hii� ��������

Since
PN��

i�� jhgm� hiij
� � �� applying the Jensen inequality �A��� to the

concave function �x� proves that

 �hKgm� gmi� �
N��X
i��

jhgm� hiij
��hKhi� hii� � ��������

Hence

N��X
m��

�hKgm� gmi� �

N��X
m��

N��X
i��

jhgm� hiij
��hKhi� hii� �

Since
PN��

m�� jhgm� hiij
� � �� we derive that

N��X
m��

�hKgm� gmi� �

N��X
i��

�hKhi� hii� �
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This inequality is an equality if and only if for all m �������� is an
equality� Since �x� is strictly concave� this is possible only if all values
hKhi� hii are equal as long as hgm� hii �� �� We thus derive that gm
belongs to an eigenspace of K and is thus also an eigenvector of K�
Hence� fgmg��m�N diagonalizes K as well�

The pseudo�distance �������� is mathematically not a true distance
since it does not satisfy the triangle inequality� The choice of a partic�
ular cost depends on the evaluation of the error when estimating the
covariance K� If ��x�  �x�� then minimizing the pseudo�distance
�������� is equivalent to minimizing the Hilbert�Schmidt norm of the
estimation error ��������� Other costs minimize other error measure�
ments� whose properties are often more complex� The cost associated
to ��x�  � loge x can be related to the Kullback�Liebler discriminant
information 
��	�� The entropy ��x�  �x loge x has been used in im�
age processing to search for approximate Karhunen�Lo�eve bases for face
recognition 
����

������ Locally Stationary Processes �

Locally stationary processes appear in many physical systems� where
random �uctuations are produced by a mechanism that changes slowly
in time or which has few abrupt transitions� Such processes can be
approximated locally by stationary processes� Speech signals are lo�
cally stationary� Over short time intervals� the throat behaves like a
steady resonator that is excited by a stationary source� For a vowel the
time of stationarity is about ���� seconds� but it may be reduced to
���� seconds for a consonant� The resulting process is therefore locally
stationary over time intervals of various sizes�

A locally stationary process X is de�ned qualitatively as a process
that is approximately stationary over small enough intervals� and whose
values are uncorrelated outside these intervals of stationarity� A num�
ber of mathematical characterizations of these processes have been pro�
posed 
��	� ���� ���� ���� �����

Donoho� Mallat and von Sachs 
���� give an asymptotic de�nition of
local stationarity for a sequence of random vectors having N samples�
with N increasing to ��� The random vector XN 
n� has N sam�
ples over an interval normalized to 
�� ��� Its covariance is RN 
n�m� 
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EfXN 
n�XN 
m�g and we write

CN 
n� � �  RN 
n� n � � � �

The decorrelation property of locally stationary processes is imposed
by a uniform decay condition along � for all n� There exist Q� and
�� � �	� independent of N such that

�n �
X



�� � �j� j��� jCN 
n� � �j� � Q� � ��������

If XN is stationary� then CN 
n� � �  CN 
� �� A local approximation of
XN with stationary processes is obtained by approximating CN 
n� � �
over consecutive intervals with functions that depend only on � � Such
approximations are precise if CN 
n� � � has slow variations in n in each
approximation interval� This occurs when the average total variation
of CN 
n� � � decreases quickly enough as N increases� Since XN 
n� are
samples separated by �	N on 
�� ��� we suppose that there exist Q� and
� � �� � � independent of N such that

�h �
�

N � h

N���hX
n��

kCN 
n � h� ��� CN 
n� ��k � Q�

��hN������ �

��������
with

kCN 
n � h� ��� CN 
n� ��k� 
X



jCN 
n � h� � �� CN 
n� � �j� �

Processes that belong to a sequence fXNgN�N that satis�es ��������
and �������� are said to be locally stationary�

Example ���� Simple locally stationary processes are obtained by
blending together a collection of unrelated stationary processes� Let
fXl�N 
n�g��l�L be a collection of mutually independent Gaussian sta�
tionary processes whose covariances Rl�N 
n� n � � �  Cl�N 
� � satisfy for
�� � � X




�� � �j� j��� jCl�N 
� �j� � Q� �
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Let fwl
n�g��l�L be a family of windows wl
n� � � with
PL

l�� wl
n� � ��
De�ne the blended process

XN 
n� 
LX
l��

wl
n�Xl�N 
n� � ��������

One can then verify 
��	� that XN satis�es the local stationarity prop�
erties �������� and ��������� with ��  ��

If the windows wl are indicator functions of intervals 
al� al��� in

�� N���� then the blend process has L abrupt transitions� The process
XN remains locally stationary because the number of abrupt transitions
does not increase with N � Figure ������a� gives an example�

Best Local Cosine Basis The covariance of a circular stationary
process is a circular convolution whose eigenvectors are the Fourier
vectors exp �i��mn	N�� Since the eigenvalues are the same at the fre�
quencies ��m	N and ���m	N � we derive that cos ���mn	N � �� is
also an eigenvector for any phase �� A locally stationary process can
be locally approximated by stationary processes on appropriate inter�
vals f
al� al���gl of sizes bl  al�� � al� One can thus expect that its
covariance is �almost� diagonalized in a local cosine basis constructed
on these intervals of approximate stationarity� Corollary ����� con�
structs orthonormal bases of local cosine vectors over any family of
such intervals��

gl
n�

r
�

bl
cos

�
�
�
k �

�

�

�n� al
bl

��
��k�bl���l�L

� ��������

Local cosine bases are therefore good candidates for building approxi�
mate Karhunen�Lo�eve bases�

When estimating the covariance of a locally stationary process� the
position and sizes of the approximate stationarity intervals are gener�
ally not known in advance� It is therefore necessary to search for an
approximate Karhunen�Lo�eve basis among a dictionary of local cosine
bases� with windows of varying sizes� For this purpose� the best basis
search algorithm of Section ������ is implemented in the dictionaryD of
local cosine bases de�ned in Section ������ This dictionary is organized
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as a tree� A family Bpj of N ��j orthonormal cosine vectors is stored at
depth j and position p� The support of these vectors cover an interval

al � al � ��jN � with al  q N ��j � �	��

Bqj 

�
gq�k�j
n�  gl
n�

r
�

��jN
cos

�
�
�
k �

�

�

�n� al
��jN

�
��k�N��j

�

The maximum depth is j � log�N � so the dictionary includes fewer
than N log�N local cosine vectors� The decomposition of a signal of
size N over all these vectors requires O�N log��N� operations� The
power spectrum estimation from L realizations of a locally stationary
process XN proceeds in four steps�

�� Sample means The local cosine coe�cients hXN � gq�k�ji of the L
realizations are computed� The sample mean estimators �P 
q� k� j�
of their variances are calculated with ��������� This requires
O�LN log��N� operations�

�� Regularization The regularization of �P 
q� k� j� is computed in
each family Bpj of ��jN cosine vectors corresponding to � � k �

��jN � A regularized estimate �P 
q� k� j� is obtained either with
a local averaging along k of �P 
q� k� j�� or by thresholding the
wavelet coe�cients of �P 
q� k� j� in a wavelet basis of size ��jN �
Over the whole dictionary� this regularization is calculated with
O�N log�N� operations�

	� Basis choice The cost �C�K�B	� of each local cosine basis B	
in �������� is an additive function of j �P 
q� k� j�j� for the cosine
vectors gq�k�j in the basis B	 � The algorithm of Section ��	��
�nds the best basis B� that minimizes this cost with O�N log�N�
operations�

�� Estimation The local cosine power spectrum is estimated by the
coe�cients �P 
q� k� j� for gq�k�j in the best basis B��

This best basis algorithm requires O�LN log��N� operations to com�
pute a diagonal estimator �K�

N of the covariance KN � If the regulariza�
tion of the local cosine coe�cients is performed with a wavelet thresh�
olding� using a conservative threshold that is proportional to the max�
imum eigenvalue of the process� Donoho� Mallat and von Sachs 
����
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prove that this covariance estimation is consistent for locally station�
ary processes� As N goes to ��� the best local cosine basis converges
to the Karhunen�Lo�eve basis and the regularized variance estimators
converge to the power spectrum� As a result� kKN � �K�

NkH decreases
to � with a probability that converges to � as N goes to ���
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Figure ������ �a�� One realization of a process that is stationary on

�� ����� 
���� ����� and 
����� ��� �b�� Heisenberg boxes of the best local
cosine basis computed with L  ��� realizations of this locally station�
ary process� Grey levels are proportional to the estimated spectrum�
�c�� Best local cosine basis calculated with L  	 realizations�

Example ���� Let XN be a locally stationary process constructed
in �������� by aggregating independent Gaussian stationary processes



��� CHAPTER ��� ESTIMATIONS ARE APPROXIMATIONS

with three windows wl
n� that are indicator functions of the intervals

�� ����� 
���� ����� and 
����� ��� In each time interval� the power spec�
trum of the stationary process is composed of harmonics whose am�
plitude decreases when the frequency increases� Figure ������a� shows
one realization of this locally stationary process�

A diagonal covariance is calculated in a best local cosine basis�
For a large number L  ��� of realizations� the regularized estima�
tor �P 
q� k� j� gives a precise estimation of the variance EfjhXN � gq�k�jij�g�
The time�frequency tiling of the estimated best basis is shown in Figure
������b�� Each rectangle is the Heisenberg box of a local cosine vector
gq�k�j of the best basis B�� Its grey level is proportional to �P 
q� k� j�� As
expected� short windows are selected in the neighborhood of the tran�
sition points at ��� and ����� and larger windows are selected where the
process is stationary� Figure ������c� gives the time�frequency tiling of
the best basis computed with only L  	 realizations� The estimators
�P 
q� k� j� are not as precise and the estimated best basis B	� has window
sizes that are not optimally adapted to the stationarity intervals of XN �

���� Problems

����� � Linear prediction Let F 
n� be a zero�mean� wide�sense sta�
tionary random vector whose covariance is RF 
k�� We predict the
future F 
n� l� from past values fF 
n�k�g��k�N with 	F 
n� l� �PN��

k�� ak F 
n� k��

�a� Prove that r � EfjF 
n � l� � 	F 
n � l�j�g is minimum if and
only if

N��X
k��

akRF 
q � k� � RF 
q � l� for � � q � N�

Verify that r � RF 
�� �
PN��

k�� ak RF 
k � l� is the resulting
minimum error� Hint� use Proposition �����

�b� Suppose that RF 
n� � �jnj with j�j � �� Compute 	F 
n � l�
and r�

����� � Let X � F � W where the signal F and the noise W are
zero�mean� wide�sense circular stationary random vectors� Let
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	F 
n� � X �	 h
n� and r�D�	� � EfkF � 	Fk�g� The minimum
risk rl�	� is obtained with the Wiener �lter �������� A frequency
selective �lter h has a discrete Fourier transform �h
m� which can
only take the values � or �� Find the frequency selective �lter
that minimizes r�D�	�� Prove that rl�	� � r�D�	� � � rl�	��

����� � Let fgmg��m�N be an orthonormal basis� We consider the
space Vp of signals generated by the �rst p vectors fgmg��m�p�
We want to estimate f � Vp from X � f �W � where W is a
white Gaussian noise of variance ���

�a� Let 	F � DX be the orthogonal projection of X in Vp� Prove
that the resulting risk is minimax�

r�D�Vp� � rn�Vp� � p �� �

�b� Find the minimax estimator over the space of discrete poly�
nomial signals of size N and degree d� Compute the minimax
risk�

����� � Let F � f 
�n�P �modN � be the random shift process �������
obtained with a Dirac doublet f 
n� � �
n�� �
n� ��� We want to
estimate F from X � F �W where W is a Gaussian white noise
of variance �� � �N���
�a� Specify the Wiener �lter 	F and prove that the resulting risk

satis�es rl�	� � EfkF � 	Fk�g � ��
�b� Show that one can de�ne a thresholding estimator 	F whose

expected risk satis�es

EfkF � 	Fk�g � �� �� logeN � ��N
�� �

����� � Let f � ����P�� be a discrete signal of N � P samples� Let
F � f 
�n � P �modN � be the random shift process de�ned in
�������� We measure X � F �W where W is a Gaussian white
noise of variance ���

�a� Suppose that 	F � F �	h� Compute the transfer function �h
m�
of the Wiener �lter and resulting risk rl�	� � EfkF � 	Fk�g�

�b� Let 	F be the estimator obtained by thresholding the de�
composition coe�cients of each realization of F in a Haar
basis� with T � �

p
� log�N � Prove that EfkF � 	Fk�g �

���� logeN � ��
��

�c� Compare the Wiener and Haar thresholding estimators when
N is large�
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����� � Let jhf� gmk
ij � jhf� gmk��

ij for k � � be the sorted decomposi�
tion coe�cients of f in B � fgmg��m�N � We want to estimate f
from X � f �W � where W is a Gaussian white noise of variance
��� If jhf� gmk

ij � ��k��� compute the oracle projection risk rp
in ������� as a function of �� and N � Give an upper bound on
the estimation error � if we threshold at T � �

p
� logeN the de�

composition coe�cients of X� Same question if jhf� gmk
ij � k���

Explain why the estimation is more precise in one case than in
the other�

����� � Compare the SNR and the visual quality of translation in�
variant hard and soft thresholding estimators in a wavelet basis�
for images contaminated by an additive Gaussian white noise�
Perform numerical experiments on the Lena� Barbara and Pep�
pers images in WaveLab� Find the best threshold values T as
a function of the noise variance� How does the choice of wavelet
�support� number of vanishing moments� symmetry� a�ect the
result�

����� � Let g�t� be a Gaussian of variance �� Let gs
n� � Ks g�n
s�
where Ks is adjusted so that

P
n �s
n� � �� An adaptive smooth�

ing of X � f � W is calculated by adapting the scale s as a
function of the abscissa�

	F 
l� �
N��X
n��

X
n� gs�l�
l � n� � ��������

The scale s�l� should be large where the signal f seems to be
regular� whereas it should be small if we guess that f may have
a sharp transition in the neighborhood of l�

�a� Find an algorithm that adapts s�l� depending on the noisy
data X
n�� and implement the adaptive smoothing ���������
Test your algorithm on the Piece�Polynomial and Piece�Regular
signals inWaveLab� as a function of the noise variance ���

�b� Compare your numerical results with a translation invariant
hard wavelet thresholding� Analyze the similarities between
your algorithm that computes s�l� and the strategy used by
the wavelet thresholding to smooth or not to smooth certain
parts of the noisy signal�

����� � Let rt�f� T � be the risk of an estimator of f obtained by hard
thresholding with a threshold T the decomposition coe�cient of
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X � f �W in a basis B� The noise W is Gaussian white with a
variance ��� This risk is estimated by

	rt�f� T � �
N��X
m��

�jXB
m�j��

with

�u� �

�
u� �� if u � T �

�� if u � T � �

�a� Justify intuitively the de�nition of this estimator as was done
for ������� in the case of a soft thresholding estimator�

�b� Let ���x� � ��	�
������ exp��x�
������� With calculations

similar to the proof of Theorem ����� show that

rt�T ��Ef	rt�T �g � �T ��
N��X
m��

h
���T�fB
m������T�fB
m��

i
�

�c� Implement in Matlab an algorithm in O�N log�N� which
�nds 	T that minimizes 	rt�T� f�� Study numerically the per�
formance of 	T to estimate noisy signals with a hard thresh�
olding in a wavelet basis�

������ � Let B be an orthonormal wavelet basis of the space of dis�
crete signals of period N � Let D be the family that regroups all
translations of wavelets in B�

�a� Prove that D is a dyadic wavelet frame for signals of period
N �

�b� Show that an estimation by thresholding decomposition co�
e�cients in the dyadic wavelet family D implements a trans�
lation invariant thresholding estimation in the basis B�

������ � A translation invariant wavelet thresholding is equivalent to
thresholding an undecimated wavelet frame� For images� elabo�
rate and implement an algorithm that performs a spatial aver�
aging of the wavelet coe�cients above the threshold� by using
the geometrical information provided by multiscale edges� Coef�
�cients should not be averaged across edges�

������ � Let X � f � W where f is piecewise regular� A best ba�
sis thresholding estimator is calculated with the cost function
������� in a wavelet packet dictionary� Compare numerically



��� CHAPTER ��� ESTIMATIONS ARE APPROXIMATIONS

the results with a simpler wavelet thresholding estimator� on the
Piece�Polynomial and Piece�Regular signals in WaveLab� Find
a signal f for which a best wavelet packet thresholding yields a
smaller estimation error than a wavelet thresholding�

������ � Among signals f 
n� of size N we consider �V � ff � kfkV �
Cg� Let X � f � W where W is a Gaussian white noise of
variance ��� We de�ne a linear estimator DX
n� � X �h
n� with

�h
m� �
C�

C� � ���N j sin�	m
N�j�
� ��������

Prove that the maximum risk of this estimator is close to the
minimax linear risk�

rl��V � � r�D��V � � � rl��V � �

Hint� follow the approach of the proof of Proposition �����

������ � We want to estimate a signal f that belongs to an ellipsoid

� �

�
f �

N��X
m��

��m jfB
m�j� � C�

�

from X � f �W � where W is a Gaussian white noise of variance
��� We denote x� � max�x� ���

�a� Using Proposition ���� prove that the minimax linear risk on
� satis�es

rl��� � ��
N��X
m��

a
m� ��������

with a
m� � � �
�m

� ���� where � is a Lagrange multiplier
calculated with

N��X
m��

�m �
�

�m
� ��� �

C�

��
� ��������

�b� By analogy to Sobolev spaces� the � of signals having a dis�
crete derivative of order s whose energy is bounded by C� is
de�ned from the discrete Fourier transform�

� � ff �

N��X
m��N����

jmj�sN�� j �f 
m�j� � C�g� ��������
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Show that the minimax linear estimator D in � is a circular
convolution DX � X �	 h� Explain how to compute the
transfer function �h
m��

�c� Show that the minimax linear risk satis�es

rl��� � C����s��� �������s��� �

������ � We want to estimate f � � from Y � f �	 u � W where
W is a white noise of variance ��� Suppose that � is closed and
bounded� We consider the quadratic convex hull QH
�� in the dis�
crete Fourier basis and x � QH
�� such that r�x� � rinf�QH
����
Prove that the linear estimator that achieves the minimax linear
risk rl��� in Theorem ����� is 	F � Y �	 h with

�h
m� �
N�� j�x
m�j� �u�
m�

�� �N�� j�x
m�j� j�u
m�j�
�

Hint� use the diagonal estimator in Proposition ������

������ � Implement in WaveLab the algorithm of Section ������ that
extracts coherent structures with a pursuit of bases� Use a dic�
tionary that is a union of a wavelet packet and a local cosine
dictionary� Apply this algorithm to the restoration of the Caruso
signal inWaveLab� Find stopping rules to improve the auditory
quality of the restored signal 
����

������ � Stationary spectrum estimation Let X
n� be a zero�mean� in�
�nite size process that is wide�sense stationary� The power spec�
trum �RX��� is the Fourier transform of the covariance RX 
p� �

EfX
n�X
n � p�g� Let 	RX 
p� �
�
N

PN���jpj
n�� X
n�X
n � jpj� be

an estimation of RX 
k� from a single realization of X
n��

�a� Show that Ef 	RX 
p�g �
N�jpj
N RX 
p� for jpj � N �

�b� Verify that the discrete Fourier transform of 	RX 
p� is the
periodogram �P 
m� in ���������

�c� Let �h��� � �
N

�
sin�N���
sin����

��
� Prove that

Ef �P 
m�g �
�

�	
�RX��h

��	m
N

�
�
�

�	

Z ��

��
�RX��� �h

��	m
N

��
�
d��

�d� Let g
n� be a discrete window whose support is 
�� N ��� and
let h��� � j�g���j�� The periodogram of the windowed data



��� CHAPTER ��� ESTIMATIONS ARE APPROXIMATIONS

is

�Pg
m� �
�

N

�����
N��X
n��

g
n�X
n� exp

�
�i�	mn

N

������
�

� ��������

Prove that p
m� � Ef �Pg
m�g �
�
��
�RX � �h���mN �� How should

we design g
n� in order to reduce the bias of this estimator of
�RX����

�e� Verify that the variance is� Efj �Pg 
k� � p
k�j�g � � jd
k�j��
Hint� use Proposition ������

������ �Lapped spectrum estimation Let X
n� be a zero�mean� in��
nite size process that is Gaussian and wide�sense stationary� Let
�RX��� be the Fourier series of its covariance RX 
k�� We suppose
that one realization ofX
n� is known on 
���N������ To reduce
the variance of the spectrogram ��������� we divide 
�� N��� in Q
intervals 
aq� aq��� of size M � with aq � qM � �
� for � � p � Q�
We denote by fgq�kgq�k the discrete local cosine vectors �������
constructed with windows gq having a support 
aq � �� aq�� � ���
with raising and decaying pro�les of constant size ��� Since all
windows are identical but translated� j�gq���j

� � h����

�a� Let �Pq
k� � jhX� gq�kij
� and 	P 
k� � �

L

PL��
l��

�Pl
k�� Verify that

p
k� � Ef 	P 
k�g �
�

�	
�RX � h

�
	

M

�
k �

�

�

��
�

�b� Suppose that X
n� has a correlation length smaller thanM so
that its values on di�erent intervals 
aq� aq��� can be consid�
ered as independent� Show that Efj 	P 
k��p
k�j�g � � jp
k�j� L���
Discuss the trade�o� between bias and variance in the choice
of L�

�c� Implement this power spectrum estimator inWaveLab�

������ � Adaptive spectrum estimation Problem ����� estimates the
power spectrum and hence the covarianceK of a stationary Gaus�
sian process X
n� with a diagonal operator 	K in a local cosine
basis� The diagonal values of 	K are the regularized coe�cients
	P 
k� � �

L

PL��
l��

�Pl
k��

�a� Verify with �������� that

E

n
k 	K �Kk�H

o
� L

MX
k��

E

n
j 	P 
k�� p
k�j�

o
� kKk�H � L

MX
k��

jp
k�j��
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��������

�b� Find a best basis algorithm that chooses the optimal win�
dow size M � �j by minimizing an estimator of the er�
ror ��������� Approximate p
k� with 	P 
k� and �nd a pro�
cedure for estimating Efj 	P 
k� � p
k�j�g from the data values
f �Pl
k�g��l�L� Remember that when they are independent
Efj 	P 
k�� p
k�j�g � � jp
k�j� L�
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Chapter ��

Transform Coding

Reducing a liter of orange juice to a few grams of concentrated powder
is what lossy compression is about� The taste of the restored beverage
is similar to the taste of orange juice but has often lost some subtlety�
We are more interested in sounds and images� but we face the same
trade�o� between quality and compression� Major applications are data
storage and transmission through channels with a limited bandwidth�

A transform coder decomposes a signal in an orthogonal basis and
quantizes the decomposition coe�cients� The distortion of the restored
signal is minimized by optimizing the quantization� the basis and the bit
allocation� The basic information theory necessary for understanding
quantization properties is introduced� Distortion rate theory is �rst
studied in a Bayes framework� where signals are realizations of a random
vector whose probability distribution is known a priori� This applies to
audio coding� where signals are often modeled with Gaussian processes�

Since no appropriate stochastic model exists for images� a mini�
max approach is used to compute the distortion rate of transform cod�
ing� Image compression algorithms in wavelet bases and cosine block
bases are described� These transform codes are improved by embed�
ding strategies that �rst provide a coarse image approximation� then
progressively re�ne the quality by adding more bits� The compression
of video sequences with motion compensation and transform coding is
also explained�

���
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���� Signal Compression 

������ State of the Art

Speech Speech coding is used for telephony� where it may be of lim�
ited quality but good intelligibility� and for higher quality teleconfer�
encing� Telephone speech is limited to the frequency band ����	���
Hz and is sampled at � kHz� A Pulse Code Modulation �PCM� that
quantizes each sample on � bits produces a code with �� kb%s ��� ���

bits per second�� This can be considerably reduced by removing some
of the speech redundancy�

The production of speech signals is well understood� Model based
analysis�synthesis codes give intelligible speech at ��� kb%s� This is
widely used for defense telecommunications 
���� 			�� Digital cellular
telephony uses � kb%s to reproduce more natural voices� Linear Pre�
dictive Codes �LPC� restore speech signals by �ltering white noise or
a pulse train with linear �lters whose parameters are estimated and
coded� For higher bit rates� the quality of LPC speech production is
enhanced by exciting the linear �lters with waveforms chosen from a
larger family� These Code�Excited Linear Prediction �CELP� codes
provide nearly perfect telephone quality at �� kb%s�

Audio Audio signals include speech but also music and all types of
sounds� On a compact disc� the audio signal is limited to a maximum
frequency of �� kHz� It is sampled at ���� kHz and each sample is
coded on �� bits� The bit rate of the resulting PCM code is ��� kb%s�
For compact discs and digital audio tapes� signals must be coded with
hardly any noticeable distortion� This is also true for multimedia CD�
ROM and digital television sounds�

No models are available for general audio signals� At present� the
best compression is achieved by transform coders that decompose the
signal in a local time�frequency basis� To reduce perceived distortion�
perceptual coders 
���� adapt the quantization of time�frequency co�
e�cients to our hearing sensitivity� Compact disc quality sounds are
restored with ��� kb%s� Nearly perfect audio signals are obtained with
�� kb%s�
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Images A grey�level image typically has ��� by ��� pixels� each coded
with � bits� Like audio signals� images include many types of structures
that are di�cult to model� Currently� the best image compression al�
gorithms are also transform codes� with cosine bases or wavelet bases�
The e�ciency of these bases comes from their ability to construct pre�
cise non�linear image approximations with few non�zero vectors� With
fewer than � bit%pixel� visually perfect images are reconstructed� At
���� bit%pixel� the image remains of good quality�

Video Applications of digital video range from low quality video�
phones and teleconferencing to high resolution television� The most
e�ective compression algorithms remove the time redundancy with a
motion compensation� Local image displacements are measured from
one frame to the next� and are coded as motion vectors� Each frame is
predicted from the previous one by compensating for the motion� An
error image is calculated and compressed with a transform code� The
MPEG standards described in Section ������ are based on this motion
compensation 
�����

For teleconferencing� color images have only 	�� by ��� pixels� A
maximum of 	� images per second are transmitted� but more often ��
or ��� If the images do not include too much motion� a decent quality
video is obtained at ���kb%s� which can be transmitted in real time
through a digital telephone line�

The High De�nition Television �HDTV� format has color images of
���� by ��� pixels� and �� images per second� The resulting bit rate
is on the order of ��� Mb%s� To transmit the HDTV through channels
used by current television technology� the challenge is to reduce the bit
rate to �� Mb%s� without any loss of quality�

������ Compression in Orthonormal Bases

A transform coder decomposes signals in an orthonormal basis B 
fgmg��m�N and optimizes the compression of the decomposition coef�
�cients� The performance of such a transform code is studied from a
Bayes point of view� by supposing that the signal is the realization of a
random process F 
n� of size N � whose probability distribution is known
a priori�
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Let us decompose F over B�

F 
N��X
m��

FB
m� gm�

Each coe�cient FB
m� is a random variable de�ned by

FB
m�  hF� gmi 
N��X
n��

F 
n� g�m
n��

To center the variations of FB
m� at zero� we code FB
m� � EfFB
m�g
and store the mean value EfFB
m�g� This is equivalent to supposing
that FB
m� has a zero mean�

Quantization To construct a �nite code� each coe�cient FB
m� is ap�
proximated by a quantized variable �FB
m�� which takes its values over
a �nite set of real numbers� A scalar quantization approximates each
FB
m� independently� If the coe�cients FB
m� are highly dependent�
quantizer performance is improved by vector quantizers that approxi�
mate together the vector of N coe�cients fFB
m�g��m�N 
���� Scalar
quantizers require fewer computations and are thus more often used� If
the basis fgmg��m�N can be chosen so that the coe�cients FB
m� are
nearly independent� the improvement of a vector quantizer becomes
marginal� After quantization� the reconstructed signal is

�F 
N��X
m��

�FB
m� gm�

Distortion Rate A major issue is to evaluate the distortion intro�
duced by this quantization� Ultimately� we want to restore a signal that
is perceived as nearly identical to the original signal� Perceptual trans�
form codes are optimized with respect to our sensitivity to degradations
in audio signals and images 
����� However� distances that evaluate
perceptual errors are highly non�linear and thus di�cult to manipulate
mathematically� A mean�square norm often does not properly quantify
the perceived distortion� but reducing a mean�square distortion gener�
ally enhances the coder performance� Weighted mean�square distances
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can provide better measurements of perceived errors and are optimized
like a standard mean�square norm�

In the following� we try to minimize the average coding distortion�
evaluated with a mean�square norm� Since the basis is orthogonal� this
distortion can be written

d  EfkF � �Fk�g 
N��X
m��

EfjFB
m�� �FB
m�j�g�

The average number of bits allocated to encode a quantized coe�cient
�FB
m� is denoted Rm� For a given Rm� a scalar quantizer is designed
to minimize EfjFB
m�� �FB
m�j�g� The total mean�square distortion d
depends on the average total bit budget

R 
N��X
m��

Rm�

The function d�R� is called the distortion rate� For a given R� the bit
allocation fRmg��m�N must be adjusted in order to minimize d�R��

Choice of Basis The distortion rate of an optimized transform code
depends on the orthonormal basis B� We see in Section ���	�� that the
Karhunen�Lo�eve basis minimizes d�R� for high resolution quantizations
of signals that are realizations of a Gaussian process� This is not true
when the process is non�Gaussian�

To achieve a high compression rate� the transform code must pro�
duce many zero quantized coe�cients whose positions are e�ciently
recorded� Section ���� shows that d�R� then depends on the precision
of non�linear approximations in the basis B�

���� Distortion Rate of Quantization 

Quantized coe�cients take their values over a �nite set and can thus
be coded with a �nite number of bits� Section ������ reviews entropy
codes of random sources� Section ������ studies the optimization of
scalar quantizers in order to reduce the mean�square error for a given
bit allocation�
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������ Entropy Coding

Let X be a random source that takes its values among a �nite alphabet
of K symbols A  fxkg��k�K� The goal is to minimize the average bit
rate needed to store the values of X� We consider codes that associate
to each symbol xk a binary word wk of length lk� A sequence of values
produced by the source X is coded by aggregating the corresponding
binary words�

All symbols xk can be coded with binary words of the same size
lk  dlog�Ke bits� However� the average code length may be reduced
with a variable length code using smaller binary words for symbols that
occur frequently� Let us denote by pk the probability of occurrence of
a symbol xk�

pk  PrfX  xkg�
The average bit rate to code each symbol emitted by the source X is

RX 
KX
k��

lk pk� ������

We want to optimize the code words fwkg��k�K in order to minimize
RX �

Pre�x Code Codes with words of varying lengths are not always
uniquely decodable� Let us consider the code that associates to fxkg��k��
the code words

fw�  � � w�  �� � w�  ��� � w�  ���g� ������

The sequence ���� can either correspond to w�w� or to w�w�� To
guarantee that any aggregation of code words is uniquely decodable�
the pre�x condition imposes that no code word may be the pre�x �be�
ginning� of another one� The code ������ does not satisfy this condition
since w� is the pre�x of w�� The following code

fw�  � � w�  �� � w�  ��� � w�  ���g
satis�es this pre�x condition� Any code that satis�es the pre�x condi�
tion is clearly uniquely decodable�
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Figure ����� Pre�x tree corresponding to a code with six symbols� The
code word wk of each leaf is indicated below it�

A pre�x code is characterized by a binary tree that has K leaves
corresponding to the symbols fxkg��k�K� Figure ���� shows an example
for a pre�x code of K  � symbols� The left and right branches of the
binary tree are respectively coded by � and �� The binary code word
wk associated to xk is the succession of � and � corresponding to the
left and right branches along the path from the root to the leaf xk� The
binary code produced by such a binary tree is always a pre�x code�
Indeed� wm is a pre�x of wk if and only if xm is an ancestor of xk in
the binary tree� This is not possible since both symbols correspond to
a leaf of the tree� Conversely� we can verify that any pre�x code can
be represented by such a binary tree�

The length lk of the code word wk is the depth in the binary tree
of the corresponding leaf� The optimization of a pre�x code is thus
equivalent to the construction of an optimal binary tree that distributes
the depth of the leaves in order to minimize

RX 
KX
k��

lk pk� ����	�

Higher probability symbols should therefore correspond to leaves higher
in the tree�

Shannon Entropy The Shannon theorem 
	��� proves that entropy
is a lower bound for the average bit rate RX of any pre�x code�
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Theorem ���� �Shannon� Let X be a source whose symbols fxkg��k�K
occur with probabilities fpkg��k�K� The average bit rate RX of a pre�x
code satis�es

RX � H�X�  �
KX
k��

pk log� pk� ������

Moreover� there exists a pre�x code such that

RX � H�X� � �� ������

The sum H�X� is called the entropy of X�

Proof �� This theorem is based on the Kraft inequality given by the
following lemma�

Lemma ���� �Kraft� Any pre�x code satis�es

KX
k��

��lk � �� ������

Conversely� if flkg��k�K is a positive sequence that satis�es ������� then

there exists a sequence of binary words fwkg��k�K of length flkg��k�K
that satis�es the pre�x condition�

To prove ������� we construct a full binary tree T whose leaves are
at the depth m � maxfl�� l�� � � � � lKg� Inside this tree� we can locate the
node nk at the depth lk that codes the binary word wk� We denote Tk
the subtree whose root is nk� as illustrated in Figure ����� This subtree
has a depth m� lk and thus contains �

m�lk nodes at the level m of T �
There are �m nodes at the depth m of T and the pre�x condition implies
that the subtrees T�� � � � � TK have no node in common� so

KX
k��

�m�lk � �m�

which proves �������

Conversely� we consider flkg��k�K that satis�es ������� with l� �
l� � 
 
 
 � lK and m � maxfl�� l�� � � � � lKg� Again we construct a full
binary tree T whose leaves are at the depth m� Let S� be the �

m�l� �rst
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Figure ����� The leaves at the depth m of the tree T are regrouped as
sets Sk of �m�lk nodes that are the leaves of a tree Tk whose root nk is
at the depth lk� Here m  � and l�  � so S� has �� nodes�

nodes at the level m � and S� be the next �
m�l� nodes� and so on� as

illustrated by Figure ����� Since
PK

k�� �
m�lk � �m� the sets fSkg��k�K

have fewer than �m elements and can thus be constructed at the level m
of the tree� The nodes of a set Sk are the leaves of a subtree Tk of T �
The root nk of Tk is at the depth lk and corresponds to a binary word
wk� By construction� all these subtrees Tk are distinct� so fwkg��k�K is
a pre�x code where each code word wk has a length lk� This �nishes the
lemma proof�

To prove the two inequalities ������ and ������ of the theorem� we
consider the minimization of

RX �

KX
k��

pk lk

under the Kraft inequality constraint

KX
k��

��lk � ��

If we admit non�integer values for lk� we can verify with Lagrange multi�
pliers that the minimum is reached for lk � � log� pk� The value of this
minimum is the entropy lower bound�

RX �

KX
k��

pk lk � �

KX
k��

pk log� pk � H�X��
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which proves �������

To guarantee that lk is an integer� the Shannon code is de�ned by

lk � d� log� pke� ������

where dxe is the smallest integer larger than x� Since lk � � log� pk� the
Kraft inequality is satis�ed�

KX
k��

��lk �
KX
k��

�log� pk � ��

Lemma ���� proves that there exists a pre�x code whose binary words
wk have length wk� For this code�

RX �
KX
k��

pk lk �
KX
k��

pk�� log� pk � �� � H�X� � ��

which proves �������

The entropy H�X� measures the uncertainty as to the outcome of the
random variable X� As in ����	�� we prove that

� � H�X� � log�K�

The maximum value log�K corresponds to a sequence with a uniform
probability distribution pk  �	K� for � � k � K� Since no value is
more probable than any other� the uncertainty as to the outcome of X
is maximum� The minimum entropy value H�X�  � corresponds to
a source where one symbol xk occurs with probability �� There is no
uncertainty as to the outcome of X because we know in advance that
it will be equal to xk�

Hu�man Code The lower entropy bound H�X� is nearly reachable
with an optimized pre�x code� The Hu�man algorithm is a dynamical
programming algorithm that constructs a binary tree that minimizes
the average bit rate RX 

PK
k�� pklk� This tree is called an optimal

pre�x code tree� The following proposition gives an induction rule that
constructs the tree from bottom up by aggregating lower probability
symbols�
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Proposition ���� �Hu�man� Let us consider K symbols with their
probability of occurrence sorted in increasing order pk � pk���

f�x�� p��� �x�� p��� �x�� p��� � � � � �xK� pK�g� ������

We aggregate the two lower probability symbols x� and x� in a single
symbol x��� of probability

p���  p� � p��

An optimal pre�x tree for the K symbols �����
 is obtained by construct�
ing an optimal pre�x tree for the K � � symbols

f�x���� p����� �x�� p��� � � � � �xK � pK�g� ������

and by dividing the leaf x��� into two children nodes corresponding to
x� and x��

The proof of this proposition 
��� ���� is left to the reader� The
Hu�man rule reduces the construction of an optimal pre�x code of K
symbols ������ to the construction of an optimal code of K�� symbols
������ plus an elementary operation� The Hu�man algorithm iterates
this regrouping K�� times to grow a pre�x code tree progressively from
bottom to top� The Shannon Theorem ���� proves that the average bit
rate of the optimal Hu�man pre�x code satis�es

H�X� � RX � H�X� � � � �������

As explained in the proof of Theorem ����� the bit rate may be up to
one bit more than the entropy lower bound because this lower bound
is obtained with lk  � log� pk� which is generally not possible since lk
must be an integer� In particular� lower bit rates are achieved when
one symbol has a probability close to ��

Example ���� We construct the Hu�man code of six symbols fxkg��k��
whose probabilities are

fp�  ���� � p�  ��� � p�  ��� � p�  ���� � p�  ��� � p�  ���g�
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Figure ���	� Pre�x tree grown with the Hu�man algorithm for a set of
K  � symbols xk whose probabilities pk are indicated at the leaves of
the tree�

The symbols x� and x� are the lower probability symbols� which are
regrouped in a symbol x��� whose probability is p���  p� � p�  �����
At the next iteration� the lower probabilities are p�  ��� and p��� 
����� so we regroup x��� and x� in a symbol x����� whose probability
is ����� The next two lower probability symbols are x� and x�� which
are regrouped in a symbol x��� of probability ��	�� We then group
x��� and x����� which yields x��������� of probability ���� which is �nally
aggregated with x�� This �nishes the tree� as illustrated in Figure ���	�
The resulting average bit rate ����	� is RX  ��	� whereas the entropy
is H�X�  ����� This Hu�man code is better than the pre�x code of
Figure ����� whose average bit rate is RX  ����

Block coding As mentioned above� the inequality ������� shows that
a Hu�man code may require one bit above the entropy because the
length lk of each binary word must be an integer� whereas the optimal
value � log� pk is generally a real number� To reduce this overhead the
symbols are coded together in blocks of size n�

Let us consider the block of n independent random variables �X 
X�� ��� � Xn� where each Xk takes its values in the alphabetA  fxkg��k�K
with the same probability distribution as X� The vector �X can be con�
sidered as a random variable taking its values in the alphabet An of
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size Kn� To each block of symbols �s 
 An we associate a binary word
of length l��s�� The average number of bits per symbol for such a code
is

RX 
�

n

X
�s�An

p��s� l��s��

The following proposition proves that the resulting Hu�man code has
a bit rate that converges to the entropy of X as n increases�

Proposition ��� The Hu�man code for a block of size n requires an
average number of bits per symbol that satis�es

H�X� � RX � H�X� �
�

n
� �������

Proof �� The entropy of �X considered as a random variable is

H� �X� �
X
�s�An

p��s� log� p��s��

Denote by R �X the average number of bits to code each block
�X � Apply�

ing ������� shows that with a Hu�man code� R �X satis�es

H� �X� � �R �X � H� �X� � �� �������

Since the random variables Xi that compose �X are independent�

p��s� � p�s�� ��� � sn� �
nY
i��

p�si� �

We thus derive that H� �X� � nH�X� and since R � �R
n� we obtain
������� from ��������

Coding together the symbols in blocks is equivalent to coding each sym�
bol xk with an average number of bits lk that is not an integer� This
explains why block coding can nearly reach the entropy lower bound�
The Hu�man code can also be adaptively modi�ed for long sequences
in which the probability of occurrence of the symbols may vary 
����
The probability distribution is computed from the histogram �cumu�
lative distribution� of the N most recent symbols that were decoded�
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The next N symbols are coded with a new Hu�man code calculated
from the updated probability distribution� However� recomputing the
Hu�man code after updating the probability distribution is computa�
tionally expensive� Arithmetic codes have a causality structure that
makes it easier to adapt the code to a varying probability distribution�

Arithmetic Code Like a block Hu�man code� an arithmetic code

���� records in blocks the symbols fxkg��k�K to be coded� However�
an arithmetic code is more structured� It constructs progressively the
code of a whole block as each symbol is taken into account� When the
probability pk of each symbol xk is not known� an adaptive arithmetic
code progressively learns the probability distribution of the source and
adapts the encoding�

We consider a block of symbols �s  s�� s�� ���� sn produced by a
random vector �X  X�� ��� Xn of n independent random variables�
Each Xk has the same probability distribution p�x� as the source X�
with p�xj�  pj� An arithmetic code represents each �s by an interval

an� an � bn� included in 
�� ��� whose length is equal to the probability
of occurrence of this sequence�

bn 
nY

k��

p�sk� �

This interval is de�ned by induction as follows� We initialize a�  �
and b�  �� Let 
ai� ai � bi� be the interval corresponding to the �rst i
symbols s�� ���� si� Suppose that the next symbol si�� is equal to xj so
that p�si���  pj� The new interval 
ai��� ai�� � bi��� is a sub�interval
of 
ai� ai � bi� whose size is reduced by pj�

ai��  ai � bi

j��X
k��

pk and bi��  bi pj �

The �nal interval 
an� an � bn� characterizes the sequence s�� ���� sn
unambiguously because the Kn di�erent blocks of symbols �s correspond
to Kn di�erent intervals that make a partition of 
�� ��� Since these
intervals are non�overlapping� 
an� an � bn� is characterized by coding in
binary form a number cn 
 
an� an � bn�� The binary expression of the
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chosen numbers cn for each of the Kn intervals de�nes a pre�x code� so
that a sequence of such numbers is uniquely decodable� The value of cn
is progressively calculated by adding re�nement bits when 
ai� ai � bi�
is reduced in the next sub�interval 
ai��� ai�� � bi��� until 
an� an � bn��
There are e�cient implementations that avoid numerical errors caused
by the �nite precision of arithmetic calculations when calculating cn

	���� The resulting binary number cn has dn digits with

�dlog� bne � dn � �dlog� bne� � �

Since log� bn 
Pn

i�� log� p�si� and H�X�  Eflog�Xg� one can verify
that the average number of bits per symbol of this arithmetic code
satis�es

H�X� � RX � H�X� �
�

n
� �����	�

When the successive values Xk of the blocks are not independent� the
upper and lower bounds �����	� remain valid because the successive
symbols are encoded as if they were independent�

An arithmetic code has a causal structure in the sense that the �rst
i symbols of a sequence s�� ���� si� si��� ���� sn are speci�ed by an interval

ai� ai � bi� that does not depend on the value of the last n� i symbols�
Since the sequence is progressively coded and decoded� one can im�
plement an adaptive version which progressively learns the probability
distribution p�x� 
��	� ����� When coding si��� this probability distri�
bution can be approximated by the histogram �cumulative distribution�
pi�x� of the �rst i symbols� The sub�interval of 
ai� ai�bi� associated to
si�� is calculated with this estimated probability distribution� Suppose
that si��  xj� We denote pi�xj�  pi�j� The new interval is de�ned by

ai��  ai � bi

j��X
k��

pi�k and bi��  bi pi�j � �������

The decoder is able to recover si�� by recovering the �rst i symbols
of the sequence and computing the cumulative probability distribution
pi�x� of these symbols� The interval 
ai��� ai�� �bi��� is then calculated
from 
ai� ai � bi� with �������� The initial distribution p��x� can be set
to be uniform�
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If the symbols of the block are produced by independent random
variables� then as i increases the estimated probability distribution
pi�x� converges to the probability distribution p�x� of the source� As
the total block size n increases to �� one can prove that the average
bit rate of this adaptive arithmetic code converges to the entropy of
the source� Under weaker Markov random chain hypotheses this result
remains also valid 
�����

Noise Sensitivity Hu�man and arithmetic codes are more compact
than a simple �xed length code of size log�K� but they are also more
sensitive to errors� For a constant length code� a single bit error mod�
i�es the value of only one symbol� In contrast� a single bit error in a
variable length code may modify the whole symbol sequence� In noisy
transmissions where such errors might occur� it is necessary to use an
error correction code that introduces a slight redundancy in order to
suppress the transmission errors 
����

������ Scalar Quantization

If the source X has arbitrary real values� it cannot be coded with a �nite
number of bits� A scalar quantizer Q approximates X by �X  Q�X��
which takes its values over a �nite set� We study the optimization of
such a quantizer in order to minimize the number of bits needed to
code �X for a given mean�square error

d  Ef�X � �X��g�

Suppose that X takes its values in 
a� b�� which may correspond to
the whole real axis� We decompose 
a� b� inK intervals f�yk��� yk�g��k�K
of variable length� with y�  a and yK  b� A scalar quantizer approx�
imates all x 
 �yk��� yk� by xk�

�x 
 �yk��� yk� � Q�x�  xk �

The intervals �yk��� yk� are called quantization bins� Rounding o� in�
tegers is a simple example where the quantization bins �yk��� yk� 
�k � �

�
� k � �

�
� have size � and xk  k for any k 
 Z�
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High�Resolution Quantizer Let p�x� be the probability density of
the random source X� The mean�square quantization error is

d  Ef�X � �X��g 

Z ��

��

�
x�Q�x�

��
p�x� dx� �������

A quantizer is said to have a high resolution if p�x� is approximately
constant on each quantization bin �yk��� yk� of size &k  yk � yk���
This is the case if the sizes &k are su�ciently small relative to the rate
of variation of p�x�� so that one can neglect these variations in each
quantization bin� We then have

p�x� 
pk
&k

for x 
 �yk��� yk�� �������

where
pk  PrfX 
 �yk��� yk�g�

The next proposition computes the mean�square error under this high
resolution hypothesis�

Proposition ���	 For a high resolution quantizer� the mean�square
error d is minimized when xk  �yk � yk���	�� which yields

d 
�

��

KX
k��

pk &�
k� �������

Proof �� The quantization error ������� can be rewritten

d �
KX
k��

Z yk

yk��

�x� xk�
� p�x� dx�

Replacing p�x� by its expression ������� gives

d �

KX
k��

pk
 k

Z yk

yk��

�x� xk�
� dx� �������

One can verify that each integral is minimum for xk � �yk � yk���
��
which yields ��������
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Uniform Quantizer The uniform quantizer is an important special
case where all quantization bins have the same size

yk � yk��  & for � � k � K�

For a high resolution uniform quantizer� the average quadratic distor�
tion ������� becomes

d 
&�

��

KX
k��

pk 
&�

��
� �������

It is independent of the probability density p�x� of the source�

Entropy Constrained Quantizer We want to minimize the number
of bits required to code the quantized values �X  Q�X� for a �xed
distortion d  Ef�X � �X��g� The Shannon Theorem ���� proves that
the minimum average number of bits to code �X is the entropy H� �X��
Hu�man or an arithmetic codes produce bit rates close to this entropy
lower bound� We thus design a quantizer that minimizes H� �X��

The quantized source �X takes K possible values fxkg��k�K with
probabilities

pk  Pr� �X  xk�  Pr�X 
 �yk��� yk�� 

Z yk

yk��

p�x� dx�

Its entropy is

H� �X�  �
KX
k��

pk log� pk�

For a high resolution quantizer� the following theorem of Gish and
Pierce 
���� relates H� �X� to the di�erential entropy of X de�ned by

Hd�X�  �
Z ��

��
p�x� log� p�x� dx� �������

Theorem ��� �Gish� Pierce� If Q is a high resolution quantizer
with respect to p�x�� then

H� �X� � Hd�X�� �

�
log���� d�� �������

This inequality is an equality if and only if Q is a uniform quantizer�
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Proof �� By de�nition� a high resolution quantizer satis�es �������� so
pk � p�x� k for x � �yk��� yk�� Hence

H� 	X� � �

KX
k��

pk log� pk

� �

KX
k��

Z yk

yk��

p�x� log� p�x� dx�

KX
k��

pk log� k

� Hd�X��
�

�

KX
k��

pk log� 
�
k� �������

The Jensen inequality for a concave function ��x� proves that if pk �
� with

PK
k�� pk � �� then for any fakg��k�K

KX
k��

pk ��ak� � �
� KX
k��

pk ak

�
� �������

If ��x� is strictly concave� the inequality is an equality if and only if all
ak are equal when pk �� �� Since log��x� is strictly concave� we derive
from ������� and ������� that

�

�

KX
k��

pk log�� 
�
k� �

�

�
log�

�
KX
k��

pk 
�
k

�
�
�

�
log���� d��

Inserting this in ������� proves that

H� 	X� � Hd�X��
�

�
log���� d��

This inequality is an equality if and only if all  k are equal� which
corresponds to a uniform quantizer�

This theorem proves that for a high resolution quantizer� the minimum
average bit rate RX  H� �X� is achieved by a uniform quantizer and

RX  Hd�X�� �

�
log���� d�� �������

In this case d  &�	�� so

RX  Hd�X�� log� &� �������

The distortion rate is obtained by taking the inverse of ��������

d�RX� 
�

��
��Hd�X� ���RX � �������
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���� High Bit Rate Compression 

Section ���	�� studies the distortion rate performance of a transform
coding computed with high resolution quantizers� These results are
illustrated with a wavelet transform image coder� For Gaussian pro�
cesses� Section ���	�� proves that the optimal basis is the Karhunen�
Lo�eve basis� An application to audio compression is studied in Section
���	�	�

������ Bit Allocation

Let us optimize the transform code of a random vector F 
n� decomposed
in an orthonormal basis fgmg��m�N �

F 

N��X
m��

FB
m� gm�

Each FB
m� is a zero�mean source that is quantized into �FB
m� with an
average bit budget Rm� For a high resolution quantization� Theorem
���� proves that the error dm  EfjFB
m�� �FB
m�j�g is minimized with
a uniform scalar quantization� and Rm  Hd�X�� log� &m where &m

is the bin size� It now remains to optimize the choice of f&mg��m�N
in order to minimize the average total number of bits

R 
N��X
m��

Rm

for a speci�ed total error

d 
N��X
m��

dm�

Let �R  R	N be the average number of bits per sample� The following
bit allocation theorem proves that the transform code is optimized when
all &m are equal�
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Theorem ���	 For high resolution quantizations and a �xed total dis�
tortion d the number of bits R is minimum if

&�
m 

�� d

N
for � � m � N �������

and

d� �R� 
N

��
��Hd ���

�R � �������

where Hd is the averaged di�erential entropy

Hd 
�

N

N��X
m��

Hd�FB
m���

Proof� For uniform high resolution quantizations� ������� proves that

Rm � Hd�FB
m���
�

�
log���� dm��

p So

R �

N��X
m��

Rm �

N��X
m��

Hd�FB
m���
N��X
m��

�

�
log���� dm�� �������

Minimizing R is equivalent to maximizing
PN��

m�� log����dm�� Applying
the Jensen inequality ������� to the concave function ��x� � log��x� and
pk � �
N proves that

�

N

N��X
m��

log���� dm� � log�

�
��

N

N��X
m��

dm

�
� log�

�
�� d

N

�
�

This inequality is an equality if and only if all dm are equal� Hence
 �
m
�� � dm � d
N � which proves �������� We also derive from �������
that

R �
N��X
m��

Hd�FB
m���
N

�
log�

�
�� d

N

�

which implies ��������
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This theorem shows that the transform code is optimized if it introduces
the same expected error dm  &�

m	��  d	N along each direction gm
of the basis B� The number of bits Rm used to encode FB
m� then
depends only on its di�erential entropy�

Rm  Hd�FB
m��� �

�
log�

�
��d

N

�
� ����	��

Let ��m be the variance of FB
m�� and let �FB
m�  FB
m�	�m be the
normalized random variable of variance �� A simple calculation shows
that

Hd�FB
m��  Hd� �FB
m�� � log� �m �

The �optimal bit allocation� Rm in ����	�� may become negative if the
variance �m is too small� which is clearly not an admissible solution�
In practice� Rm must be a positive integer but the resulting optimal
solution has no simple analytic expression �Problem ������ If we neglect
the integral bit constraint� ����	�� gives the optimal bit allocation as
long as Rm � ��

Weighted Mean�Square Error We mentioned that a mean�square
error often does not measure the perceived distortion of images or au�
dio signals very well� When the vectors gm are localized in time and
frequency� a mean�square norm sums the errors at all times and fre�
quencies with equal weights� It thus hides the temporal and frequency
properties of the error F � �F � Better norms can be constructed by
emphasizing certain frequencies more than others� in order to match
our audio or visual sensitivity� which varies with the signal frequency�
A weighted mean�square norm is de�ned by

d 
N��X
m��

dm
w�
m

� ����	��

where fw�
mg��m�N are constant weights�

We can apply Theorem ���	 to weighted mean�square errors by ob�
serving that

d 
N��X
m��

dwm�
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where dwm  dm	w
�
m is the quantization error of Fw

B 
m�  FB
m�	wm�
Theorem ���	 proves that bit allocation is optimized by quantizing
uniformly all Fw

B 
m� with the same bin size &� This implies that the
coe�cients FB
m� are uniformly quantized with a bin size &m  &wm$
it follows that dm  w�

md	N � As expected� larger weights increase
the error in the corresponding direction� The uniform quantization
Q�m with bins of size &m is often computed with a quantizer Q that
associates to any real number its closest integer�

Q�m

�
FB
m�

�
 &mQ

�
FB
m�

&m

�
 &wmQ

�
FB
m�

&wm

�
� ����	��

������ Optimal Basis and Karhunen	Lo
eve

Transform code performance depends on the choice of an orthonormal
basis B� For high resolution quantizations� ������� proves that the
distortion rate d� �R� is optimized by choosing a basis B that minimizes
the average di�erential entropy

Hd 
�

N

N��X
m��

Hd�FB
m���

In general� we do not know how to compute this optimal basis because
the probability density of the FB
m�  hF� gmi may depend on gm in a
complicated way�

Gaussian Process If F is a Gaussian random vector then the coe��
cients FB
m� are Gaussian random variables in any basis� In this case�
the probability density of FB
m� depends only on the variance ��m�

pm�x� 
�

�m
p

��
exp

��x�
���m

�
�

With a direct integration� we verify that

Hd

�
FB
m�

�
 �

Z ��

��
pm�x� log� pm�x� dx  log� �m � log�

p
��e�
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Inserting this expression in ������� yields

d� �R�  N
� e

�
�� ���

�R� ����		�

where �� is the geometrical mean of all variances�

�� 

�
N��Y
m��

��m

���N

�

The basis must therefore be chosen in order to minimize ���

Proposition ���� The geometrical mean variance �� is minimized in
a Karhunen�Loeve basis of F �

Proof �� Let K be the covariance operator of F �

��m � hKgm� gmi�

Observe that

log� �
� �

�

N

N��X
m��

log��hKgm� gmi�� �������

Theorem ����� proves that if �x� is strictly concave then

N��X
m��

�hKgm� gmi�

is minimum if and only if fgmg��m�N diagonalizes K� Since log��x�
is strictly concave� we derive that �� is minimum if and only if B is a
Karhunen�Lo�eve basis�

Together with the distortion rate ����		�� this result proves that a
high bit rate transform code of a Gaussian process is optimized in
a Karhunen�Lo�eve basis� The Karhunen�Lo�eve basis diagonalizes the
covariance matrix� which means that the decomposition coe�cients
FB
m�  hF� gmi are uncorrelated� If F is a Gaussian random vec�
tor� then the coe�cients FB
m� are jointly Gaussian� In this case� be�
ing uncorrelated implies that they are independent� The optimality of
a Karhunen�Lo�eve basis is therefore quite intuitive since it produces
coe�cients FB
m� that are independent� The independence of the coef�
�cients justi�es using a scalar quantization rather than a vector quan�
tization�
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Coding Gain The Karhunen�Lo�eve basis fgmg��m�N of F is a priori
not well structured� The decomposition coe�cients fhf� gmig��m�N of
a signal f are thus computed with N� multiplications and additions�
which is often too expensive in real time coding applications� Trans�
form codes often approximate this Karhunen�Lo�eve basis by a more
structured basis that admits a faster decomposition algorithm� The
performance of a basis is evaluated by the coding gain 
	��

G 
EfkFk�g
N ��



PN��
m�� �

�
m

N
�QN��

m�� �
�
m

���N � ����	��

Proposition ���� proves that G is maximum in a Karhunen�Lo�eve basis�

Non�Gaussian Processes When F is not Gaussian� the coding gain
G no longer measures the coding performance of the basis� Indeed�
the distortion rate ������� depends on the average di�erential entropy

factor ��Hd� which is not proportional to ��� The Karhunen�Lo�eve basis
is therefore not optimal�

Circular stationary processes with piecewise smooth realizations are
examples of non�Gaussian processes that are not well compressed in
their Karhunen�Lo�eve basis� which is the discrete Fourier basis� Section
���� shows that wavelet bases yield better distortion rates because they
can approximate these signals with few non�zero coe�cients�

������ Transparent Audio Code

The compact disc standard samples high quality audio signals at ����
kHz� Samples are quantized with �� bits� producing a Pulse Code
Modulation of ��� kb%s� Audio codes must be �transparent�� which
means that they should not introduce errors that can be heard by an
�average� listener�

Sounds are often modeled as realizations of Gaussian processes�
This justi�es the use of a Karhunen�Lo�eve basis to minimize the dis�
tortion rate of transform codes� To approximate the Karhunen�Lo�eve
basis� we observe that many audio signals are locally stationary over
a su�ciently small time interval� This means that over this time in�
terval� the signal can be approximated by a realization of a stationary
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process� Section ������ explains that the Karhunen�Lo�eve basis of lo�
cally stationary processes is well approximated by a local cosine basis
with appropriate window sizes� The local stationarity hypothesis is not
always valid� especially for attacks of musical instruments� but bases of
local time�frequency atoms remain e�cient for most audio segments�

Bases of time�frequency atoms are also well adapted to matching the
quantization errors with our hearing sensitivity� Instead of optimizing
a mean�square error as in Theorem ���	� perceptual coders 
���� adapt
the quantization so that errors fall below an auditory threshold� which
depends on each time�frequency atom gm�

Audio Masking A large amplitude stimulus often makes us less sen�
sitive to smaller stimuli of a similar nature� This is called a masking
e�ect� In a sound� a small amplitude quantization error may not be
heard if it is added to a strong signal component in the same frequency
neighborhood� Audio masking takes place in critical frequency bands

�c � &�	�� �c � &�	�� that have been measured with psychophysi�
cal experiments 
	���� A strong narrow band signal whose frequency
energy is in the interval 
�c �&�	�� �c � &�	�� decreases the hearing
sensitivity within this frequency interval� However� it does not in�uence
the sensitivity outside this frequency range� In the frequency interval

�� ��kHz�� there are approximately �� critical bands� Below ��� Hz�
the bandwidths of critical bands are on the order of ��� Hz� Above ���
Hz the bandwidths increase proportionally to the center frequency �c�

&� �
�

��� for �c � ���
�����c for ��� � �c � ��� ���

����	��

The masking e�ect also depends on the nature of the sound� partic�
ularly its tonality� A tone is a signal with a narrow frequency support
as opposed to a noise�like signal whose frequency spectrum is spread
out� A tone has a di�erent masking in�uence than a noise�type signal$
this di�erence must be taken into account 
	����

Adaptive Quantization To take advantage of audio masking� trans�
form codes are implemented in orthogonal bases of local time�frequency
atoms fgmg��m�N � whose frequency supports are inside critical bands�
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To measure the e�ect of audio masking at di�erent times� the signal en�
ergy is computed in each critical band� This is done with an FFT over
short time intervals� on the order of ��ms� where signals are considered
to be approximately stationary� The signal tonality is estimated by
measuring the spread of its Fourier transform� The maximum admissi�
ble quantization error in each critical band is estimated depending on
both the total signal energy in the band and the signal tonality� This es�
timation is done with approximate formulas that are established with
psychophysical experiments 
����� For each vector gm whose Fourier
transform is inside a given critical band� the inner product hf� gmi
is uniformly quantized according to the maximum admissible error�
Quantized coe�cients are then entropy coded�

Although the SNR may be as low as �	 db� such an algorithm pro�
duces a nearly transparent audio code because the quantization error is
below the perceptual threshold in each critical band� The most impor�
tant degradations introduced by such transform codes are pre�echoes�
During a silence� the signal remains zero� but it can suddenly reach
a large amplitude due to a beginning speech or a musical attack� In
a short time interval containing this attack� the signal energy may be
quite large in each critical band� By quantizing the coe�cients hf� gmi
we introduce an error both in the silent part and in the attack� The
error is not masked during the silence and will clearly be heard� It is
perceived as a �pre�echo� of the attack� This pre�echo is due to the
temporal variation of the signal� which does not respect the local sta�
tionarity hypothesis� It can however be detected and removed with
post�processings�

Choice of Basis The MUSICAM �Masking�pattern Universal Sub�
band Integrated Coding and Multiplexing� coder 
��	� used in the
MPEG�I standard 
���� is the simplest perceptual subband coder� It de�
composes the signal in 	� equal frequency bands of ��� Hz bandwidth�
with a �lter bank constructed with frequency modulated windows of
��� samples� This decomposition is similar to a signal expansion in
a local cosine basis� The quantization levels are adapted in each fre�
quency band� to take into account the masking properties of the signal�
Quantized coe�cients are not entropy coded� This system compresses
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Figure ����� Wavelet packet tree that decomposes the frequency inter�
val 
�� ��kHz� in �� frequency bands covered by M  � wavelets dilated
over six octaves� plus eight low frequency bands of the same bandwidth�
The frequency bands are indicated at the leaves in kHz�

audio signals up to ��� kb%s without audible impairment� It is often
used for digital radio transmissions where small defects are admissible�

The AC�systems produced by Dolby decompose the signal in a local
cosine basis� and adapt the window sizes to the local signal content�
They also perform a perceptual quantization followed by a Hu�man
entropy coding� These coders operate on a variety of bit rates from ��
kb%s to ��� kb%s�

In order to best match human perception� transform code algo�
rithms have been developed in wavelet packet bases� whose frequency
resolution match the critical frequency bands 
	���� Sinha and Tew�k

	��� propose the wavelet packet basis shown in Figure ����� which is an
M  � wavelet basis� The properties of M�band wavelet bases are ex�
plained in Section ����	� These four wavelets have a bandwidth of �	��
�	�� �	� and �	� octaves respectively� The lower frequency interval

�� ���� is decomposed with eight wavelet packets of the same band�
width� to match the critical frequency bands ����	��� These wavelet
packet coe�cients are quantized with perceptual models and are en�
tropy coded� Nearly transparent audio codes are obtained at �� kb%s�
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Figure ����� A high energy narrow frequency tone can excite a wavelet
whose Fourier transform has second order lobes outside the critical
band of width &�� The quantization then creates audible distortion�

Wavelets produce smaller pre�echo distortions compared to local
cosine bases� At the sound attack� the largest wavelet coe�cients ap�
pear at �ne scales� Because �ne scale wavelets have a short support�
a quantization error creates a distortion that is concentrated near the
attack� However� these bases have the disadvantage of introducing a
bigger coding delay than local cosine bases� The coding delay is ap�
proximately equal to half the maximum time support of the vector used
in the basis� It is typically larger for wavelets and wavelet packets than
for local cosine vectors�

Choice of Filter Wavelet and wavelet packet bases are constructed
with a �lter bank of conjugate mirror �lters� For perceptual audio
coding� the Fourier transform of each wavelet or wavelet packet must
have its energy well concentrated in a single critical band� Second order
lobes that may appear in other frequency bands should have a negligible
amplitude� Indeed� a narrow frequency tone creates large amplitude
coe�cients for all wavelets whose frequency support covers this tone� as
shown in Figure ����� Quantizing the wavelet coe�cients is equivalent
to adding small wavelets with amplitude equal to the quantization error�
If the wavelets excited by the tone have important second order lobes
in other frequency intervals� the quantization errors introduces some
energy in these frequency intervals that is not masked by the energy of
the tone� introducing audible distortion�

To create wavelets and wavelet packets with small second order
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frequency lobes� the transfer function of the corresponding conjugate
mirror �lter �h��� must have a zero of high order at �  �� Theorem
��� proves that conjugate mirror �lters with p zeros at �  � have
at least �p non�zero coe�cients� and correspond to wavelets of size
�p � �� Increasing p thus produces a longer coding delay� Numerical
experiments 
	��� show that increasing p up to 	� can enhance the
perceptual quality of the audio code� but the resulting �lters have at
least �� non�zero coe�cients�

���� Image Compression 

So far� we have studied the performance of transform codes from a
Bayes point of view� by considering signals as realizations of a random
vector whose probability distribution is known� However� there is no
stochastic model that incorporates the diversity of image structures
such as non�stationary textures and edges� In particular� Gaussian
processes and homogeneous Markov random �elds are not appropriate�
The distortion rate formulas were also calculated with a high resolution
quantization hypothesis� which is not valid for image transform codes�

Section ������ introduces a di�erent framework where the distortion
rate is computed by considering images as deterministic signals� Image
transform codes in orthonormal wavelet bases and block cosine bases
are studied in Sections ������ and �����	� Embedding strategies to
improve wavelet transform codes are introduced in Section �������

Any prior information about the class of images to be compressed
can be used to specify a set � that includes this class� For example�
large classes of images are included in sets of bounded variation sig�
nals� In the absence of probabilistic models� we cannot calculate the
expected coding distortion over �� which is replaced by the maximum
distortion� Minimizing this maximum distortion leads to the notion of
Kolmogorov ��entropy� Section ������ gives conditions for reaching a
minimax distortion rate with a transform coding�
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������ Deterministic Distortion Rate

An image is considered as a deterministic signal f that is decomposed
in an orthonormal basis B  fgmg��m�N� �

f 
N���X
m��

fB
m� gm with fB
m�  hf� gmi�

A transform code quantizes all coe�cients and reconstructs

�f 
N���X
m��

Q�fB
m�� gm � ����	��

Let R be the number of bits used to code the N� quantized coe�cients
Q�fB
m��� The coding distortion is

d�R� f�  kf � �fk� 
N���X
m��

jfB
m��Q�fB
m��j�� ����	��

We denote by p�x� the histogram of the N� coe�cients fB
m��
normalized so that

R
p�x� dx  �� The quantizer approximates each

x 
 �yk��� yk� by Q�x�  xk� The proportion of quantized coe�cients
equal to xk is

pk 

Z yk

yk��

p�x� dx � ����	��

Suppose that the quantized values of f can take at most K di�erent
quantized values xk� A variable length code represents the quantized
values equal to xk with an average of lk bits� where the lengths lk are
speci�ed independently from f � It is implemented with a pre�x code
or an arithmetic code� over blocks of quantized values that are large
enough so that the lk can be assumed to take any real values that satisfy
the Kraft inequality ������

PK
k�� ��lk � �� Encoding a signal with K

symbols requires a total number of bits

R  N�

KX
k��

pk lk � �������
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A constant size code corresponds to lk  log�K� in which case R 
N� log�K� The bit budget R reaches its minimum for lk  � log� pk
and hence

R � H  �N�
KX
k��

pk log� pk � �������

We denote by dH�R� f� the distortion obtained with R  H� Minimiz�
ing R for a given quantizer produces a minimum distortion for a �xed
R� So dH�R� f� is a lower bound of the distortion rate d�R� f� obtained
with a pre�x or an arithmetic code� In practice� we do not know in
advance the values of pk� which depend on the signal f � The oracle
distortion rate dH�R� f� is obtained by an oracle coder that uses extra
information that is normally not available�

An adaptive variable length code takes a di�erent approach� as ex�
plained in Section ������� Instead of �xing a priori the values flkg��k�K�
such a code estimates the distribution pk as the coding progresses and
adapts the lengths lk� It produces a bit budget R that is often close
to H� but it can be smaller when the sequence of quantized coe�cients
is not homogeneous� For example� the wavelet coe�cients of an image
often have a larger amplitude at large scales� An adaptive arithmetic
code adapts the encoding to the probability distribution which is dif�
ferent depending on the scale� It thus produces a total bit budget that
is smaller than the entropy H obtained with a �xed code optimized for
the N� wavelet coe�cients�

High Resolution Quantization The high resolution assumption
supposes that p�x� is approximately constant over each quantization
interval �yk��� yk�� The following proposition computes the distortion
rate under this assumption�

Proposition ���� Suppose that the high resolution quantization as�
sumption is valid for �R  R	N��

� The oracle distortion rate is minimum if and only if Q is a uni�
form quantizer and

dH� �R� f� 
N�

��
��Hd�f� ���

�R � �������
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with Hd�f�  � R p�x� log� p�x� dx�

� Suppose that there exists C such that sup��m�N� jfB
m�j � C�
If the quantized coe�cients are coded with constant size binary
words then the distortion rate is

d� �R� f� 
N�

	
C� ���

�R � �����	�

Proof �� Let X be a random variable whose probability distribution is
the histogram p�x�� The distortion de�ned in ������� can be rewritten

dH� �R� f� � N�
EfjX �Q�X�j�g �

The minimum bit budget ������� is equal to the entropy R � H�Q�X���
Under the high resolution assumption� Theorem ���� proves that EfjX�
Q�X�j�g is minimum if and only if Q is a uniform quantizer� and �������
implies ��������

A uniform high resolution quantization with bin size  has a distor�
tion calculated in �������� d� �R� f� � N� �
��� The number of quanti�
zation bins is K � �C
 and the total number of bits is �R � log�K�
from which we derive ��������

The high resolution quantization assumption is valid if the quantization
bins are small enough� which means that the bit rate �R is su�ciently
large� In this case� the distortion rate decays exponentially�

Wavelet Image Code A simple wavelet image code is introduced to
illustrate the properties of transform coding� The image is decomposed
in a separable wavelet basis� All wavelet coe�cients are quantized with
a uniform quantizer

Q�x� 

�
� if jxj � &	�
sign�x� k& if �k � �	��& � jxj � �k � �	��&

� �������

The quantized coe�cients are coded with an adaptive arithmetic code�
The particular choice of wavelet basis and the implementation details
are discussed in the next section� Figure ���� shows examples of coded
images with �R  ��� bit%pixel� Mandrill is the only image where one
can see a slight degradation� in the fur�
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The Peak Signal to Noise Ratio �PSNR� is de�ned by

PSNR� �R� f�  �� log��
N� ����

d� �R� f�
�

The distortion rate formula ������� predicts that there exists a constant
K such that

PSNR� �R� f�  ��� log�� �� �R � K �

Figure ���� shows that PSNR� �R� f� has indeed a linear growth for �R �
�� but not for �R � �� At low bit rates �R � �� the quantization interval &
is relatively large� The normalized histogram p�x� of wavelet coe�cients
in Figure ���� has a narrow peak in the neighborhood of x  �� Hence
p�x� is poorly approximated by a constant in the zero bin 
�&	��&	���
where Q�x�  �� The high resolution quantization hypothesis is not
valid in this zero bin� which explains why the distortion rate formula
������� is wrong� For Mandrill� the high resolution hypothesis remains
valid up to �R  ��� because the histogram of its wavelet coe�cients is
wider in the neighborhood of x  ��

Low Resolution Quantization If the basis B is chosen so that many
coe�cients fB
m�  hf� gmi are close to zero� then the histogram p�x�
has a sharp high amplitude peak at x  �� as in the wavelet histograms
shown in Figure ����� At low bit rates R the distortion d�R� f� must
therefore be computed without using a high resolution quantization
assumption�

The bit budget R can be calculated by considering separately the
signi�cant coe�cients fB
m� such that Q�fB
m�� � �� The positions of
these signi�cant coe�cients are recorded by a binary signi�cance map

b
m� 

�
� if Q�fB
m��  �
� if Q�fB
m�� � �

� �������

Let M be the number of signi�cant coe�cients� The proportions of �
and � in the signi�cance map are respectively p�  �N� �M�	N� and
p�  M	N�� The number of bits R� needed to code the signi�cance
map with a variable length code has a lower bound calculated with
l�  � log� p� and l�  � log� p��

R� � �N�
�
p� log� p� � p� log� p�

�
� �������
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Lena GoldHill

Boats Mandrill

Figure ����� These images of N�  ���� pixels are coded with �R  ���
bit%pixel� by a wavelet transform coding�
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An adaptive variable length code can nearly reach this lower bound�
The number M � N� of signi�cant coe�cients is �rst computed and
coded on log�N

� bits� The values of p� and p� are derived from M and
the signi�cance map is coded with l�  � log� p� and l�  � log� p��
This adaptive code has an overhead of log�N

� bits relative to the lower
bound ��������

Figure ���� shows the signi�cance maps of the quantized wavelet
coe�cients that code the four images in Figure ����� The total bit
budget R to code all quantized coe�cients is

R  R� � R� �

where R� is the number of bits coding the quantized values of the
signi�cant coe�cients� with a variable length code�

The distortion d�R� f� is calculated by separating in ����	�� the
coe�cients that are in the zero bin 
�&	��&	�� from the signi�cant
coe�cients�

d�R� f� 
X

jfB�mj����
jfB
m�j� �

X
jfB�mj����

jfB
m��Q�fB
m��j� � �������

Let fM be the non�linear approximation of f from the M signi�cant
coe�cients�

fM 
X

jfB�mj����
fB
m� gm �

The �rst sum of d�R� f� can be rewritten as a non�linear approximation
error�

kf � fMk� 
X

jfB�mj����
jfB
m�j� �

DeVore� Jawerth and Lucier 
���� observed that this approximation
error often dominates the value of d�R� f��

The following theorem computes d�R� f� depending on the decay
rate of the sorted decomposition of f in the basis B� We denote by
f rB
k�  fB
mk� the coe�cient of rank k� de�ned by jf rB
k�j � jf rB
k� ��j
for � � k � N�� We write jf rB
k�j � C k�s if there exist two constants
A�B � � independent of C� k and N such that AC k�s � jf rB
k�j �
B C k�s�
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Lena GoldHill

Boats Mandrill

Figure ����� Signi�cance map of quantized wavelet coe�cients for im�
ages coded with �R  ��� bit%pixel�
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Theorem ���� �Falzon� Mallat� Let Q be a uniform quantizer� There
exists an adaptive variable length code such that for all s � �	� and
C � �� if jf rB
k�j � C k�s then for R � N�

d�R� f� � dH�R� f� � C�R���s
�

� � log�
N�

R

��s��
� �������

Proof �� Let  be the quantization step of the uniform quantizer� Since
� � jx�Q�x�j �  
�� ������� implies

kf � fMk � d�R� f� � kf � fMk
� �M

 �

�
� �������

where M is the number of coe�cients such that jfB
m�j �  
�� Since
the sorted coe�cients satisfy jf rB
k�j � C k�s we derive that

M � C��s ���s � �������

We shall see that R � N� implies M � N�
�� Since s � �
�� the
approximation error is

kf � fMk
� �

N�X
k�M��

jf rB
k�j
� �

N�X
k�M��

C� k��s � C�M���s� �������

But ������� shows that M  � � C�M���s so ������� yields

d�R� f� � C�M���s� �������

Let us now evaluate the bit budget R � R� � R�� We construct
an adaptive variable length code that requires a number of bits that is
of the same order as the number of bits obtained with an oracle code�
The proportion of signi�cant and insigni�cant coe�cients is respectively
p� � M
N� and p� � �N

� �M�
N�� An oracle codes the signi�cance
map with a bit budget

H� � �N�
�
p� log� p� � p� log� p�

�
�������

� M

�
log�

N�

M
� log� e �O

�
M

N�

��
�
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An adaptive variable length code adds an overhead of log�N
� bits to

store the value of M � This does not modify the order of magnitude of
R��

R� � H� �M

�
log�

N�

M
� �

�
� �������

We also decompose R� � Ra � Rs� where Ra is the number of bits
that code the amplitude of the M signi�cant coe�cients of f � and Rs

is the number of bits that code their sign� given that their amplitude is
already coded� Clearly � � Rs �M � Let pj be the fraction of signi�cant
coe�cients whose amplitude is quantized to j � An oracle codes the
amplitude with a variable length code de�ned by lj � � log� pj� The
resulting bit budget is

Ha � �M

��X
j��

pj log� pj � �������

Let nj �M pj be the number of coe�cients such that jQ�f
�
B
k��j � j �

which means that jf rB
k�j � 
�j��
�� � �j��
�� �� Since jf
r
B
k�j � C k�s

nj � C��s ���s �j � �
�����s � C��s ���s �j � �
�����s � �������

Together with ������� we get

pj �
nj
M

� �j � �
�����s � �j � �
�����s

so ������� proves that Ha �M �

The value of s is not known a priori� but one may choose a variable
length code optimized for s � �
� by setting

lj � log�

�
�j � �
���� � �j � �
����

�
�

We can verify that for all s � �
�� the resulting bit budget satis�es

Ra � �M
��X
j��

pj lj �M � Ha �

As a result R� � Rs �Ra �M � Together with ������� this proves that

R � R� �R� �M

�
� � log�

N�

M

�
� H � �������
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with H � �N�
PK

k�� pk log� pk�

One can also verify that R��R� � �M so that R � N� implies that
M � N�
�� which was used to prove that d�R� f� � C�M���s� Inverting
equation ������� gives

M � R

�
� � log�

N�

R

���
�

and d�R� f� � C�M���s implies ��������

The equivalence sign � means that lower and upper bounds of d�R� f�
and dH�R� f� are obtained by multiplying the right expression of �������
by two constants A�B � � that are independent of C� R and N � It thus
speci�es the decay of d�R� f� and dH�R� f� as R increases� Theorem
���� proves that at low bit rates� the distortion is proportional to R���s�
as opposed to ���R�N

�

as in the high bit rate distortion formula of
Proposition ����� At low bit rates� to minimize the distortion one must
�nd a basis B where the sorted coe�cients of f have a fast decay that
maximizes the value of s� The notion of minimax distortion rate and
results obtained in optimized bases are studied in Section �������

The theorem supposes that the transform code uses a uniform quan�
tizer� When the high resolution quantization hypothesis holds� a uni�
form quantizer is optimal� but this is not the case at low bit rates�
The proof shows that coe�cients quantized to zero are mostly respon�
sible for the behavior of the distortion rate� Modifying the size of other
quantization bins has a marginal e�ect� The distortion rate equivalence
������� thus remains valid for a non�uniform optimal quantizer�

Adaptive Basis Choice For signals having complicated structures�
the decay of sorted coe�cients can be signi�cantly improved by choos�
ing the basis adaptively� Let D  fB�g��� be a family of orthonor�
mal bases B�  fg�mg��m�N� � The decay of sorted coe�cients can be
controlled indirectly by minimizing the number M� of signi�cant coef�
�cients �not quantized to zero�� This number can be written as a cost
function�

M� 
N���X
m��

��hf� g�mi� �������
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with

��x� 

�
� if Q�x�  �
� if Q�x� � �

� �������

The proof of Theorem ���� shows that the bit budget R� of the trans�
form coding in the basis B� is almost proportional to M��

Dictionaries of wavelet packets and local cosine bases include more
than �N

��� di�erent orthonormal bases� Since the cost function �������
is additive� the algorithm of Section ��	�� �nds the best basis that
minimizes M� with O�N� log�N� operations� It is also necessary to
code which basis is selected 
���� ����� because this basis depends on
f � In wavelet packets and local cosine dictionaries� a constant size code
requires more than N�	� bits� This overhead can more than o�set the
potential gain obtained by optimizing the basis choice� If we know the
probability distribution of the bases that are chosen� then a variable
length code reduces the average value of the overhead�

More �exible adaptive decompositions with matching pursuits can
also improve the distortion rate 
��	�� Section ����� discusses match�
ing pursuit algorithms� which decompose signals as a sum of vectors
selected in a dictionary D  fg	g	�� plus a residue�

f 
MX
p��


p g	p � RMf�

The transform code neglects the residue RMf � quantizes the coe�cients

p and records the indices �p 
 '� Coding these indices is equivalent
to storing a signi�cance map de�ned by b
�p�  � for � � p � M and
b
��  � for other � 
 '� Choosing dictionaries that are larger than
orthogonal bases results in a more precise approximation of f using M
dictionary vectors but requires more bits to code the signi�cance map�
which is larger� Optimal dictionary sizes are therefore obtained through
a trade�o� between the approximation improvement and the bit rate
increase of the signi�cance map code� E�cient matching pursuit image
codes have been designed to code the errors of motion compensation
algorithms in video compression 
���� 	�	��
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������ Wavelet Image Coding

Implementation At low bit rates� a uniform quantizer does not min�
imize the distortion rate of a wavelet transform code� One can verify
both numerically and mathematically 
���� that doubling the size of the
zero bin improves the distortion rate for large classes of images� This
reduces the proportion of signi�cant coe�cients and thus improves the
bit budget by a factor that is not o�set by the increase of the quantiza�
tion error� A larger zero bin increases the quantization error too much�
degrading the overall distortion rate� The quantizer thus becomes

Q�x� 

�
� if jxj � &
sign�x� �bx	&c � �	�� & if jxj � &

� �������

The histogram of wavelet coe�cients often has a slower decay for jxj �
& than for jxj � &� as shown by Figure ����� The high resolution
quantization hypothesis is approximately valid for jxj � & with �	� �
�R � �� which means that a uniform quantizer is nearly optimal�

Figure ���� displays several signi�cance maps of wavelet coe�cients�
There are more signi�cant coe�cients at larger scales �j because wavelet
coe�cients have a tendency to decrease across scales� This is further
explained in Section ������� The compression package of Davis in Last�
Wave �Appendix B��� encodes these signi�cance maps and the values of
non�zero quantized coe�cients with adaptive arithmetic codes� Each
subimage of wavelet coe�cients is scanned in zig�zag order� and all
wavelet subimages are successively visited from large to �ne scales� as
illustrated by Figure ������ An adaptive arithmetic code takes advan�
tage of the fact that higher amplitude wavelet coe�cients tend to be
located at large scales� The resulting code depends on the distribution
of wavelet coe�cients at each scale�

Visual distortions introduced by quantization errors of wavelet co�
e�cients depend on the scale �j� Errors at large scales are more visible
than at �ne scales 
	���� This can be taken into account by quantizing
the wavelet coe�cients with intervals &j  &wj that depend on the
scale �j� For �R � � bit%pixel� wj  ��j is appropriate for the three
�nest scales� As shown in ����	��� choosing such weights is equivalent
to minimizing a weighted mean�square error� For simplicity� in the
following we set wj  ��
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Figure ������ Each binary signi�cance map of wavelet coe�cients is
scanned in zig�zag order� illustrated with a dotted line� All wavelet
subimages are successively visited from coarse to �ne scales in the order
indicated by the arrows�

Bounded Variation Images Section ��	�	 explains that large classes
of images have a bounded total variation because the average length of
their contours is bounded independent of the resolution N � The total
variation norm kfkV is related to the wavelet coe�cients of f by an up�
per bound �������� and a lower bound ��������� If f has discontinuities
along edges� then its sorted wavelet coe�cients jf rB
k�j satisfy

jf rB
k�j � N kfkV k�� �
This decay property is veri�ed by the wavelet coe�cients of the Lena
and Boat images� We derive from Theorem ���� that if �R  R	N� � �
then

d� �R� f� � dH� �R� f� � kfk�V �R��
�
�� log� �R

�
� �������

For general bounded variation images� Section ������ proves that the
decay �R�� cannot be improved by any other signal coder� In that sense�
a wavelet transform coding is optimal for bounded variation images�
The resulting PSNR is

PSNR� �R� f� � �� log�� �
h
log� �R � log�

�
�� log� �R

�
�K

i
� �������

where K is a constant� Figure ������a� shows the PSNR computed
numerically from the wavelet transform code of the Lena and Boat
images� As expected from �������� the PSNR increases almost linearly
as a function of log�� �R� with a slope of �� log�� � � 	 db%bit�
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Figure ������ PSNR as a function of log�� �R�� �a� Lena �solid line� and
boats �dotted line� �b� Goldhill �solid line� and Mandrill �dotted line�

More Irregular Images Mandrill and GoldHill are examples of im�
ages that do not have a bounded variation� This appears in the fact
that their sorted wavelet coe�cients satisfy jf rB
k�j � C k�s for s � ��
The PSNR calculated from the distortion rate formula ������� is

PSNR� �R� f� � ��s� �� �� log�� �
h
log� �R � log����� log� �R��K

i
�

where K is a constant� For GoldHill� s � ���� so the PSNR increases
by ��� db%bit� Mandrill is even more irregular� with s � �		� so at low
bit rates �R � �	� the PSNR increases by only � db%bit� Such images
can be modeled as elements of Besov spaces whose regularity index
s	� � �	� is smaller than �� The distortion rate of transform coding in
general Besov spaces is studied in 
�	���

For natural images� the competition organized for the JPEG�����
image compression standard shows that wavelet image transform codes
give the best distortion rate and best visual quality among all existing
real time image coders� The adaptive arithmetic coder is quite e�cient
but not optimal� Section ������ shows that embedded wavelet transform
codes produce a slightly larger PSNR� by better taking into account the
distribution of large versus small wavelet coe�cients across scales�

For specialized images such as �ngerprints 
��	� or seismic images�
other bases can outperform wavelets� This is particularly true when
the image includes high frequency oscillatory textures� which create
many signi�cant �ne scale wavelet coe�cients� These images are bet�
ter compressed in local cosine or wavelet packet bases� whose vectors



��� CHAPTER ��� TRANSFORM CODING

approximate high frequency oscillations more e�ciently� Block cosine
bases used by the JPEG standard may also outperform wavelets for
such images�

Choice of Wavelet To optimize the transform code one must choose
a wavelet basis that produces as many zero quantized coe�cients as pos�
sible� A two�dimensional separable wavelet basis is constructed from a
one�dimensional wavelet basis generated by a mother wavelet �� Three
criteria may in�uence the choice of �� number of vanishing moments�
support size and regularity�

High amplitude coe�cients occur when the supports of the wavelets
overlap a brutal transition like an edge� The number of high amplitude
wavelet coe�cients created by an edge is proportional to the width of
the wavelet support� which should thus be as small as possible� Over
smooth regions� wavelet coe�cients are small at �ne scales if the wavelet
has enough vanishing moments to take advantage of the image regular�
ity� However� Proposition ��� shows that the support size of � increases
proportionally to the number of vanishing moments� The choice of an
optimal wavelet is therefore a trade�o� between the number of vanish�
ing moments and support size� If the image is discontinuous then the
wavelet choice does not modify the asymptotic behavior of the distor�
tion rate ������� but it in�uences the multiplicative constant�

Wavelet regularity is important in reducing the visibility of artifacts�
A quantization error adds to the image a wavelet multiplied by the
amplitude of the quantized error� If the wavelet is irregular� the artifact
is more visible because it looks like an edge or a texture element 
����
This is the case for Haar wavelets� Continuously di�erentiable wavelets
produce errors that are less visible� but more regularity often does not
improve visual quality�

To avoid creating large amplitude coe�cients at the image border�
it is best to use the folding technique of Section ������ which is much
more e�cient than the periodic extension of Section ������ However�
it requires using wavelets that are symmetric or antisymmetric� Be�
sides Haar� there is no symmetric or antisymmetric wavelet of compact
support which generates an orthonormal basis� Biorthogonal wavelet
bases that are nearly orthogonal can be constructed with symmetric or
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antisymmetric wavelets� They are therefore more often used for image
compression�

Overall� many numerical studies have shown that the ��� biorthogo�
nal wavelets of Figure ���� give the best distortion rate performance for
wavelet image transform codes� They provide an appropriate trade�o�
between the vanishing moments� support and regularity requirements�
This biorthogonal wavelet basis is nearly orthogonal and thus intro�
duces no numerical instability� The compression examples of Figure
���� are calculated in this basis�

Geometric Regularity For the set of all images having a total vari�
ation bounded by a constant C� Section ������ proves that a wavelet
transform coding has a distortion rate that is close to the minimax
lower bound� The total variation of an image is equal to the average
length of its level sets� which may be highly irregular curves� If we only
consider images having level sets that are piecewise regular curves then
one can improve the distortion rate of a wavelet transform coding� by
taking into account the geometric regularity� This is case for the Lena
and Boats images�

The ine�ciency of a wavelet transform code for Lena and Boat
appears in the signi�cance maps of Figure ����� They are coded with a
zigzag scanning that does not take advantage of the geometric regularity
of edges where signi�cant coe�cients are located� The use of three
oriented wavelets translated on dyadic grids also partially destroys the
geometry�

Using edges for image coding was originally proposed by Carlsson

����� Figure ����� shows the longer chains of wavelet maxima at the
�nest scales� calculated with the algorithm of Section ��	��� A compact
code has been designed 
���� ���� to use the geometric regularity of
these maxima chains and the slow variation of wavelet coe�cients along
these chains� Other edge coding strategies have also been implemented

���� ��	�� However� these geometry�oriented codes are mathematically
not well understood� and whether they can signi�cantly improve the
distortion rate for interesting classes of images has yet to be determined�
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Figure ������ Edge chains calculated from wavelet transform modulus
maxima at the �nest scale� The longer chains are shown�

������ Block Cosine Image Coding

The JPEG image compression standard 
	��� is a transform coding in
a block cosine�I basis� Theorem ��� proves that the following cosine�I
family is an orthogonal basis of an image block of L by L pixels��
gk�j
n�m�  �k�j

�

L
cos

�
k�

L

�
n �

�

�

��
cos

�
j�

L

�
m �

�

�

���
��k�j�L

�����	�

with

�p 

� �p
�

if p  �

� otherwise
� �������

In the JPEG standard� images of N� pixels are divided in N�	�� blocks
of � by � pixels� Each image block is expanded in this separable cosine
basis with a fast separable DCT�I transform�

JPEG quantizes the block cosine coe�cients uniformly� In each
block of �� pixels� a signi�cance map gives the position of zero versus
non�zero quantized coe�cients� Lower frequency coe�cients are located
in the upper right of each block� whereas high frequency coe�cients are
in the lower right� as illustrated in Figure ����	� Many image blocks
have signi�cant coe�cients only at low frequencies and thus in the
upper left of each block� To take advantage of this prior knowledge�
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j=7

DC
k=7k=j=0

Figure ����	� A block of �� cosine coe�cients has the zero frequency
�DC� coe�cient at the upper left� The run�length makes a zig�zag scan
from low to high frequencies�

JPEG codes the signi�cance map with a run�length code� Each block of
�� coe�cients is scanned in zig�zag order as indicated in Figure ����	�
In this scanning order� JPEG registers the size of the successive runs of
coe�cients quantized to zero� which are e�ciently coded together with
the values of the following non�zero quantized coe�cients� Insigni�cant
high frequency coe�cients often produce a long sequence of zeros at the
end of the block� which is coded with an End Of Block �EOB� symbol�

In each block i� there is one cosine vector gi���
n�m� of frequency zero�
which is equal to �	� over the block and � outside� The inner product
hf� gi���i is proportional to the average of the image over the block� Let
DCi  Q�hf� gi���i� be the quantized zero�frequency coe�cient� Since
the blocks are small� the averages are often close for adjacent blocks�
and JPEG codes the di�erences DCi �DCi���

Weighted Quantization Our visual sensitivity depends on the fre�
quency of the image content� We are typically less sensitive to high
frequency oscillatory patterns than to low frequency variations� To
minimize the visual degradation of the coded images� JPEG performs
a quantization with intervals that are proportional to weights speci�
�ed in a table� whose values are not imposed by the standard� This is
equivalent to optimizing a weighted mean�square error ����	��� Table
���� is an example of an � by � weight matrix that is used in JPEG

	���� The weights at the lowest frequencies� corresponding to the up�
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�� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� �� �� ��

�� �� �� �� �� ��� ��� ��

�� �� �� �� �� ��� ��� ��

�� �� �� �� ��� ��� ��� ���

�� �� �� �� ��� ��� ��� ��

Table ����� Matrix of weights wk�j used to quantize the block cosine
coe�cient corresponding to each cosine vector gk�j 
���� The order is
the same as in Figure ����	�

per left of Table ����� are roughly �� times smaller than at the highest
frequencies� corresponding to the bottom right�

Distortion Rate At �������� bit%pixel� the quality of JPEG images
is moderate� At ��� bit%pixel� Figure ����� shows that there are block�
ing e�ects due to the discontinuities of the square windows� At ������
bit%pixel� images coded with the JPEG standard are of excellent qual�
ity� Above � bit%pixel� the visual image quality is perfect� The JPEG
standard is often used for �R 
 
���� ���

At low bit rates� the artifacts at the block borders are reduced
by replacing the block cosine basis by a local cosine basis 
��� ����
designed in Section ������ If the image is smooth over a block� a local
cosine basis creates lower amplitude high frequency coe�cients� which
slightly improves the coder performance� The quantization errors for
smoothly overlapping windows also produce more regular grey level
image �uctuations at the block borders� However� the improvement
has not been signi�cant enough to motivate replacing the block cosine
basis by a local cosine basis in the JPEG standard�

Figure ����� compares the PSNR of JPEG and of the wavelet trans�
form code for two images� The wavelet transform code gives an im�
provement of approximately ��	db� For �R � ��� the performance
of JPEG deteriorates because it needs to keep at least N�	�� zero�
frequency coe�cients in order to recover an estimate of image intensity
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everywhere�

Implementation of JPEG The baseline JPEG standard 
	��� uses
an intermediate representation that combines run�length and amplitude
values� In each block� the �	 �non�zero frequency� quantized coe�cients
indicated in Figure ����	 are integers that are scanned in zig�zag order�
A JPEG code is a succession of symbols S�  �L�B� of eight bits
followed by symbols S�� The L variable is the length of a consecutive
run of zeros� coded on four bits� Its value is thus limited to the interval

�� ���� Actual zero�runs can have a length greater than ��� The symbol
S�  ���� �� is interpreted as a run�length of size �� followed by another
run�length� When the run of zeros includes the last �	rd coe�cient of
the block� a special End Of Block symbol S�  ��� �� is used� which
terminates the coding of the block� For high compression rates� the
last run of zeros may be very long� The EOB symbol stops the coding
at the beginning of this last run of zeros�

The B variable of S� is coded on four bits and gives the number of
bits used to code the value of the next non�zero coe�cient� Since the
image grey level values are in the interval 
�� ���� one can verify that
the amplitude of the block cosine coe�cients remains in 
����� ���� ���
For any integers in this interval� Table ���� gives the number of bits
used by the code� For example� �� is coded on B  � bits� There are ��

di�erent numbers that are coded with seven bits� If B is non�zero� after
the symbol S� the symbol S� of length B speci�es the amplitude of the
following non�zero coe�cient� This variable length code is a simpli�ed
entropy code� High amplitude coe�cients appear less often and are
thus coded with more bits�

For DC coe�cients �zero frequency�� the di�erential values DCi �
DCi�� remain in the interval 
����� ��� � ��� They are also coded with
a succession of two symbols� In this case� S� is reduced to the variable
B which gives the number of bits of the next symbol S� which codes
DCi �DCi���

For both the DC and the other coe�cients� the S� symbols are
encoded with a Hu�man entropy code� JPEG does not impose the
Hu�man tables� which may vary depending on the type of image� An
arithmetic entropy code can also be used� For coe�cients that are
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��� bit%pixel ��� bit%pixel

Figure ������ Image compression with JPEG�
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Figure ������ Comparison of the PSNR obtained with JPEG �dotted
line� and the wavelet transform code �solid line� for Lena and GoldHill�

B Range of values

� ��� �
� ������ �� �
� �� � � � ��� � � � � �
� ��� � � � ��� � � � � ��
� ��� � � � ���� �� � � � ��
� ��� � � � ���� �� � � � ��
� ���� � � � ���� �� � � � ���
� ���� � � � ����� ��� � � � ���
� ���� � � � ����� ��� � � � ���
�� ����� � � � ����� ��� � � � ����

Table ����� The value of coe�cients coded on B bits belongs to a set
of �B values that is indicated in the second column�

not zero frequency� the L and the B variables are lumped together
because their values are often correlated� and the entropy code of S�

takes advantage of this correlation�

������ Embedded Transform Coding

For rapid transmission or fast image browsing from a data base� a coarse
signal approximation should be quickly provided� and progressively en�
hanced as more bits are transmitted� Embedded coders o�er this �exi�
bility by grouping the bits in order of signi�cance� The decomposition
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coe�cients are sorted and the �rst bits of the largest coe�cients are
sent �rst� An image approximation can be reconstructed at any time�
from the bits already transmitted�

Embedded coders can take advantage of any prior information about
the location of large versus small coe�cients� Such prior information
is available for natural images decomposed on wavelet bases� As a
result� an implementation with zero�trees designed by Shapiro 
	���
yields better compression rates than classical wavelet transform coders�

Embedding The decomposition coe�cients fB
m�  hf� gmi are par�
tially ordered by grouping them in index sets Sk de�ned for any k 
 Z

by

Sk  fm � �k � jfB
m�j � �k��g�
The set Sk is coded with a binary signi�cance map bk
m��

bk
m� 

�
� if m 	
 Sk
� if m 
 Sk � �������

An embedded algorithm quantizes fB
m� uniformly with a quan�
tization step �bin size� &  �n that is progressively reduced� Let
m 
 Sk with k � n� The amplitude jQ�fB
m��j of the quantized num�
ber is represented in base � by a binary string with non�zero digits
between the bit k and the bit n� The bit k is necessarily � because
�k � jQ�fB
m��j � �k��� Hence� k � n bits are su�cient to specify this
amplitude� to which is added one bit for the sign�

The embedded coding is initiated with the largest quantization step
that produces at least one non�zero quantized coe�cient� In the loop�
to re�ne the quantization step from �n�� to �n� the algorithm records
the signi�cance map bn
m� and the sign of fB
m� for m 
 Sn� This can
be done by directly recording the sign of signi�cant coe�cients with a
variable incorporated in the signi�cance map bn
m�� Afterwards� the
code stores the bit n of all amplitudes jQ�fB
m��j for m 
 Sk with
k � n� If necessary� the coding precision is improved by decreasing n
and continuing the encoding� The di�erent steps of the algorithm can
be summarized as follows 
	����
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�� Initialization Store the index n of the �rst non�empty set Sn
n 

j
sup
m

log� jfB
m�j
k
� �������

�� Signi�cance map Store the signi�cance map bn
m� and the sign
of fB
m� for m 
 Sn�

	� Quantization re�nement Store the nth bit of all coe�cients jfB
m�j �
�n��� These are coe�cients that belong to some set Sk for k � n�
whose coordinates were already stored� Their nth bit is stored
in the order in which their position was recorded in the previous
passes�

�� Precision re�nement Decrease n by � and go to step ��

Distortion Rate This algorithm may be stopped at any time in the
loop� providing a code for any speci�ed number of bits� The distortion
rate is analyzed when the algorithm is stopped at the step �� All
coe�cients above &  �n are uniformly quantized with a bin size & 
�n� The zero quantization bin 
�&�&� is therefore twice as big as the
other quantization bins� which was shown to be e�cient for wavelet
image coders�

Once the algorithm stops� we denote by M the number of signi�cant
coe�cients above &  �n� The total number of bits of the embedded
code is

R  Re
� � Re

��

where Re
� is the number of bits needed to code all signi�cance maps

bk
m� for k � n� and Re
� the number of bits used to code the amplitude

of the quantized signi�cant coe�cients Q�fB
m��� knowing that m 
 Sk
for k � n�

To appreciate the e�ciency of this embedding strategy� let us com�
pare the bit budget Re

� �Re
� to the number of bits R� �R� used by the

direct transform code of Section ������� The value R� is the number of
bits that code the overall signi�cance map

b
m� 

�
� if jfB
m�j � &
� if jfB
m�j � &

�������

and R� is the number of bits that code the quantized signi�cant coef�
�cients�
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An embedded strategy codes Q�fB
m�� knowing that m 
 Sk and
hence that �k � jQ�fB
m��j � �k��� whereas a direct transform code
knows only that jQ�fB
m��j � &  �n� Fewer bits are thus needed for
embedded codes�

Re
� � R�� �������

However� this improvement may be o�set by the supplement of bits
needed to code the signi�cance maps fbk
m�gk�n of the sets fSkgk�n�
A direct transform code records a single signi�cance map b
m�� which
speci�es �k�nSk� It provides less information and is therefore coded
with fewer bits�

Re
� � R�� �������

An embedded code brings an improvement over a direct transform code
if

Re
� � Re

� � R� � R��

( This can happen if we have some prior information about the posi�
tion of large coe�cients jfB
m�j versus smaller ones� This allows us to
reduce the number of bits needed to encode the partial sorting of all
coe�cients provided by the signi�cance maps fbk
m�gk�n� The use of
such prior information produces an overhead of Re

� relative to R� that
is smaller than the gain of Re

� relative to R�� This is the case both for
embedded transform codes implemented in wavelet bases and for the
block cosine I basis used by JPEG 
	����

Wavelet Embedded Code Wavelet coe�cients have a large ampli�
tude where the signal has sharp transitions� If an image f is uniformly
Lipschitz 
 in the neighborhood of �x�� y��� then ������ proves that for
wavelets �l

j�p�q located in this neighborhood there exists A � � such
that

jhf� �l
j�p�qij � A �j������

The worst singularities are often discontinuities� so 
 � �� This means
that in the neighborhood of singularities without oscillations� the am�
plitude of wavelet coe�cients decreases when the scale �j decreases�
This property is not valid for oscillatory patterns� High frequency os�
cillations create coe�cients at large scales �j that are typically smaller
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than at the �ne scale which matches the period of oscillation� We thus
consider images where such oscillatory patterns are relatively rare�

Wavelet zero�trees introduced by Lewis and Knowles 
���� take ad�
vantage of the decay of wavelet coe�cients by relating these coe�cients
across scales with quad�trees� Shapiro 
	��� used this zero�tree struc�
ture to code the embedded signi�cance maps of wavelet coe�cients�
The numerical examples are computed with the algorithm of of Said
and Pearlman 
	���� which improves Shapiro s zero�tree code with a set
partitioning technique�

Good visual quality images are obtained in Figure ����� with ���
bit%pixel� which considerably improves the JPEG compression results
shown in Figure ������ At ���� bit%pixel the wavelet embedded code
recovers a decent approximation� which is not possible with JPEG�
Figure ����� compares the PSNR of the wavelet embedded code with
the PSNR of the direct wavelet transform code described in Section
������� For any quantization step both transform codes yield the same
distortion but the embedded code reduces the bit budget�

Re
� � Re

� � R� � R��

As a consequence the PSNR curve of the embedded code is a transla�
tion to the left of the PSNR of the direct transform code� For a set SV
of bounded variation images� one can show that the zero�tree algorithm
can at most reduce the bit budget by a constant� However� for partic�
ular classes of images where the signi�cant coe�cients are well aligned
across scales� the log��N

�	R� term that appears in the distortion rate
������� can disappear 
�	���

Zero�Tree Implementation The signi�cance maps of a wavelet em�
bedded code are stored in zero�trees with an algorithm introduced by
Shapiro 
	���� These zero�trees also incorporate the sign of non�zero co�
e�cients� which is therefore not coded with the amplitude� The signed
signi�cance map of a set Sn has the same structure as an array of
wavelet coe�cients de�ned for l  �� �� 	 by

blj
p� q� 

���
� if �n � hf� �l

j�p�qi � �n��

�� if ��n�� � hf� �l
j�p�qi � ��n

� otherwise

� �������
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��� bit%pixel ���� bit%pixel

Figure ������ Embedded wavelet transform coding�
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Lena Goldhill
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Figure ������ Comparison of the PSNR obtained with an embedded
wavelet transform code �dotted line� and a direct wavelet transform
code �solid line�

At the largest scale �J � there is also a signi�cance map b�J 
p� q� computed
from the scaling coe�cients�

Wavelet zero�trees encode these signi�cance maps with quad�trees�
For each orientation l  �� �� 	� we create quad�trees by recursively
relating each coe�cient blj
p� q� to the following four children at the
next �ner scale �j���

blj��
�p� �q� � blj��
�p� �� �q� � blj��
�p� �q� �� � blj��
�p� �� �q� ���

The values of a wavelet coe�cient and its four children depend on
the variations of the image grey level in the same spatial area� At
the largest scale �J � the children of b�J 
p� q� are de�ned to be the three
wavelet coe�cients at the same scale and location� b�J 
p� q�� b�J 
p� q� and
b�J 
p� q�� The construction of these trees is illustrated in Figure ������

If blj
p� q�  �� we say that this coe�cient belongs to a zero�tree if all
its descendants in the quad�tree are also zero� This happens if its de�
scendants have wavelet coe�cients of smaller amplitude� which is likely�
The position of all the zero values inside a zero�tree are speci�ed by the
position �p�q�� orientation l and scale �j of the zero�tree root� which is
labeled by R� This encoding is particularly e�ective if R is located at
a large scale because the zero�tree includes more zero coe�cients� If
blj
p� q�  � but one of its descendants in the quad�tree is non�zero� then
this coe�cient is called an isolated zero� denoted by I� The coe�cients
blj
p� q�  � or blj
p� q�  �� are represented respectively by the symbols
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Figure ������ At the coarsest scale �J � the children of each pixel in b�J
are the three pixels of the same position in b�J � b�J and b�J � At all other
scales� in each direction l� quad�trees are constructed by relating a pixel
of blj to its four children in blj���

P �positive� and N �negative�� The wavelet table of symbols �R�I�P�N�
corresponding to the signi�cance map ������� is scanned in the zig�zag
order illustrated in Figure ������ The resulting sequence of symbols is
then coded with an adaptive arithmetic code 
	����

Let us mention that zero�tree wavelet encoding are closely related
to fractal compression algorithms implemented with Iterated Function
Systems 
��� Davis 
���� shows that these wavelet embedded codes bring
signi�cant improvements over existing fractal codes 
����

Example ��� Figure ����� gives an example of wavelet coe�cients
for an image of �� pixels 
	���� The amplitude of the largest coe�cient
is �	 so S� is the �rst non�empty set Sn� The coe�cients in S� have
an amplitude included in 
	�� ���� The array of symbols is on the right
of Figure ������ The dots correspond to coe�cients inside a zero�tree�
A zig�zag scanning in the order indicated in Figure ����� yields the
sequence� P�N�I�R�P�R�R�R�R�I�R�R�I�P�I�I�

�
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N

I

I

I P

I I

R

RP

RR

R

R

R

P63 49 10 7 13 -12 7

23

15

-7

14 -13

3 -12

-14

3

5

4

-7

-2

3

3

4 6

8-9

14

-1

2

9

-5 9 -1 47 4 6 -2 2

3 0 -3 2 -2 0 43

2 -3 6 -4 3 6 3 6

11 5 6 3 -40 45

-31

-34

Figure ������ The left table is an array of �� wavelet coe�cients� The
set S� corresponding to coe�cients in 
	�� ��� has a signi�cance map
whose zero�tree symbols are shown on the right�

������ Minimax Distortion Rate �

A compression algorithm is not optimized for a single signal f but for
a whole class� The coder must be adapted to the prior information
available about these signals� We rarely have a probabilistic model of
complex signals such as images� but we can de�ne a prior set � which
includes our signal class� To control the coder distortion for all signals
in � we want to minimize the maximum distortion over ��

d�R���  sup
f�


d�R� f� �

The de�nition of a minimax distortion rate is closely related to Kol�
mogorov ��entropy 
����� As in the estimation problems of Chapter
��� it is necessary to approach this minimax distortion rate with a sig�
nal coder that is fast and simple to implement� If the basis provides
a sparse representation of signals in � then a transform code can be
nearly optimal among all possible coders�

Diagonal Coding A transform coding in an orthonormal basis B 
fgmg��m�N� is implemented by a non�linear diagonal operator D that
performs the scalar quantization of each coe�cient�

�f  Df 
N���X
m��

Q�fB
m�� gm � �������
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If we suppose that Q is a uniform quantizer� the only degree of free�
dom is the design of the variable length code that stores the quantized
coe�cients Q�fB
m���

Theorem ���� proves that d�R� f� depends essentially on the decay
rate of its sorted coe�cients jf rB
k�j in the basis B� For any s � �	�
and any C we thus consider the two sets of signals

�C�s 
n
f � jf rB
k�j � C k�s

o
� �������

and

��C�s 
n
f �

�N���X
m��

jfB
m�j��s
�s
� C

o
� �����	�

The following proposition 
���� computes the minimum values d�R��C�s�
and d�R� ��C�s� that can be achieved with a transform code�

Proposition ���
 If s � �	� and R � N� then a transform code in B
with a uniform quantizer and an optimized variable length code satis�es

d�R� ��C�s� � d�R��C�s� � C�R���s
�

� � log�
N�

R

��s��
� �������

Proof �� Let g � �C�s satisfy jg
r
B
k�j � C jkj�s� Theorem ���� de�nes a

variable length code such that

d�R� g� � C�R���s
�
� � log�

N�

R

��s��
�

By following the derivations of the proof of Theorem ����� we verify
that there exists � such that any f � �C�s satis�es d�R� f� � �d�R� g�
so d�R��C�s� � � d�R� g�� Since g � �C�s we also get d�R��C�s� �
d�R� g�� so d�R��C�s� � d�R� g�� This decay is optimal because d�R� g� �
dH�R� g�� which means that the distortion rate decay cannot be improved
with a di�erent variable length code�

Since ��C�s � �C�s� we know that d�R� ��C�s� � d�R��C�s�� To get a
lower bound of d�R� ��C�s�� for any quantization step  � � we consider
a signal g � ��C�s whose sorted decomposition coe�cients in B satisfy

j�grB
k�j �
�
� if k � M
 
� if k �M

�������
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with M � bC��s ���s ���sc� Clearly d�R� g� � M  �
� � C�M���s�
Moreover ������� shows that the number of bits to code signi�cance
maps of M signi�cant coe�cients is R� � M

�
log��N

�
M� � �
�
� As in

the proof of Theorem ���� we can derive that

d�R� g� � C�R���s
�
� � log�

N�

R

��s��
�

Since d�R� ��C�s� � d�R� g� we get d�R� ��C�s� � d�R��C�s��

Minimax Distortion Rate Transform codings are just one class of
coding algorithms among other possible ones� In its most general form�
a coding algorithm is speci�ed by an operator D that approximates any
f 
 � by �f  Df which belongs to the approximation net

�D  f �f � �f 
 � � �f  Dfg �
Let Card��D� be the cardinal of the net �D� i�e�� the number of ele�
ments in this set� The number of bits required to specify each coded
signal �f is

R  dlog� Card��D�e �
The maximum distortion over � is

dD���  sup
f�


kf �Dfk �

Let O� be the set of all coders D such that dD��� � �� An optimal
coder D 
 O� has an approximation net �D of minimum size� The
corresponding Kolmogorov ��entropy 
���� is de�ned by

H����  log�

�
min
D�O�

Card��D�
�
� �������

The best coder D 
 O� has a bit budget R  dH����e�
For a �xed bit budget R� to minimize the distortion we consider

the set of all coders D 
 OR whose approximation net has a size
Card��D� � �R� The minimax distortion rate is de�ned by

dmin�R���  inf
D�OR

dD��� � �������

The main di�culty is to �nd a coder that is simple to implement and
whose distortion rate is close to the minimax lower bound�
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Decay Rate Let �N be a set of images with N� pixels� We consider
a family of such sets by modifying N and hence the image resolution�
��  f�NgN�N� The decay exponent of a distortion rate d�R��N� is
de�ned independently of the resolution by

�����  sup f� � �� � � �N � � � d�R��N� � �N�R��g �

The factor N� comes from the fact that an image having N� pixels has
a norm squared proportional to N�� For the minimax distortion rate
d�R��N�  dmin�R��N�� the decay exponent �����  �max���� is
maximum� When R � N�� a transform code reaches a high resolution
quantization regime in which the distortion rate decays exponentially�
The minimax distortion rate dmin�R��N� thus also has at least an ex�
ponential decay for R � N�� The condition d�R��N� � �N�R�� is
thus a constraint only for R � N�� as N increases to ��

Let BN be an orthonormal basis of N� vectors� The decay of the
sorted coe�cients jf rBN 
k�j for f 
 �N is characterized independently
of N by

s����  sup fs � �C � � �N � � �f 
 �N � jf rBN 
k�j � C N k�sg �

The following theorem proves that a transform coding is nearly optimal
over orthosymmetric sets� in the sense that the distortion rate has an
optimal decay exponent� We recall from Section ���	�� that a set �N

is orthosymmetric in a basis BN  fgmg��gm�N� if for all f 
 �N and
all ja
m�j � � then

N���X
m��

a
m� fBN 
m� gm 
 �N �

Theorem ���� �Donoho� Let ��  f�NgN�N be such that for all
N � � the set �N is bounded and orthosymmetric in a basis BN � If
s���� � �	� then

�max����  �s����� � � �������

The decay exponent ����� is reached by transform codings in BN with
uniform quantizers and adaptive variable length codes�
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Proof �� Among images of N� pixels we de�ne �N�C�s � ff � jf rBN 
k�j �
C N k�sg� The de�nition of s���� shows that for any s � s���� there
exists C � � with �N � �N�C�s for all N � �� Proposition ���� proves
that the distortion d�R��N�C�s� of a transform coding in B satis�es

supf� � �� � � �N � � � d�R��C�N�s� � �N�R��g � �s� � �

Since dmin�R��N � � d�R��N � � d�R��N�C�s�� increasing s up to s���
proves that ����� � �s����� ��

The proof that ����� � �s���� � � requires computing a lower
bound of the Kolmogorov ��entropy over orthosymmetric sets� This dif�
�cult part of the proof is given in 
�����

Bounded Variation Images Let kfkV be the total variation of an
image of N� pixels and kfk�  supn jf 
n�j be its maximum amplitude�
We consider a set of bounded images that have a bounded variation�

�N�V  ff � kfkV � C and kfk� � Cg
and ���V  f�N�V gN�N� The following proposition computes the dis�
tortion rate of a wavelet transform coding and proves that its decay is
optimal�

Proposition ���� In a wavelet basis� the distortion rate of a trans�
form coding with a uniform quantization satis�es for R � N�

d�R��N�V � � N�C�R��
�

� � log�
N�

R

�
� �������

The resulting decay exponent is equal to the minimax decay exponent

�max����V �  � �

Proof �� We proved in �������� and �������� that

��N�C��s � �N�V � ��N�C��s � �������

with s � �� C� � C B�� and C� � C A��� The two constants A�B � �
are independent of N and C� The minimax distortion rate of �V thus
satis�es

dmin� ��N�C��s� R� � dmin��N�V � R� � dmin��N�C��s� R� �



��� CHAPTER ��� TRANSFORM CODING

Let ���� � f��N�C��sgN�N and ���� � f�N�C��sgN�N � Since ��N�C��s and
�N�C��s are orthosymmetric� Theorem ���� proves that

�max������ � �max������ � s � �

so �max����V � � ��

The set embedding ������� also implies that a wavelet transform
coding satis�es d� ��N�C��s� R� � d��N�V � R� � d��N�C��s� R�� Theorem
���� shows that d� ��N�C��s� R� � d��N�C��s� R� and ������� is derived from
������� for s � � and C� � C� � C�

This theorem proves that for all bounded variation images� one cannot
improve the decay exponent R�� obtained in a wavelet basis� This is
of course not true for particular subsets of bounded variation images�
Section ������ explains that for images such as Lena and Boat� one
can improve the distortion rate further by taking into account their
geometric regularity�

���� Video Signals 

Video compression is currently the most challenging coding problem�
with considerable commercial applications� A video signal is a time
sequence of images� with 	� images per second in the NTSC television
standard� Time could be viewed as just another dimension� which
would suggest decomposing video signals in an orthonormal basis for
three dimensional signals� However� such a representation is ine�cient
because it ignores the fact that most image modi�cations in time are
due to the relative motion of the scene with respect to the camera� This
induces a displacement of grey level points in the image� which is called
optical �ow�

Section ������ describes MPEG video compression algorithms that
use motion compensation to predict an image from the previous one�
In addition to image compression� measuring optical �ow has major
applications in computer vision� for example in tracking objects and
recovering depth information� Section ������ explains how to compute
optical �ow with multiscale approaches�
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������ Optical Flow

The movement of a point in a three dimensional scene is observed
through its projection in the image plane� If the image intensity is
not uniform in the neighborhood of this point� the motion in the image
plane appears as a displacement of the grey levels� which is the opti�
cal �ow� Let f�x� t� be the image intensity as a function of space and
time� Measuring optical �ow is an ill�posed problem� At one extreme�
suppose that f�x� t� is constant� Are the image points moving or not)
They could be� but you cannot tell� because all grey levels have the
same value� At the other extreme� the motion of a single white point
in a black background is uniquely de�ned� The image grey level f�x� t�
must vary su�ciently along x in order to compute the grey level motion
in time�

Most often� optical �ow is measured using matching techniques�
which are based on intuitive ideas that have relatively simple hardware
implementations� Yet� comparative studies 
��� show that the most
accurate results are obtained with di�erential computations� Both ap�
proaches process images at several scales�

Block Matching The displacement vector �p�x� of the grey level
fp�x� from time t  p& to �p � ��& satis�es fp�x�  fp���x � �p�x���
The corresponding velocity vector is vp�x�  &���p�x�� If the velocity
varies slowly in the neighborhood of u� then for s su�ciently small�

fp�x� � fp���x� �p�u�� if jx� uj � s�

Under this assumption� the matching strategy estimates the displace�
ment vector �p�u� by minimizing the norm of the di�erence fp�x� �
fp���x� �� over a square block of size s�

��u� �� 

Z Z
jx�uj�s

���fp�x�� x��� fp���x� � ��� x� � ���
���� dx� dx� �

�������
The optical �ow displacement �p�u� is approximated by the translation
�u� which minimizes the error� ��u� �u�  min
 ��u� ���

A major di�culty is to optimize the choice of s� If s is too small�
then fp�x� may not have enough details in the neighborhood of u to
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aJ aJ�� aJ�� aJ��

Figure ������ The pixels of an image approximation aj correspond to
averages of the image intensity over blocks of width proportional to
N �j�

match a unique neighborhood in fp���x�� In this case� ��u� �� has several
local minima of similar amplitudes for di�erent � � Choosing the global
minimum can lead to a wrong estimate of �p�u� in the presence of
noise� If s is too large� then the velocity vp�x� may not remain constant
for jx � uj � s� The neighborhood is not just translated but also
deformed� which increases the di�erences between the two blocks� The
minimization of ��u� �� may thus also yield a wrong estimate of the
displacement�

For a discrete image fp
n�� the norm ������� is replaced by a discrete
norm over a block of s� pixels� A sub�pixel estimation of the displace�
ment �p�u� is obtained by calculating fp��
n� � � with an interpolation
when � is not an integer� Computing the discretized norm ������� over
a block of s� pixels requires s� additions and multiplications� For each
of the N� pixels of fp
n�� a brute force algorithm would compute the
matching error of its neighborhood with the N� blocks corresponding
to all potential displacement vectors � � This requires s�N� additions
and multiplications� which is prohibitive�

Faster matching algorithms are implemented with multiscale strate�
gies that vary the width s of the matching neighborhood 
���� Section
����� explains how to compute multiscale approximations aj of an im�
age f of N� pixels� At each scale N�� � �j � �� the approximation aj
includes ���j pixels� as illustrated by Figure ������ Figure ���	 gives an
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example� Let apj and ap��
j be respectively the approximations of fp and

fp��� A coarse to �ne algorithm matches the approximations apj and

ap��
j at a large scale �j  �J � which is then progressively reduced� A

coarse estimate of the displacement �eld is computed by matching each
pixel of apJ with a pixel of ap��

J by minimizing a distance calculated over
blocks of s� pixels� where s is typically equal to �� This requires s� ���J

operations� A re�ned estimation of the velocity is then calculated at
the next �ner scale �J���

At any scale �j� each pixel apj 
n� is an averaging of fp around �jn�
over a neighborhood of size proportional to N �j� At the same location�
a displacement vector �j����

jn� was previously calculated at the scale
�j��� by �nding the best match in ap��

j�� for the block around apj��
n	���
This displacement vector is used as an initial guess to �nd the block
of ap��

j that best matches the block around apj 
n�� Among the K� dis�
placement vectors � of integers such that j� � ��j����

jn�j � K� the
best match �j��

jn� is calculated by minimizing the di�erence between
the blocks around apj 
n� and ap��

j 
n� � �� The ���j displacement vectors
�j��

jn� for all pixels apj 
n� are thus obtained with O�K� s� ���j� opera�
tions� The width s of the matching neighborhood remains unchanged
across scales� A block of width s in apj corresponds to a block of width
sN� ��j in fp� This multiscale algorithm thus computes matching er�
rors over neighborhoods of large sizes at �rst� and then reduces the size
as the scale is re�ned� The total number of operations at all scales
�J � �j � N�� is O�K� s�N��� as opposed to O�s�N�� with a �xed
scale algorithm�

Optical Flow Equation Motion vectors can be calculated with a to�
tally di�erent approach that relates the motion to the time and space
derivatives of the image� Suppose that x�t�  �x��t�� x��t�� is the coor�
dinate of a grey level point that moves in time� By de�nition the grey
level value f�x�t�� t� remains constant� so

d f�x�t�� t�

dt

�f�x� t�

�x�
x���t� �

�f�x� t�

�x�
x���t� �

�f�x� t�

�t
 �� �������

The velocity vector is v  �v�� v��  �x��� x
�
��� Let �rf  ��f

�x
� �f
�y

� be the

gradient of f � The optical �ow equation derived from ������� relates v
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�rf
�
�
�
�
�
�
�

Figure ������ Seen through a small enough aperture� an edge looks
straight$ its motion can only be measured in the direction of �rf � which
is perpendicular to the edge�

and f at any point x at time t�

�rf � v 
�f

�x�
v� �

�f

�x�
v�  ��f

�t
� �����	�

The optical �ow equation speci�es the projection of v�x� t� over �rf�x� t�
but gives no information about the orthogonal component of v�x� t��
This is commonly known as the aperture problem� Taking a pointwise
derivative is similar to observing an edge through an aperture so small
that the edge looks straight� as illustrated in Figure ������ The velocity
parallel to the gradient can be calculated but the other component
remains unknown� To circumvent this aperture problem one needs to
make assumptions about the regularity in x of the velocity vector v�x� t�

�����

Wavelet Flow Suppose that v�x� t� is a smooth function of x� which
means that it can be approximated by a constant over a su�ciently
small domain� Weber and Malik 
	��� as well as Simoncelli 
	��� have
shown that a precise estimate of v�x� t� can be calculated by projecting
the optical �ow equation over multiscale wavelets� We describe the
fast algorithm of Bernard 
���� which computes the optical �ow in a
complex wavelet frame�

Let us consider a family of K complex mother wavelets f�kg��k�K
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of compact support that are dilated and translated�

�k
u�s�x� 

�

s
�k

�
x� � u�

s
�
x� � u�

s

�
�

Suppose that s is small enough so that v�x� t� � v�u� t� over the support
of �k

u�s� For any � � k � K� computing a spatial inner product of the
optical �ow equation �����	� with �k

u�s and performing an integration
by parts gives�

f�
��k

u�s

�x�

�
v��u� t� �

�
f�
��k

u�s

�x�

�
v��u� t� 

�

�t

�
f� �k

u�s

�
� �s�u� t� �

�������
The error term �s�u� t� is due to the approximation of v�x� t� by v�u� t�

over the wavelet support� The coe�cients hf� ��ku�s
�x�

i and hf� ��ku�s
�x�

i are
the wavelet coe�cients of f at time t� calculated with new wavelets that
are partial derivatives of the original ones� The wavelet �ow equation
������� is a weak form of the original optical �ow equation� which does
not require that f be di�erentiable� If v�x� t� is twice continuously
di�erentiable and f has a singularity at u that is Lipschitz 
 � �� then
Bernard 
��� proves that �s�u� t� becomes negligible when s goes to zero�

Time Aliasing A video sequence is composed of images at intervals
& in time� fp�x�  f�x� p&�� A second order estimate of �

�t
hf� �k

u�si at
t  �p � �	��& is calculated with a �nite di�erence�

�

�t
hf� �k

u�si 
�

&
hfp�� � fp� �

k
u�si� ��a�u� t� � �������

If v�x� t� is twice di�erentiable� we obtain a second order error term

j��a�u� t�j  O
�jvj� &� s��

�
�

This error is small if jvj& � s� which means that the image displace�
ment during the time interval & is small compared to the wavelet sup�
port� Since f�x� t� at t  �p � �	��& is not known� it is approximated
by 
fp�x� � fp���x��	�� Inserting ������� in ������� gives a wavelet �ow
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equation at t  �p � �
�
�&��

fp � fp��

�
�
��k

u�s

�x�

�
v��u� t� �

�
fp � fp��

�
�
��k

u�s

�x�

�
v��u� t� 

�

&
hfp�� � fp� �

k
u�si� �s�u� t� � �a�u� t� ��������

If v�x� t� is twice di�erentiable� then j�a�u� t�j  O�jvj� &� s���� The
two error terms �s and �a are small if jvj � s&�� and v�x� t� is nearly
constant over the support of �k

u�s whose size is proportional to s� The
choice of s is a trade�o� between these con�icting conditions�

The velocity v cannot be calculated if the wavelet coe�cients in
the left of ������� are zero� This happens when the image is constant
over the wavelet support� Complex wavelets are used to avoid having
wavelet coe�cients that vanish at locations where the image is not
locally constant� The sign of real wavelet coe�cients can change in
such domains� which means that real coe�cients vanish regularly�

Optical Flow System If we neglect the error �s � �a then �������
de�nes a system of K complex equations

Wu�s vu�s  Du�s � �������

The K by � matrix Wu�s gives the inner products of �
�
�fp�� � fp� with

partial derivatives of complex wavelets� whereas Du�s is the matrix of
wavelet coe�cients of �fp�� � fp�	&� and vu�s is an estimate of the
velocity vector at u� Let Real�M� be the matrix whose coe�cients
are the real parts of the coe�cients of a complex matrix M � Since
the velocity v is real� we compute the real least square solution of the
overdetermined system �������� which is the solution of

Real�W �
u�sWu�s� vu�s  Real�W �

u�sDu�s� � �������

There are three possible cases�

�� The least square solution yields a larger error kWu�svu�s �Du�sk�
This means that the error terms �s � �a cannot be neglected�
Either the velocity is not approximately constant over the wavelet
support� or its amplitude is too large�
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�� The smallest eigenvalue of Real�W �
u�sWu�s� is comparable to the

variance of the image noise� This happens when there is an aper�
ture problem over the wavelet support� In this neighborhood of
u� the image has local variations along a single direction� or is
uniformly constant�

	� Otherwise the solution vu�s gives a precise estimate of v�u� t� at
t  �p � �	��&�

Multiscale Calculation For fast calculations� we use the frame of
complex wavelets with compact support calculated in Problem ����
from a separable wavelet basis� Figure ����� shows the Fourier trans�
forms of these analytic wavelets� Each of them has an energy concen�
trated in one quadrant of the Fourier plane� There are four complex
mother wavelets �k�x� which generate a frame of the space of real func�
tions in L��R��n

�k
j�n�x�  ��j �k���jx� n�

o
j�Z�n�Z����k��

�

To the four complex wavelets� we add the real scaling function of the
wavelet basis� ��

j�n  ��j�n� which is considered as a wavelet in the fol�
lowing� The Fourier transform of �� is concentrated at low frequencies�
as illustrated by Figure ������

The optical �ow system ������� is calculated with the �ve wavelets
�k
j�n centered at u  �jn� The error �a is small at the scale �j if jvj& �

�j� This constraint is avoided by a multiscale algorithm that computes
an estimate of the �ow at a coarse scale �J � and progressively re�nes
this estimate while performing a motion compensation�

Suppose that an estimate vj���n�� of v�u� t� at u  �j��n	�  �jn is
already computed with a wavelet system at the scale �j��� To reduce
the amplitude of the displacement� a motion compensation is performed
by translating fp���x� by ��j � where � 
 Z� is chosen to minimize
j�j��& vj���n��j� Since the translation is proportional to �j� the indices
of the wavelet coe�cients of fp�� at the scale �j are just translated by
�� � This translation subtracts �j�&�� from the motion vector� At the
scale �j� the estimate vj�n of the motion at u  �jn is decomposed into

vj�n  �j�&�� � vrj�n �
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j������� ���j j ������� ���j j ������� ���j j ������� ���j j ������� ���j

Figure ������ The image at far left shows the Fourier transform modu�
lus j������� ���j of a scaling function in the Fourier plane� Black ampli�
tude values are close to �� The next four �gures show j ��k���� ���j for
four analytic wavelets which generate a frame�

where the residual motion vrj�n  �vr�� v
r
�� is a solution of the motion�

compensated wavelet �ow equation calculated with wavelet coe�cients
translated by �� �

�

�

��
fp�

��k
j�n

�x�

�
�

�
fp���

��k
j�n�


�x�

��
vr��

�

�

��
fp�

��k
j�n

�x�

�
�

�
fp���

��k
j�n�


�x�

��
vr� 

�

&

�
hfp��� �

k
j�n�
i � hfp� �k

j�ni
�
��������

This motion compensation is similar to the multiscale matching idea�
which takes advantage of a coarse scale estimate of the velocity to limit
the matching search to a narrow domain at the next �ner scale� The
system ������� has �ve complex equations� for � � k � �� A real least
square solution vrj�n is calculated as in �������� Even when the velocity
amplitude jvj is large� the motion compensation avoids creating a large
error when calculating the time derivatives of wavelet coe�cients at
�ne scales� because the residual motions vrj�n are small� Reducing the
scale �j gives estimates of the motion that are denser and more precise�

For a discrete image of N� pixels� a fast �lter bank algorithm re�
quires O�N�� operations to compute the wavelet coe�cients of the sys�
tem ������� at all scales N�� � �j � � and locations �jn �Problem
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������� Computing the least�square solutions of the motion compen�
sated systems at all scales also requires O�N�� operations� The overall
complexity of this algorithm is thus O�N�� 
���� A Matlab code is
available at http���wave�cmap�polytechnique�fr�soft�OF��

Figure ����	�b� shows the optical �ow calculation for a Rubik cube
on a turntable� and a street scene where three cars are moving� The
arrows indicate the direction and amplitude of the motion vectors� A
point corresponds to zero velocity� The algorithm does not compute the
optical �ow in areas where the image intensity is locally constant� or at
the border of moving objects� where the motion vectors are discontinu�
ous� If the motion is discontinuous� the assumption of having a nearly
constant velocity over the wavelet support is violated at all scales� Fig�
ure ����	�c� shows that the di�erence between two consecutive images
of a video sequence has a large amplitude in regions where the image
grey level has �ne scale variations� This is particularly visible along
edges� To reduce this error� a motion compensation predicts one image
from a previous one by translating the image pixels with the displace�
ment vectors derived from the motion vectors in Figure ����	�b�� Along
sharp edges� small errors on the motion vectors produce prediction er�
rors� which are visible in Figure ����	�d�� However� these errors are
much smaller than with the simple di�erence shown in Figure ����	�c��
The largest amplitude errors are along occlusion boundaries where the
motion is discontinuous� Warping algorithms can compute motion dis�
continuities reliably� but they require more calculations 
����

������ MPEG Video Compression

In the MPEG video compression standards� motion vectors are coded
to predict an image from a previous one with a motion compensation

���� 	���� MPEG�� is devoted to lower quality video with applications
to CD�ROM and video telecommunication� The bit rate is below ���
Mbits%s� with decent quality for entertainment video at ��� Mbits%s�
It can handle video whose spatial and temporal resolution goes up to
the NTSC television standard� with a degraded quality� MPEG�� is
designed for higher quality video� not lower than the NTSC television
and up to High De�nition Television �HDTV�� It uses the same motion
compensation algorithm as MPEG��� and can handle interlaced video�
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�a�

�b�

�c�

�d�

Figure ����	� �a�� Images of two video sequences� at left� a Rubik
cube on a turntable$ at right� three cars moving in a street� �b�� Each
arrow indicates the direction and amplitude of the local motion vector�
�c�� Di�erence between two consecutive images of the video sequence�
Black� grey and white pixels correspond respectively to negative� zero
and positive values� �d�� Di�erence between an image and a prediction
calculated from a previous image� with a motion compensation using
the optical �ow vectors in �b��
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MPEG�� also o�ers scalability features� to provide a layered video bit
stream that can be decoded and used by video supports having di�erent
spatial and temporal resolution� This is important for video browsing
and for producing video signals used both for HDTV and the NTSC
television formats�

MPEG�� divides a video sequence in Groups Of Pictures �GOP� of
typically �� frames �half a second of video�� The �rst image of a GOP
is called an Intra frame� It is coded with the block cosine JPEG algo�
rithm described in Section �����	� In a GOP there are typically four P
pictures� each coded from the previous one with a prediction algorithm
using a motion compensation� They are divided in blocks of ��� pixels�
For each block� MPEG�� codes a displacement vector that speci�es a
matching block in the previous image� The di�erence between the two
blocks is coded with JPEG� which uses a cosine transform over blocks
of � by � pixels�

MPEG�� does not specify the algorithm that computes the displace�
ment vectors� To minimize the number of bits required by the JPEG
code� we want to minimize the square norm of the di�erence between
blocks� The displacement vector is thus often calculated with a match�
ing algorithm that �nds the displacement vector by minimizing the
square norm of the error� The multiscale algorithm of the previous
section can be implemented with various �avors� The motion compen�
sation error is often concentrated along edges where the image has a
sharp transition� and in particular occlusion contours� Figure ����	�d�
shows two examples of motion compensation errors calculated with a
higher resolution optical �ow� obtained with the wavelet �ow algorithm�

Between P pictures� there are typically two B pictures that are
coded with a bidirectional motion compensation� as illustrated in Figure
������ If the video jumps to a di�erent scene or if occlusions are present�
the precision of a block prediction may be very di�erent if performed
from a frame before or a frame after� For each block of a B picture�
we �nd the blocks that have a minimum distance in the I or P picture
that is just before and in the P picture that is just after� From these
two� the block with the smallest matching error is selected� and the
di�erence with the original block of the B picture is coded with a block
cosine JPEG�
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I B B P B B P

� �� � �� �

Figure ������ The P pictures are coded from the previous ones with a
motion compensation� as indicated by the arrows� The B pictures are
coded from the previous and next I or P pictures� in the order indicated
by the numbers below�

To store or transmit video at a constant bit rate� it is necessary to
bu�er the variable bitstream generated over time by the encoder� A
rate control algorithm adjusts the quantizers of the JPEG compression�
depending on the video content and activity� It must ensure that the
video bu�er does not over�ow while trying to maintain it as full as
possible to maximize the image quality�

Futur trends The MPEG�� and MPEG�� standards use low resolu�
tion motion vectors associated to blocks of ��� pixels� The design of
these standards is limited by the constraints of real�time calculations�
Calculating the motion vectors dominates the overall computational
complexity of video coding� Real time calculation of higher resolution
optical �ow is also possible with the wavelet �ow algorithm described
in the previous section� However� higher resolution optical �ow can
improve video coding only if the array of motion vectors is e�ciently
coded and if the bit allocation between motion vectors and prediction
errors is optimized�

To reach very low bit rates ����� kbits%s� the prediction errors of
motion compensation must be coded with very few bits� At these bit
rates� transform codings in block cosine bases and wavelet bases intro�
duce important visual degradations� Better results are obtained with
adaptive representations such as the matching pursuit expansion of Sec�
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tion ����� 
����� The dictionary of two�dimensional vectors is optimized
to match the structures of motion compensation errors 
	�	�� and the
resulting decomposition coe�cients are quantized and entropy coded�

The ongoing MPEG�� standardization o�ers a more structured�
�content based� approach to video coding at very low bit rates� Besides
compression performance� MPEG�� is adapted to the requirements of
interactive video� A video scene is represented through media objects�
These objects may correspond to elements of a natural scene such as
a moving head in a video�conference� or computer graphics structures
such as a written text� Natural images must be segmented in regions�
Each region is a media object� which can be characterized by its con�
tour� motion and texture parameters� This approach is clearly promis�
ing but very di�cult� It brings image compression into the world of
computer vision 
����

���� Problems

����� � Let X be a random variable which takes its values in fxkg��k��
with probabilities f���� � ���� � ���� � ���� � ���� � ���� � ����g�

�a� Compute the entropy H�X�� Construct a binary Hu�man
code and calculate the average bit rate RX �

�b� Suppose that the symbols are coded with digits that may take
three values� ��� �� � instead of two as in a bit representation�
Variable length ternary pre�x codes can be represented with
ternary trees� Extend the Hu�man algorithm to compute a
ternary pre�x code for X that has a minimal average length�

����� � Let x� be the symbol of highest probability of a random vari�
able X� and l� the length of its binary word in a Hu�man code�
Show that if p� � �
� then l� � �� Verify that if p� � �
� then
l� � ��

����� � Let X be a random variable equal to x� or x� with probabilities
p� � � � � and p� � �� Verify that H�X� converges to � when �
goes to �� Show that the Hu�man code has an average number
of bits that converges to � when � goes to ��

����� � Prove the Hu�man code Proposition �����

����� � Let X be a random variable with a probability density p�x��
Let Q be a quantizer whose bin sizes are f�yk��� yk�g��k�K �
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�a� Prove that EfjX �Q�X�j�g is minimum if and only if

Q�x� � xk �

R yk
yk��

x p�x� dxR yk
yk��

p�x� dx
for x � �yk��� yk��

�b� Suppose that p�x� is a Gaussian with variance ��� Find x�
and x� for a �� bit� quantizer de�ned by y� � ��� y� � �
and y� � ���

����� � Consider a pulse code modulation that quantizes each sample
of a Gaussian random vector F 
n� and codes it with an entropy
code that uses the same number of bits for each n� If the high
resolution quantization hypothesis is satis�ed� prove that the dis�
tortion rate is

d� �R� �
	e

�
EfkFk�g ��� �R �

����� � Let d �
PN��

m�� dm be the total distortion of a transform code�
We suppose that the distortion rate dm�r� for coding the m

th

coe�cient is convex� Let R �
PN��

m��Rm be the total number of
bits�

�a� Prove that there exists a unique bit allocation that minimizes

d�R� for R �xed� and that it satis�es �dm�Rm�
�r � �� where �

is a constant that depends on R� Hint� use Lagrange multi�
pliers�

�b� Derive a new proof of Theorem �����
�c� To impose that each Rm is a positive integer� we use a greedy

iterative algorithm that allocates the bits one by one� Let
fRm�pg��m�N be the bit allocation after p iterations� which
means that a total of p bits have been allocated� The next bit

is added to Rk�p such that
����dk�Rk�p��r

��� � max
��m�N

����dm�Rm�p�
�r

����
Justify this strategy� Prove that this algorithm gives an op�
timal solution if all curves dm�r� are convex and if dm�n �

��� dm�n� 
�dm�n�
�r for all n � N�

����� � Let X
m� be a binary �rst order Markov chain� which is spec�
i�ed by the transition probabilities p�� � PrfX
m� � � jX
m �
�� � �g� p�� � � � p�� � p�� � PrfX
m� � � jX
m � �� � �g and
p�� � �� p���

�a� Prove that p� � PrfX
m� � �g � p��
�p�� � p��� and that
p� � PrfX
m� � �g � p��
�p�� � p����
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�b� A run�length code records the length Z of successive runs of
� values of X
m� and the length I of successive runs of ��
Show that if Z and I are entropy coded� the average number
of bits per sample of the run�length code� denoted �R� satis�es

�R � �Rmin � p�
H�Z�

EfZg
� p�

H�I�

EfIg
�

�c� Let H� � �p�� log� p�� � ��� p��� log���� p���
and H� � �p�� log� p�� � ��� p��� log���� p���� Prove that

�Rmin � H�X� � p�H� � p�H� �

which is the average information gained by moving one step
ahead in the Markov chain�

�d� Suppose that the binary signi�cance map of the transform
code of a signal of size N is a realization of a �rst order
Markov chain� We denote � � �
EfZg � �
EfIg� Let M be
the number of signi�cant coe�cients �equal to ��� IfM � N
then show that

�Rmin 
M

N

�
� log�

N

M
� �

�
�������

with � � � log� e� �� log� �� ��� �� log���� ���
�e� Implement a run�length code for the binary signi�cance maps

of wavelet image coe�cients dlj 
n�m� � hf� lj�n�mi� for j and

l �xed� See whether ������� approximates the bit rate �R
calculated numerically as a function of N
M for the Lena
and Barbara images� How does � vary depending on the
scale �j and the orientation l � �� �� ��

����� � Implement in WaveLab a transform code that can compress
an image in any basis of a separable wavelet packet dictionary�
Perform numerical experiments on the Lena� Barbara and Pep�
pers images� Compute the bit rate �R in the �best basis� that
minimizes the two cost functions ������ and �������� Compare
the results� Is it more e�cient to code these images with one of
these best basis algorithm compared to a �xed wavelet basis�

������ � Implement the JPEG compression algorithm and replace the
DCT�I by an orthogonal local cosine transform over blocks of the
same size� Compare the compression rates in DCT�I and local
cosine bases� as well as the visual image quality for �R � 
���� ���
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������ � Implement a zero�tree embedded wavelet code for one�dimensional
signals�

������ � Implement an adaptive image coder that selects a best basis
by minimizing the cost function ������� in a wavelet packet dic�
tionary� To optimize your transform code� you can either restrict
the size of the wavelet packet dictionary� or elaborate an entropy
code to specify the chosen basis within the dictionary� Compare
this transform code with a wavelet transform code�

������ � Elaborate and implement a wavelet transform code for color
images� Transform the red� green and blue channels in the color
Karhunen�Lo�eve basis calculated in Problem ���� Find an e��
cient algorithm that encodes together the embedded signi�cance
maps of these three channels� which are uncorrelated but highly
dependent� Take advantage of the fact that the amplitude of
grey level variations typically decreases from the Karhunen�Lo�eve
channel of highest variance to that of lowest variance�

������ � For most images� the amplitudes of DCT�I coe�cients used
in JPEG have a tendency to decrease when the frequency of the
cosine vectors increases� Develop an embedded DCT�I transform
code that takes advantage of this property by using zero�trees to
record the position of signi�cant coe�cients in each block of ��
DCT�I coe�cients 
�����

������ � Develop and implement an algorithm that computes the opti�
cal !ow of an image sequence with the coarse to �ne multiscale
matching strategy described in Section �������

������ � Develop a video compression algorithm in a three dimensional
wavelet basis 
����� In the time direction� choose a Haar wavelet
in order to minimize the coding delay� This yields zero coe�cients
at locations where there is no movement in the image sequence�
Implement a separable three�dimensional wavelet transform and
design an e�cient algorithm that records the positions of coef�
�cients quantized to zero� How does your compression scheme
compare to a motion compensation algorithm�

������ � Let x�t� be the trajectory in the image of the projection of a
point that moves in a scene� Suppose that the illumination of a
scene changes in time by a factor l�t��

�a� Explain why the image intensity satis�es f�x�t�� t� � � l�t�
where � is a constant�
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�b� Write a modi�ed optical !ow equation that adds a term
l��t�
l�t� to the optical !ow equation ��������

�c� Modify the wavelet !ow algorithm of Section ������ to recover
both the motion vectors and the illumination change�

������ � Let fp and fp�� be two consecutive images of N
� pixels in a

video sequence� With the results of Problem ���� and Problem
����� design a fast �lter bank algorithm that requiresO�N�� oper�
ations to compute all the inner products that appear in equation
�������� for �N�� � �j � � and �jn � 
�� ���� Compute the mo�
tion vectors as a least square solution of these wavelet optical !ow
systems� Compare your implementation with the Matlab code
available at http���wave�cmap�polytechnique�fr�soft�OF��





Appendix A

Mathematical Complements

Important mathematical concepts are reviewed without proof� Sections
A��*A�� present results of real and complex analysis� including funda�
mental properties of Hilbert spaces� bases and linear operators 
�	��
Random vectors and Dirac distributions are covered in the last two
sections�

A�� Functions and Integration

Analog signals are modeled by measurable functions� We �rst give the
main theorems of Lebesgue integration� A function f is said to be
integrable if

R ��
�� jf�t�j dt � ��� The space of integrable functions is

written L��R�� Two functions f� and f� are equal in L��R� ifZ ��

��
jf��t�� f��t�j dt  ��

This means that f��t� and f��t� can di�er only on a set of points of
measure �� We say that they are almost everywhere equal�

The Fatou lemma gives an inequality when taking a limit under the
Lebesgue integral of positive functions�

Lemma A�� �Fatou� Let ffngn�N be a family of positive functions
fn�t� � �� If limn��� fn�t�  f�t� almost everywhere thenZ ��

��
f�t� dt � lim

n���

Z ��

��
fn�t� dt�

���
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The dominated convergence theorem supposes the existence of an
integrable upper bound to obtain an equality when taking a limit under
a Lebesgue integral�

Theorem A�� �Dominated Convergence� Let ffngn�N be a family
such that limn��� fn�t�  f�t� almost everywhere� If

�n 
 N jfn�t�j � g�t� and

Z ��

��
g�t� dt � �� �A���

then f is integrable andZ ��

��
f�t� dt  lim

n���

Z ��

��
fn�t� dt�

The Fubini theorem gives a su�cient condition for inverting the
order of integrals in multidimensional integrations�

Theorem A� �Fubini� If
R ��
��

�R ��
�� jf�x�� x��jdx�

�
dx� � �� thenZ ��

��

Z ��

��
f�x�� x�� dx� dx� 

Z ��

��

�Z ��

��
f�x�� x�� dx�

�
dx�



Z ��

��

�Z ��

��
f�x�� x�� dx�

�
dx� �

Convexity A function f�t� is said to be convex if for all p�� p� � �
with p� � p�  � and all �t�� t�� 
 R

� �

f�p�t� � p�t�� � p� f�t�� � p� f�t�� �

The function �f satis�es the reverse inequality and is said to be con�
cave� If f is convex then the Jensen inequality generalizes this property
for any pk � � with

PK
k�� pk  � and any tk 
 R�

f

�
KX
k��

pktk

�
�

KX
k��

pk f�tk� � �A���

The following proposition relates the convexity to the sign of the second
order derivative�
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Proposition A�� If f is twice di�erentiable� then f is convex if and
only if f ���t� � � for all t 
 R�

The notion of convexity also applies to sets + 	 Rn � This set is
convex if for all p�� p� � � with p� � p�  � and all �x�� x�� 
 +�� then
p�x� � p�x� 
 +� If + is not convex then its convex hull is de�ned as
the smallest convex set that includes +�

A�� Banach and Hilbert Spaces

Banach Space Signals are often considered as vectors� To de�ne a
distance� we work within a vector space H that admits a norm� A norm
satis�es the following properties�

�f 
 H � kfk � � and kfk  � � f  �� �A�	�

�� 
 C k�fk  j�j kfk� �A���

�f� g 
 H � kf � gk � kfk � kgk� �A���

With such a norm� the convergence of ffngn�N to f in H means
that

lim
n���

fn  f � lim
n���

kfn � fk  ��

To guarantee that we remain in H when taking such limits� we impose
a completeness property� using the notion of Cauchy sequences� A se�
quence ffngn�N is a Cauchy sequence if for any � � �� if n and p are
large enough� then kfn � fpk � �� The space H is said to be complete
if every Cauchy sequence in H converges to an element of H�

Example A�� For any integer p � � we de�ne over discrete sequences
f 
n�

kfkp 

�
��X

n���
jf 
n�jp

���p

�

The space lp  ff � kfkp � ��g is a Banach space with the norm
kfkp�
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Example A� The space Lp�R� is composed of the measurable func�
tions f on R for which

kfkp 

�Z ��

��
jf�t�jp dt

���p

� ���

This integral de�nes a norm and Lp�R� is a Banach space� provided
one identi�es functions that are equal almost everywhere�

Hilbert Space Whenever possible� we work in a space that has an
inner product to de�ne angles and orthogonality� A Hilbert space H
is a Banach space with an inner product� The inner product of two
vectors hf� gi is linear with respect to its �rst argument�

���� �� 
 C � h�� f� � �� f�� gi  �� hf�� gi� �� hf�� gi� �A���

It has an Hermitian symmetry�

hf� gi  hg� fi��
Moreover

hf� fi � � and hf� fi  � � f  ��

One can verify that kfk  hf� fi��� is a norm� The positivity �A�	�
implies the Cauchy�Schwarz inequality�

jhf� gij � kfk kgk� �A���

which is an equality if and only if f and g are linearly dependent�

Example A�	 An inner product between discrete signals f 
n� and
g
n� can be de�ned by

hf� gi 
��X

n���
f 
n� g�
n��

It corresponds to an l��Z� norm�

kfk�  hf� fi 

��X
n���

jf 
n�j��
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The space l��Z� of �nite energy sequences is therefore a Hilbert space�
The Cauchy�Schwarz inequality �A��� proves that�����

��X
n���

f 
n� g�
n�

����� �
�

��X
n���

jf 
n�j�
���� � ��X

n���
jg
n�j�

����

�

Example A�� Over analog signals f�t� and g�t�� an inner product
can be de�ned by

hf� gi 

Z ��

��
f�t� g��t� dt�

The resulting norm is

kfk 

�Z ��

��
jf�t�j� dt

����

�

The space L��R� of �nite energy functions is thus also a Hilbert space�
In L��R�� the Cauchy�Schwarz inequality �A��� is����Z ��

��
f�t� g��t� dt

���� � �Z ��

��
jf�t�j� dt

���� �Z ��

��
jg�t�j� dt

����

�

Two functions f� and f� are equal in L��R� if

kf� � f�k� 

Z ��

��
jf��t�� f��t�j� dt  ��

which means that f��t�  f��t� for almost all t 
 R�

A�� Bases of Hilbert Spaces

Orthonormal Basis A family fengn�N of a Hilbert space H is or�
thogonal if for n � p

hen� epi  ��
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If for f 
 H there exists a sequence �
n� such that

lim
N���

kf �
NX
n��

�
n� enk  ��

then fengn�N is said to be an orthogonal basis of H� The orthogonality
implies that necessarily �
n�  hf� eni	kenk� and we write

f 
��X
n��

hf� eni
kenk� en� �A���

A Hilbert space that admits an orthogonal basis is said to be separable�
The basis is orthonormal if kenk  � for all n 
 N � Computing

the inner product of g 
 H with each side of �A��� yields a Parseval
equation for orthonormal bases�

hf� gi 
��X
n��

hf� eni hg� eni�� �A���

When g  f � we get an energy conservation called the Plancherel for�
mula�

kfk� 
��X
n��

jhf� enij�� �A����

The Hilbert spaces l��Z� and L��R� are separable� For example�
the family of translated Diracs fen
k�  �
k�n�gn�Z is an orthonormal
basis of l��Z�� Chapter � and Chapter � construct orthonormal bases
of L��R� with wavelets� wavelet packets and local cosine functions�

Riesz Bases In an in�nite dimensional space� if we loosen up the or�
thogonality requirement� we must still impose a partial energy equiva�
lence to guarantee the stability of the basis� A family of vectors fengn�N
is said to be a Riesz basis of H if it is linearly independent and there
exist A � � and B � � such that for any f 
 H one can �nd �
n� with

f 
��X
n��

�
n� en� �A����
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which satis�es
�

B
kfk� �

X
n

j�
n�j� � �

A
kfk�� �A����

The Riesz representation theorem proves that there exist �en such that
�
n�  hf� �eni� and �A���� implies that

�

B
kfk� �

X
n

jhf� �enij� � �

A
kfk�� �A��	�

Theorem ��� derives that for all f 
 H�

A kfk� �
X
n

jhf� enij� � B kfk�� �A����

and

f 
��X
n��

hf� �eni en 
��X
n��

hf� eni �en�

The dual family f�engn�N is linearly independent and is also a Riesz ba�
sis� The case f  ep yields ep 

P��
n�� hep� �eni en� The linear indepen�

dence of fengn�N thus implies a biorthogonality relationship between
dual bases� which are called biorthogonal bases�

hen� �epi  �
n� p�� �A����

A�� Linear Operators

Classical signal processing algorithms are mostly based on linear oper�
ators� An operator T from a Hilbert space H� to another Hilbert space
H� is linear if

���� �� 
 C � �f�� f� 
 H � T ��� f� � �� f��  �� T �f�� � �� T �f���

Sup Norm The sup operator norm of T is de�ned by

kTkS  sup
f�H�

kTfk
kfk � �A����

If this norm is �nite� then T is continuous� Indeed� kTf�Tgk becomes
arbitrarily small if kf � gk is su�ciently small�
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Adjoint The adjoint of T is the operator T � from H� to H� such that
for any f 
 H� and g 
 H�

hTf� gi  hf� T �gi�

When T is de�ned from H into itself� it is self�adjoint if T  T ��
A non�zero vector f 
 H is a called an eigenvector if there exists

an eigenvalue � 
 C such that

Tf  � f�

In a �nite dimensional Hilbert space �Euclidean space�� a self�adjoint
operator is always diagonalized by an orthogonal basis feng��n�N of
eigenvectors

Ten  �n en�

When T is self�adjoint the eigenvalues �n are real� For any f 
 H�

Tf 
N��X
n��

hTf� eni en 
N��X
n��

�n hf� eni en�

In an in�nite dimensional Hilbert space� this result can be generalized
by introducing the spectrum of the operator� which must be manipu�
lated more carefully�

Orthogonal Projector Let V be a subspace of H� A projector PV
on V is a linear operator that satis�es

�f 
 H � PVf 
 V and �f 
 V � PVf  f�

The projector PV is orthogonal if

�f 
 H � �g 
 V � hf�PVf� gi  ��

The following properties are often used in this book�

Proposition A� If PV is a projector on V then the following state�
ments are equivalent�

�i
 PV is orthogonal�
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�ii
 PV is self�adjoint�
�iii
 kPVkS  ��
�iv
 �f 
 H � kf � PVfk  ming�V kf � gk�

If fengn�N is an orthogonal basis of V then

PVf 
��X
n��

hf� eni
kenk� en� �A����

If fengn�N is a Riesz basis of V and f�engn�N is the biorthogonal basis
then

PVf 
��X
n��

hf� eni �en 
��X
n��

hf� �eni en � �A����

Limit and Density Argument Let fTngn�N be a sequence of linear
operators from H to H� Such a sequence converges weakly to a linear
operator T� if

�f 
 H � lim
n���

kTnf � T�fk  ��

To �nd the limit of operators it is often preferable to work in a well
chosen subspace V 	 H which is dense� A space V is dense in H if for
any f 
 H there exist ffmgm�N with fm 
 V such that

lim
m���

kf � fmk  ��

The following proposition justi�es this approach�

Proposition A�	 �Density� Let V be a dense subspace of H� Sup�
pose that there exists C such that kTnkS � C for all n 
 N� If

�f 
 V � lim
n���

kTnf � T�fk  � �

then

�f 
 H � lim
n���

kTnf � T�fk  ��
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A�� Separable Spaces and Bases

Tensor Product Tensor products are used to extend spaces of one�
dimensional signals into spaces of multiple dimensional signals� A ten�
sor product f� � f� between vectors of two Hilbert spaces H� and H�

satis�es the following properties�

Linearity

�� 
 C � � �f� � f��  �� f��� f�  f� � �� f��� �A����

Distributivity

�f��g����f��g��  �f��f����f��g����g��f����g��g��� �A����

This tensor product yields a new Hilbert space H  H� � H� that
includes all vectors of the form f� � f� where f� 
 H� and f� 
 H�� as
well as linear combinations of such vectors� An inner product in H is
derived from inner products in H� and H� by

hf� � f� � g� � g�iH  hf�� g�iH�
hf�� g�iH�

� �A����

Separable Bases The following theorem proves that orthonormal
bases of tensor product spaces are obtained with separable products of
two orthonormal bases� It provides a simple procedure for transforming
bases for one�dimensional signals into separable bases for multidimen�
sional signals�

Theorem A�	 Let H  H� � H�� If fe�ngn�N and fe�ngn�N are two
Riesz bases respectively of H� and H� then fe�n� e�mg�n�m��N� is a Riesz
basis of H� If the two bases are orthonormal then the tensor product
basis is also orthonormal�

Example A�� A product of functions f 
 L��R� and g 
 L��R�
de�nes a tensor product�

f�x�� g�x��  f � g�x�� x���
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Let L��R�� be the space of h�x�� x�� such thatZ ��

��

Z ��

��
jh�x�� x��j� dx� dx� � ���

One can verify that L��R��  L��R��L��R�� Theorem A�	 proves that
if f�n�t�gn�N is an orthonormal basis of L��R�� then f�n��x���n��x��g�n��n���N�
is an orthonormal basis of L��R���

Example A�
 A product of discrete signals f 
 l��Z� and g 
 l��Z�
also de�nes a tensor product�

f 
n�� g
n��  f � g
n�� n���

The space l��Z�� of images h
n�� n�� such that

��X
n����

��X
n����

jh
n�� n��j� � ��

is also decomposed as a tensor product l��Z��  l��Z� � l��Z�� Or�
thonormal bases can thus be constructed with separable products�

A�� Random Vectors and Covariance Op	

erators

A class of signals can be modeled by a random process �random vector�
whose realizations are the signals in the class� Finite discrete signals f
are represented by a random vector Y � where Y 
n� is a random variable
for each � � n � N � For a review of elementary probability theory for
signal processing� the reader may consult 
��� ����

Covariance Operator The average of a random variable X is EfXg�
The covariance of two random variables X� and X� is

Cov�X�� X��  E

n�
X� � EfX�g

��
X� � EfX�g

��o
� �A����
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The covariance matrix of a random vector Y is composed of the N�

covariance values

R
n�m�  Cov
�
Y 
n�� Y 
m�

�
�

It de�nes the covariance operator K which transforms any h
n� into

Kh
n� 
N��X
m��

R
n�m� h
m��

For any h and g

hY� hi 
N��X
n��

Y 
n� h�
n� and hY� gi 
N��X
n��

Y 
n� g�
n�

are random variables and

Cov
�
hY� hi� hY� gi

�
 hKg� hi� �A��	�

The covariance operator thus speci�es the covariance of linear combi�
nations of the process values�

Karhunen�Lo�eve Basis The covariance operator K is self�adjoint
because R
n�m�  R�
m�n� and positive because

hKh� hi  EfjhY� hij�g � �� �A����

This guarantees the existence of an orthogonal basis fgkg��k�N that
diagonalizes K�

Kgk  ��k gk�

This basis is called a Karhunen�Loeve basis of Y � and the vectors gk
are the principal directions� The eigenvalues are the variances

��k  hKgk� gki  EfjhY� gkij�g� �A����
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Wide�Sense Stationarity We say that Y is wide�sense stationary
if

EfY 
n�Y �
m�g  R
n�m�  RY 
n�m�� �A����

The correlation at two points depends only on the distance between
these points� The operator K is then a convolution whose kernel RY 
k�
is de�ned for �N � k � N � A wide�sense stationary process is circular
stationary if RY 
n� is N periodic�

RY 
n�  RY 
N � n� for �N � n � �� �A����

This condition implies that a periodic extension of Y 
n� on Z remains
wide�sense stationary on Z� The covariance operator K of a circu�
lar stationary process is a discrete circular convolution� Section 	�	��
proves that the eigenvectors of circular convolutions are the discrete
Fourier vectors n

gk
n� 
�p
N

exp

�
i��kn

N

�o
��k�N

�

The discrete Fourier basis is therefore the Karhunen�Lo�eve basis of cir�
cular stationary processes� The eigenvalues �A���� of K are the discrete
Fourier transform of RY and are called the power spectrum

��k  �RY 
k� 
N��X
n��

RY 
n� exp

��i�k�n
N

�
� �A����

The following theorem computes the power spectrum after a circular
convolution�

Theorem A�� Let Z be a wide�sense circular stationary random vec�
tor� The random vector Y 
n�  Z �� h
n� is also wide�sense circular
stationary and its power spectrum is

�RY 
k�  �RZ 
k� j�h
k�j�� �A����
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A�� Diracs

Diracs are useful in making the transition from functions of a real vari�
able to discrete sequences� Symbolic calculations with Diracs simplify
computations� without worrying about convergence issues� This is jus�
ti�ed by the theory of distributions 
��� ���� A Dirac � has a support
reduced to t  � and associates to any continuous function � its value
at t  � Z ��

��
��t���t� dt  ����� �A�	��

Weak Convergence A Dirac can be obtained by squeezing an inte�
grable function g such that

R ��
�� g�t� dt  �� Let gs�t�  �

s
g� t

s
�� For

any continuous function �

lim
s��

Z ��

��
gs�t���t� dt  ���� 

Z ��

��
��t���t� dt� �A�	��

A Dirac can thus formally be de�ned as the limit �  lims�� gs� which
must be understood in the sense of �A�	��� This is called weak conver�
gence� A Dirac is not a function since it is zero at t � � although its
�integral� is equal to �� The integral at the right of �A�	�� is only a
symbolic notation which means that a Dirac applied to a continuous
function � associates its value at t  ��

General distributions are de�ned over the space C�
� of test functions

which are in�nitely continuously di�erentiable with a compact support�
A distribution d is a linear form that associates to any � 
 C�

� a
value that is written

R ��
�� d�t���t�dt� It must also satisfy some weak

continuity properties 
��� ��� that we do not discuss here� and which
are satis�ed by a Dirac� Two distributions d� and d� are equal if

�� 
 C�
� �

Z ��

��
d��t���t� dt 

Z ��

��
d��t���t� dt� �A�	��

Symbolic Calculations The symbolic integral over a Dirac is a use�
ful notation because it has the same properties as a usual integral�
including change of variables and integration by parts� A translated
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Dirac �
 �t�  ��t� �� has a mass concentrated at � andZ ��

��
��t� ��t� u� dt 

Z ��

��
��t� ��u� t� dt  ��u��

This means that � � ��u�  ��u�� Similarly � � �
 �u�  ��u� ���
A Dirac can also be multiplied by a continuous function � and since

��t� �� is zero outside t  � � it follows that

��t� ��t� ��  ���� ��t� ���

The derivative of a Dirac is de�ned with an integration by parts� If
� is continuously di�erentiable thenZ ��

��
��t� ���t� dt  �

Z ��

��
���t� ��t� dt  �������

The kth derivative of � is similarly obtained with k integrations by parts�
It is a distribution that associates to � 
 CkZ ��

��
��t� ��k��t� dt  ����k ��k�����

The Fourier transform of � associates to any e�it its value at t  ��

����� 

Z ��

��
��t� e�it dt  ��

and after translation ��
 ���  e�i
� The Fourier transform of the Dirac
comb c�t� 

P��
n��� ��t� nT � is therefore �c��� 

P��
n��� e�inT� The

Poisson formula ����� proves that

�c��� 
��

T

��X
k���

�

�
� � ��k

T

�
�

This distribution equality must be understood in the sense �A�	���
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Appendix B

Software Toolboxes

The book algorithms are implemented in WaveLab and LastWave�
which are freeware softwares that can be retrieved through the Internet�
Nearly all the computational �gures of the book are reproduced as
demos� Other freeware toolboxes are listed in Section B�	� Pointers to
new software and information concerning the Wavelet Digest newsletter
is available at

http���www�wavelet�org�

B�� WaveLab

WaveLab is a library of Matlab routines for wavelets and related
time�frequency transforms� It is improved and maintained at Stanford
University by David Donoho with contributions to earlier versions by
John Buckheit� Shaobing Chen� Xiaoming Huo� Iain Johnstone� Eric
Kolaczyk� Je�rey Scargle� and Thomas Yu 
����� It requires buying
Matlab� which o�ers an interactive environment for numerical com�
putations and visualizations� Matlab is a product of The Mathworks
company based in Natick� Massachusetts� The WaveLab version �����
has more than ��� �les including programs� data� documentation and
scripts� which can be retrieved at�

http���www�stat�stanford�edu��wavelab �

���
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Versions are available for Unix workstations� Linux� Macintosh� and PC
�Windows��

A partial list of directories inside WaveLab is provided �in bold��
For each directory� we give the names of the main computational sub�
routines� followed by the sections that describe the algorithms and the
�gures that use them�

Datasets Synthetic and real signals�

ReadSignal Reads a Signal from a data set of one�dimensional
signals� Figures ���� ���� ����� ���� and �����

ReadImage Reads an Image from an image data set� Figure �����

MakeSignal Makes a synthetic one�dimensional Signal� Figures
���� ��	� ���� ���	� ����� ��	� ���� ���� ����� �����

MakeImage Makes a synthetic Image� Figure �����

MakeProcess Makes a realization of a stochastic Process� Section
�����	� Figure ������

MakeBrownian Makes a realization of a fractional Brownian mo�
tion� Section ����	� Figure �����

MakeCantor Makes a generalized Cantor measure� Section ������
Figures ���� and �����

Continuous Continuous wavelet transform tools�

RWT Real Wavelet Transform� Sections ��	�� and ��	�	� Figures
���� ���� ��	� ���� ���� ���� and �����

IRWT Inverse Real Wavelet Transform� Sections ��	�� and ��	�	�

MM RWT Modulus Maxima of a Real Wavelet Transform� Section
���� Figures ���� ���� ���� ���� and �����

SkelMap Skeleton Map of maxima curves� Section ���� Figures
���� ���� ��� and �����

AWT Analytic Wavelet Transform� Sections ��	�� and ��	�	� Fig�
ures ����� ���� and �����

IAWT Inverse Analytic Wavelet Transform� Sections ��	�� and
��	�	�
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Ridge AWT Ridges of an Analytic Wavelet Transform� Section
������ Figures ����� ���� and �����

Fractals Fractal computations�

FracPartition Fractal Partition function based on wavelet mod�
ulus maxima� Section ������ Figure �����

FracScalExp Fractal Scaling Exponent of the partition function�
Section ������ Figures ���� and �����

FracSingSpect Fractal Singularity Spectrum� Section ������ Fig�
ures ���� and �����

TimeFrequency Time�frequency distributions�

WindowFT Windowed Fourier Transform� Section ���� Figures
��	� ���	 and �����

IWindowFT Inverse Windowed Fourier Transform� Sections �����
and ����	�

Ridge WindowFT Ridges of a Windowed Fourier Transform� Sec�
tion ������ Figures ����� ���	 and �����

WignerDist Wigner�Ville Distribution� Sections ����� and ������
Figures ���� and �����

CohenDist Cohen class time�frequency Distributions� Sections
����	 and ������ Figures ���� and �����

Orthogonal Periodic Orthogonal wavelet transforms�

FWT PO Forward Wavelet Transform� Periodized and Orthogonal�
Sections ��	�� and ������ Figures ��� and ��	�

IWT PO Inverse Wavelet Transform� Periodized and Orthogonal�
Sections ��	�� and ������ Figure ��	�

FWT IO Forward Wavelet Transform� on the Interval and Orthog�
onal� Sections ��	�� and ����	� Figure ��	�

IWT IO Inverse Wavelet Transform� on the Interval and Orthog�
onal� Sections ��	�� and ����	� Figure ��	�
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FWT� PO Forward Wavelet Transform of images� Periodized and
Orthogonal� Section ����	� Figure �����

IWT� PO Inverse Wavelet Transform of images� Periodized and
Orthogonal� Sections ����	�

MakeONFilter Makes Orthogonal conjugate mirror Filters for Dau�
bechies� Coi�ets� Symmlets� Haar and Battle�Lemari"e wavelets�
Sections ����	 and ����	� Figure ����

MakeOBFilter Makes Orthogonal Boundary conjugate mirror Fil�
ters for Cohen�Daubechies�Vial wavelets� Section ����	�

MakeWavelet Makes graph of orthogonal Wavelets and scaling
functions� Section ��	��� Figures ���� ���� ��� and �����

Meyer Meyer orthogonal and periodic wavelet transforms�

FWT YM Forward Wavelet Transform with Yves Meyer wavelets�
Sections ������ ����� and ������

IWT YM Inverse Wavelet Transform with Yves Meyer wavelets�
Sections ������ ����� and ������

FWT� YM Forward Wavelet Transform of images with Yves Meyer
wavelets� Sections ������ ����� and ������

IWT� YM Inverse Wavelet Transform of images with Yves Meyer
wavelets� Sections ������ ����� and ������

Biorthogonal Biorthogonal wavelet transforms�

FWT PB Forward Wavelet Transform� Periodized and Biorthogo�
nal� Sections ��	�� and ����

IWT PB Inverse Wavelet Transform� Periodized and Biorthogonal�
Sections ��	�� and ����

FWT� PB Forward Wavelet Transform of images� Periodized and
Biorthogonal� Section ����	�

IWT� PB Inverse Wavelet Transform of images� Periodized and
Biorthogonal� Section ����	�



B��� WAVELAB ���

MakeBSFilter Makes perfect reconstruction Biorthogonal Sym�
metric Filters� Section ����	�

MakeBSWavelet Makes graph of Biorthogonal Symmetric Wavelets
and scaling functions� Figures ���� and �����

Interpolating Multiscale interpolations�

FWT DD Forward interpolating Wavelet Transform calculated with
Deslauriers�Dubuc �lters� Section ������

IWT DD Inverse interpolating Wavelet Transform calculated with
Deslauriers�Dubuc �lters� Section ������

Invariant Translation invariant wavelet transforms�

FWT ATrou Forward dyadic Wavelet Transform calculated with
the Algorithme �a Trous� Section ���� Figures ��� and ����

IWT ATrou Inverse dyadic Wavelet Transform calculated with the
Algorithme �a Trous� Sections ��� and ����

FWT Stat Forward dyadic Wavelet Transform calculated with Sta�
tionary shifts of the signal� Section ������� Figures ���� and
�����

IWT Stat Inverse dyadic Wavelet Transform calculated with Sta�
tionary shifts of the signal� Section ������� Figures ���� and
�����

MM DWT Modulus Maxima of a Dyadic Wavelet Transform� Sec�
tion ������ Figure ����

IMM DWT Inverse reconstruction of signals from Modulus Maxima
of a Dyadic Wavelet Transform� Section ������ Figure ����

FWT� ATrou Forward dyadic Wavelet Transform of images calcu�
lated with the Algorithme �a Trous� Section ��	��� Figures
��� and �����

MM� DWT Modulus Maxima of an image Dyadic Wavelet Trans�
form� Section ��	��� Figures ��� and �����

IMM� DWT Inverse reconstruction of an image from Modulus Max�
ima of a Dyadic Wavelet Transform� Section ��	� Figure
�����
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Packets Best wavelet packet and local cosine bases�

One�D For one�dimensional signals�

WPTour WavePacket tree decomposition and best basis se�
lection� Sections ��� and ��	� Figures ��� and ����

MakeWaveletPacket Makes graph of WavePacket functions�
Section ���� Figures ��� and ����

CPTour Local Cosine Packet tree decomposition and best
basis selection� Sections ��� and ��	� Figures ����� ����
and �����

KLinCP Karhunen�Lo�eve basis estimation in a Cosine Packet
tree� Section ������� Figure ������

Two�D For two�dimensional signals�

WP�Tour WavePacket ��dimensional decomposition and best
basis selection� Sections ��� and ��	���

CP�Tour Local Cosine Packet ��dimensional decomposition
and best basis selection� Sections ����	 and ��	��� Fig�
ures ���� and �����

Pursuit Basis and matching pursuits�

WPBPursuitTour WavePacket dictionary for Basis Pursuits� Sec�
tion ������ Figure �����

CPBPursuitTour Cosine Packet dictionary for Basis Pursuits� Sec�
tion ������

WPMPursuitTour WavePacket dictionary for Matching Pursuits�
Section ���� Figures ���� and ���	�

CPMPursuitTour Cosine Packet dictionary for Matching Pursuits�
Section ����

GaborPursuitTour Gabor dictionary for Matching Pursuits� Sec�
tion ������ Figures �����b� and ���	�

DeNoising Removal of additive noises�
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ThreshWave Thresholds orthogonal Wavelet coe�cients� Section
������� Figures ���� and �����

ThreshWave� Thresholds orthogonal Wavelet coe�cients of im�
ages� Section ������� Figure �����

ThreshWP Thresholds coe�cients of a best WavePacket basis�
Section �������

ThreshCP Thresholds coe�cients of a best Cosine Packet basis�
Section ������� Figure �����

CohWave Coherent threshold of orthogonal Wavelet coe�cients�
Section ������� Figure ������

Figure Demonstration The Wavelab directory has a folder called
WaveTour� It contains a subdirectory for each chapter �WTCh��� WTCh���� � � �$
these subdirectories include all the �les needed to reproduce the com�
putational �gures� Each directory has a demo �le� For example� the
�gures of Chapter � are reproduced by invoking the �le WTCh��Demo

in Matlab� A menu bar appears on the screen� listing all computa�
tional �gures of Chapter �� When a �gure number is activated by a
mouse�click� the calculations are reproduced and the resulting graphs
are displayed in a separate window� The command window gives a nar�
rative explaining the results� The �le WTCh��Demo�m is in the directory
WTCh��� The Matlab source code that computes Figure ��X is in the
�le wt��figX�m in that same directory� Equivalent names are used for
all other chapters�

B�� LastWave

LastWave is a wavelet signal and image processing environment� writ�
ten in C for X��%Unix and Macintosh computers� This stand�alone
freeware does not require any additional commercial package� and can
be retrieved through the Internet at�

http���wave�cmap�polytechnique�fr�soft�LastWave� �

LastWave was created and is maintained by Emmanuel Bacry� at
Ecole Polytechnique in France� It includes a command line language�
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and a high level object�oriented graphic language for displaying simple
objects �buttons� strings����� and more complex ones �signals� images�
wavelet transforms� time�frequency planes����� The computational sub�
routines and commands are regrouped in independent packages� An ex�
tensive on�line documentation is available� New commands are added
with the command language or as C subroutines� This software is
rapidly evolving with packages provided by users across the Internet�
The current contributors include Benjamin Audit� Geo� Davis� Nicolas
Decoster� J"er�ome Fraleu� R"emi Gribonval� Wen�Liang Hwang� St"ephane
Mallat� Jean Francois Muzy and Sifen Zhong� The following gives a list
of current packages �in bold� with their main computational commands�
and the sections they relate to�

Signal Section 	�	�

s� Arithmetic calculations over signals�

fft Forward and inverse fast Fourier transforms�

conv Fast convolution�

Wavelet Transform ��d� Sections ��	 and ��	�

cwt Continuous wavelet transform�

owtd	 owtr Orthogonal and biorthogonal wavelet transforms� for�
ward and reverse�

wthresh Wavelet coe�cient thresholding�

Wavelet Transform Maxima ��d� Section ����

extrema	 chain Computes the maxima of a continuous wavelet
transform� and chains them through scales�

Wavelet Transform Modulus Maxima Method ��d� Section ����

pf Computes the partition functions and singularity spectra of
multifractal signals�

Matching Pursuit Sections ��� and ������
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stftd Short time windowed Fourier transform�

mp	 mpr Matching pursuit in a Gabor dictionary� forward and
reverse�

Image Section 	���

i� Arithmetic operations over images�

Orthogonal Wavelet Transform �d� Section ������

owt�d	 owt�r Orthogonal and biorthogonal wavelet transforms
of images� forward and reverse�

Dyadic Wavelet Transform �d� Section ��	�

dwt�d	 dwt�r Dyadic wavelet decomposition of images� forward
and reverse�

extrema�	 extrecons� Computes the modulus maxima of a dyadic
wavelet transform� and reconstructs the image from these
maxima�

chain� Computes the chains of modulus maxima corresponding
to edges�

denoise� Denoising by thresholding the chains of modulus max�
ima�

Compression �d� Section �������

code�	 decode� Image compression with a wavelet transform
code� and reconstruction of the coded image�

B�� Freeware Wavelet Toolboxes

We give a partial list of freeware toolboxes for wavelet signal processing
that can retrieved over the Internet�

Embedded Image Compression is a C�� software for wavelet
image compression �Amir Said and William Pearlman��

http���ipl�rpi�edu�SPIHT �
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Fraclab is wavelet fractal analysis toolbox developed at INRIA
�Christophe Canus� Paulo Goncalv�es� Bertrand Guiheneuf and Jacques
L"evy V"ehel��

http���www�syntim�inria�fr�fractales� �

Megawave is a collection of command line C subroutines under
Unix for wavelet� wavelet packet and local cosine processing� with sound
and image processing applications �Jacques Froment��

http���www�ceremade�dauphine�fr��mw �

Rice Wavelet Toolbox is a wavelet Matlab toolbox with or�
thogonal and biorthogonal transforms and applications to denoising
�DSP group at Rice university��

http���www�dsp�rice�edu�software�RWT�

Swave is an S� tool box with continuous wavelet transforms and
windowed Fourier transforms� including detection of ridges �Ren"e Car�
mona� Wen�Liang Hwang and Bruno Torr"esani��

http���chelsea�princeton�edu��rcarmona�TFbook��
Time�Frequency is a Matlab toolbox for the analysis of non�

stationary signals with quadratic time�frequency distributions �Francois
Auger� Patrick Flandrin� Olivier Lemoine and Paulo Goncalv�es��

http���www�physique�ens�lyon�fr�ts�tftb�html �

Xwpl� Wplib� Denoise are libraries of subroutines that imple�
ment orthogonal signal decompositions in dictionaries of wavelet packet
and local cosine bases� with applications to noise removal and signal
compression �wavelet group at Yale University��

http � 		pascal�math�yale�edu	pub	wavelets	software	 �

Wavelet Toolbox in Khoros includes orthogonal and biorthog�
onal wavelet transforms for multidimensional signals �Jonio Cavalcanti
and Ramiro Jordon��

http � 		www�khoral�com	obtain	contrib�html �
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